## General relativity. Problem set 1.

HS 14
Due: Tue, September 23, 2014

## 1. The sphere as a manifold

Consider the sphere

$$
S^{2}=\left\{p=\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

and its covering $S^{2}=U_{+} \cup U_{-}$by the two open sets

$$
U_{ \pm}=S^{2} \backslash\{(0,0, \pm 1)\}
$$

obtained by removing the north, resp. south pole from $S^{2}$. The stereographic projection $p \mapsto(x, y)$ shown in the figure provides a chart for $U_{+}$with coordinate neighborhood $\mathbb{R}^{2} \ni(x, y)$; similarly there is one for $U_{-}$with neighborhood $\mathbb{R}^{2} \ni(\bar{x}, \bar{y})$. On which subset of $\mathbb{R}^{2}$ is the transition function $(x, y) \mapsto(\bar{x}, \bar{y})$ defined? Compute that function.


## 2. Tensors

a) Show that not all tensors in

$$
\begin{aligned}
V \otimes V & =\left\{T \mid T \text { is a bilinear form over } V^{*} \times V^{*}\right\} \\
& =\left\{\text { linear combinations of tensors } v_{1} \otimes v_{2} \mid v_{1}, v_{2} \in V\right\}
\end{aligned}
$$

are of the form $v_{1} \otimes v_{2}$ (simple tensors).
b) Identify $V \otimes W^{*}$ with the linear space $\mathcal{L}(W, V)$ of linear maps $W \rightarrow V$.

