$HS \ 14$

Due: Tue, September 23, 2014

1. The sphere as a manifold

Consider the sphere

$$S^{2} = \{ p = (x_{1}, x_{2}, x_{3}) \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1 \}$$

and its covering $S^2 = U_+ \cup U_-$ by the two open sets

$$U_{\pm} = S^2 \setminus \{(0, 0, \pm 1)\}$$

obtained by removing the north, resp. south pole from S^2 . The stereographic projection $p \mapsto (x, y)$ shown in the figure provides a chart for U_+ with coordinate neighborhood $\mathbb{R}^2 \ni (x, y)$; similarly there is one for U_- with neighborhood $\mathbb{R}^2 \ni (\bar{x}, \bar{y})$. On which subset of \mathbb{R}^2 is the transition function $(x, y) \mapsto (\bar{x}, \bar{y})$ defined? Compute that function.

2. Tensors

a) Show that not all tensors in

$$V \otimes V = \{T \mid T \text{ is a bilinear form over } V^* \times V^* \}$$

= {linear combinations of tensors $v_1 \otimes v_2 \mid v_1, v_2 \in V \}$

are of the form $v_1 \otimes v_2$ (simple tensors).

b) Identify $V \otimes W^*$ with the linear space $\mathcal{L}(W, V)$ of linear maps $W \to V$.