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Estimation of oblique electroweak corrections
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We review the general analysis of the contributions of electroweak vacuum-polarization diagrams to
precision experiments. We first review the representation of these contributions by three parameters S,
T, and U and discuss the assumptions involved in this reduction. We then discuss the contributions to
these parameters from various models of new physics. W'e show that S can be computed by a dispersion

relation, and we use this technique to estimate S in technicolor models of the Higgs sector. We discuss

the reliability and the gauge invariance of this estimate. Finally, we present the limits on S and T im-

posed by current experimental results.

PACS number(s): 12.15.Cc, 12.15.Ji, 12.50.Lr

I. INTRODUCTION

While no one seriously doubts the validity of the
SU(2)L XU(1)r gauge theory of electroweak interac-
tions, the nature of the Higgs sector which is responsible
for breaking the SU(2)L XU(1)r symmetry, and thus giv-

ing the 8"s and the Z their masses, is still a mystery. A
variety of theories, from the minimal model with one sca-
lar doublet to technicolor models with elaborate dynam-
ics, have been proposed, but none of the new particle
states predicted by these theories has yet been observed.

Since experiment has not yet offered direct evidence to
distinguish these theories, it is important to make the
best use of all sources of indirect information that current
measurements provide. The most important of these in-
direct constraints come from precision measurements of
weak-interaction parameters. In the past year, these
measurements have reached the level of 1% accuracy in
the determination of the 8' mass and the parameters of
the Z resonance. Measurements at this level already al-
low us to distinguish among different models of the Higgs
sector.

The most general models of the Higgs sector allow for
large deviations from the predictions of the minimal ver-
sion of the standard model. However, more than ten
years ago, Veltman [1,2] pointed out the relevance of the
natural zeroth-order relation of the minimal standard
model:

2m gr

2 2mzcos Ogr

Experimentally, this relation is satisfied to better than
1%, so that it is reasonable to assume that the correc-
tions to this relation arise only from radiative correc-
tions. That requirement restricts the nature of the Higgs
sector [forbidding, for example, expectation values for
scalars which transform as SU(2) triplets]. However,
Sikivie, Susskind, Voloshin, and Zakharov [3] have ar-
gued that (1.1) is naturally valid up to electroweak radia-
tive corrections in a large class of models in which the
Higgs sector has an unbroken SU(2) global symmetry,

called by these authors a custodial symmetry. Large de-
viations from the predictions of the minimal standard
model can also occur if the gauge structure of the model
is extended, so that there exists a new neutral boson Z
which mixes with the Z . In this paper we will restrict
our attention to models with only SU(2) XU(1) gauge bo-
sons and in which (1.1) is a natural relation. This case
still includes the full variety of models of the Higgs sec-
tor. We will show how to distinguish these models by
comparing the values predicted for their radiative correc-
tions with those obtained from experiment.

In models in which the Higgs sector is weakly interact-
ing, the computation of the electroweak radiative correc-
tions due to the Higgs particles is a straightforward en-
deavor involving only ordinary perturbation theory.
However, we would also like to discuss models, such as
technicolor, in which the Higgs sector is strongly in-
teracting. In this case, we face not only the practical
problem that perturbation theory is unreliable but also
the conceptual problem that the massless Goldstone bo-
sons which play an essential role in the Higgs mechanism
do not appear in any purely perturbative approach.

In this paper, we will argue that this problem is natu-
rally solved by the use of dispersion relations. We will re-
late the experimentally relevant electroweak corrections
to dispersive integrals over the states of the Higgs sector
and illustrate the theoretical evaluation of these integrals
in some cases of interest. We will also explain how the
values of these integrals for the true Higgs sector can be
extracted from experimental data. We expect that, as the
values of these dispersive integrals are determined experi-
mentally, they will become important integral constraints
on the content of the Higgs sector. Already, experiment
can exclude technicolor models with large strongly in-
teracting sectors, independently of any considerations of
extended technicolor, quark mass generation, or flavor-
changing neutral currents. We wi11 argue carefully to
this conclusion in the course of this paper.

Some of the analysis of this paper is new, but a large
part of our intent is to collect a number of results from
the literature and to explain them clearly in a unified
way. The idea that the Higgs sector is constrained by
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precision electroweak experiments was, of course, ori-
ginated by Veltman [1,2]. Many authors have studied the
detailed effects of the Higgs boson of the minimal stan-
dard model in electroweak corrections; the current status
of this subject and a review of the literature may be found
in the valuable 1989 study volume [4] for the CERN
e e collider LEP. The effects of technicolor models of
the Higgs sector have been computed by the two of us in
collaboration with Renken [5], Lynn and Stuart [6], and
Appelquist, Einhorn, and Wijewardhana [7], and more
recently by Golden and Randall [8],Holdom and Terning
[9], Johnson, Young, and McKay [10], and Dobado,
Espriu, and Herrero [11]. Though most papers on tech-
nicolor model building stress the constraint of the p pa-
rameter, even Ref. [5] made clear that the pattern of
weak-interaction renormalizations due to technicolor is
more complicated, and cannot be summarized in a single
parameter.

In parallel with these model-dependent studies, the au-
thors of Ref. [6] suggested that one could probe for the
effects of new physics in electroweak corrections in a gen-
eral way, by concentrating on the effects of vacuum-
polarization diagrams (oblique corrections) and searching
for these effects independently of the underlying model.
This idea was incorporated into a complete theory of
weak radiative corrections by Kennedy and Lynn [12].
This Kennedy-Lynn formalism has had an important
influence in providing a language which is simultaneously
precise and conceptually transparent for describing the
results of experiments on electroweak corrections.

Most recently, we proposed a simple two-parameter
representation of the effects of oblique electro weak
corrections, in a form appropriate for a direct compar-
ison with experiment [13]. This representation was ob-
tained by approximating the Kennedy-Lynn formalism in

a manner appropriate for corrections due to particles of
very large mass. We argued that one of these parameters
could be represented by a dispersive integral and thus
could be readily estimated in models with a strongly in-

teracting Higgs sector. Our parametrization has subse-

quently been discussed, extended, and analyzed by several

groups [14—18]. Since all of the papers of Refs. [13—18]
are brief communications, we feel that there is a need for
a comprehensive review of these recent developments.

In this paper, then, we will review the parametrization
of oblique electroweak corrections and the evaluation of
these corrections by dispersion relations. In Sec. II, we

will review the Kennedy-Lynn parametrization of elec-
troweak corrections. In Sec. III, we will analyze a subset
of the Kennedy-Lynn parameters which give the correc-
tions to the most important weak-interaction observables.
We will present general formulas for the renormalization
of these parameters in terms of vacuum-polarization arn-

plitudes. Then we will show how these formulas can be
reduced to linear functions of two parameters S and T.
In Sec. IV, we will study the example of electroweak radi-
ative corrections due to a heavy fermion doublet to illus-

trate the approximations involved in this reduction. This
example will also clarify the physical significance of these
parameters: T quantifies the strength of weak-isospin
breaking through the radiative corrections (including the

familiar effect of the top quark proportional to I, /mz),
while S is an isospin-symmetric measure of the size of the
Higgs sector.

Sections V —VII will discuss the estimation of oblique
corrections for the case of a strongly interacting Higgs
sector. In Sec. V, we will present a formula for S in terms
of a dispersive integral. In Sec. VI, we will discuss the
gauge invariance of this expression, emphasizing the
subtleties which arise when the Goldstone bosons appear
only nonperturbatively. In Sec. VII, we will evaluate the
dispersive integral for S in simple technicolor models and
discuss the accuracy of this estimate for more realistic
models including extended technicolor. In Sec. VIII, we

will briefly remark on the estimation of the parameter T.
We have not been able to obtain a reliable dispersive for-
mula for T; this remains an important open problem.

In Sec. IX, we will discuss the current experimental
constraints on S and T. We will first review the sensitivi-

ty of various precision weak-interactions measurements
to S and T. We will show that the various measurements
fall into three general classes; those sensitive mainly to T,
those equally sensitive to T and S, and those mainly sensi-
tive to S. The first class includes all of the best-known
weak-interaction observables: mz, the ratio of neutral-
to charged-current neutrino cross sections R„and the
width of the Z . The second class includes the weak-
interaction asymmetries at the Z peak: Ai„and A„B.
The third class, which gives a direct restriction on S, in-

cludes the magnitude of parity violation in atomic phys-
ics [14]. We will show that combining these three classes
of experiments already places quite a strong constraint on
S and T. We will discuss the improvement in this con-
straint which can be expected from future experiments.
At a marginal level of significance, the current data favor
a sizable negative value of S. This result is surprising,
and, if confirmed, would be very problematic to reconcile
with simple extensions of the standard model. On the
other hand, this result already excludes technicolor rnod-

els, which produce positive contributions to S, if the tech-
nicolor sectors of these models are sufficiently large. In
Sec. X, we will present some general conclusions.

II. FORMALISM OF OBLIQUE CORRECTIONS

In this section, we review the general formalism
developed by Kennedy and Lynn [12] for treating radia-

tive corrections to weak-interaction processes with light
external fermions. While the formalism of Kennedy and

Lynn encompasses radiative corrections from physics
both within and beyond the standard model, we will only
be considering the latter. Therefore, we wi11 not go into
the subtleties that must be taken into account for the
standard-model corrections. In this paper, we will not be

trying to improve upon or even reproduce the full results
of Kennedy and Lynn, which are already highly accurate
perturbative computations. Rather, we wish to simplify
their formalism by seeking approximations which do not
compromise this accuracy excessively while making the
results as transparent as possible.

We concentrate on weak-interaction processes involv-

ing only light fermions as external particles since those
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are the only processes accessible to present day experi-
ments. As pointed out by the authors of Refs. [6,12], this
restriction has some important consequences which
simplifies our analysis considerably. The first is that we
can neglect the terms proportional to q"q in the 8'and
Z propagators. This is because contraction with the
external fermion currents suppresses the q "q terms com-
pared to the g"" terms by a factor of (mf /mz) where mf
is the external fermion mass. (The q"q term of the pho-
ton propagator has no effect, due to the Ward identity. )

The second is that we can assume that radiative correc-
tions due to physics beyond the standard model appear
dominantly through vacuum polarizations (oblique
corrections) and that vertex corrections and box dia-
grams (direct corrections) can be neglected [19]. For ex-
ample, modifications of the Higgs sector give vacuum-
polarization corrections of order a while vertex correc-
tions and box diagrams are suppressed again by an addi-
tional factor of (mf /mz ). The rule of thumb here is that
we can neglect anything that goes to zero in the limit

mf —+0. For another example, the effects of new heavy
quarks and leptons on the properties of the Z and 8'bo-
sons enter only through vacuum-polarization diagrams.
When we discuss the dynamical Higgs sector of tech-
nicolor models, we will need to argue that it is consistent
with gauge invariance to neglect the vertex and box dia-
grams containing the Goldstone bosons absorbed by the
8' and Z in the Higgs mechanism. We will defer this
point to Sec. VI. In this section, we will assume that the
effects of the new physics are purely oblique and work
out the consequences of that assumption.

We start by introducing some notation. J&,J~3, and
J~+ =J", +iJ~z denote the electromagnetic and weak-
isospin currents coupling to the electroweak gauge bo-
sons via

( WJ ~++ W„J" )+ Z„(J~q —s J—g)+eA„Jg,

(2.1)

2

~cc 2 I+I—Gww
2$

(2.2)

where (I3,Q) and (I3,Q') are the SU(2) and electric
charges of the external fermions and I+ are the isospin-
raising and -lowering matrices.

To leading order„ the propagator GzA vanishes and the

where s =sin8w and c =cos8w.
We denote the coeScient of g"' in the photon, Z, and

W ProPagators by GA A Gzz and Gww, resPectively, and
that of the photon-Z mixing by GzA. Then, the matrix
elements of the charged- and neutral-current interactions
mediated by the electroweak gauge bosons can be written
formally as

~Nc=e'QQ'G~~
2

+ [Q(I', s'g')+(I, s'g}—g ]G,„—
sc

2

+
2 2 (I3 —s Q)(I,' —s Q')Gzz,

$ C

other three propagators are given by

1
DBB

mpB

for B = A, Z, 8' with the bare masses

2 = 2
2

v
2

2 e v
mpA =0, mpz 2 2 Owsc 4 s 4

(2.3)

(2.4)

These expressions are constructed to satisfy the natural
relation (1.1).

Vacuum polarizations affect the above interactions by
modifying the gauge-boson propagaiors GAA, GzA Gzz
and Gww. This is the reason why they are called "ob-
lique" corrections as opposed to the "direct" vertex and
box corrections which modify the form of the interac-
tions themselves. We define the vacuum-polarization am-
plitudes IIxr(q ), where (XY)=(11), (22), (33), (3Q), and

(QQ» by

ig""II x(rq )+(q"q" terms)

xe '~ J x J&0 . 2.5

It is useful to define IIxr(q ) by

II (q )—= Ii „(0)+q II' (q ) . (2.6)

IIAA =e Hgg,
2

2

11,„= (11,~
—s'Ii«),

sc
211„=,, (11„—2s II &+s II«),

s 2c 2

2

II ww=

(2.7)

Kennedy and Lynn were careful to include the effects
of the vacuum-polarization amplitudes to all orders, us-

ing the Dyson equations for the propagators GAB. name-

ly

GAA =DAA+DAA IIAA GAA

GZA =DZZIIZA GAA

Gzz =Dzz+DzzIIZZGZZ

Gww =Dww+DwwII wwGww

(2.8)

where DAA, Dzz, and Dww are the bare propagators
(2.3). If we insert the solution to these Dyson equations
into (2.2), we find an expression equal to

Note that IIxr(q ) is equal to 1llxr/dq only at q =0.
The unbroken U(1) symmetry of electromagnetism im-

plies that II»(q )=IIz2(q ). The QED Ward identity im-

plies further that II3& (0)= II&& (0 }=0. Therefore,

II«(q )=q 11&&(q ) and 113&(q )=q 113&(q }.
We further define the following shorthand notations

for the combinations of II's that make up the one-particle
irreducible (1PI) self-energies of the photon, W, and Z,
and the 1PI photon-Z mixing, shown in Fig. 1:
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ANc=e 2

+AA

2

+
s2C2

~ZA
I3 — s —sc

~ZA
Q I3 — S —SC

q
—IIAA

(Ilz~ )'

AA

I+I
CC 2 22$ q ~ow ~ww

Following Kennedy and Lynn, we define the running couplings e2 (q~) and s2 (q3) as

2

e, (q )= 2, =e [I+e II' (q )],
1 —e211«(q2) «

Ilz~ (q')

(2.9)

(2.10)

It suSces to keep only the terms linear in the II s, since we are concerned with nonstandard corrections which are very
small. Equation (2.9) can then be recast intol, e'

JNNC=e„Q Q'+ (I3 —S„Q)
q2 $2 2 2 2

q
— +(II33—2s 113g+s II«)2 2 4

. (I3 —S,Q')
z

2

~cc= I+
2$ e U

q
— +II))

s

(2.11)

We have omitted terms that are quadratic and higher or-
der in the H's from the denominator of the Z propagator.

The 8' and Z masses are the poles of their respective
propagators. Therefore, from (2.11) we see that

Define the wave-function renormalization constants Zz
and Zw as the coeScients of the poles in the Z and W
propagators:

2= 2
U

2

z 2 2 4
2

+
2

(II 3 2s 113g +s II«)(mz )
S C

2
U

2 e 2

m~= + II„(m~) .
s2 4 s2

(2.12)

d2

Zz =1— , (11„—2s 11,~+s 11«)~ .4

$2c2 dq2 mz

e
Z~ =1—

2 II„~ 2
S dq

(2. 1 3)

It is useful to define running masses Mz, (q ) and

Mw*(q ) by

,~z= "n»gg ~

z~z = —' [n, g- zn»)gg" ~
cs

2 2

q
— +(II33 2s 113Q+S II«)s'c'

Zz
2 2

q Mz

z~z = (n -gsgll g+ ~g»)gg
c2s

w~w = —n„gg ~Y

s2
q

— +II))2 4

Zw
2 2

q Mw

(2.14)

FIG. 1. Definition of the basic electro weak vacuum-

polarization amplitudes. these running masses satisfy
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M2*(mz2) =mz Mz =0, M~*(m~) =m~, 2M' (2.15)

With these definitions, we can rewrite (2.11) in a compact form as

2

+ (I3 S Q} (I3 S
q s c q

—M

2 Zw
cc——

2s q
—~w.

(2.16)

We take one more step and define the running wave-function renormalization constants Zz, (q ) and Zs,,(q ) by [20]

e~2 e 2

2 Zz* —
2 2Zz~

s c

e* e
2 2

2 Zwe= 2 Zw
s~ s

(2.17)

where c, = 1 —s, . In terms of the II's, they are expressed as

e2 c2-s2
Zz, =Zz 1 —e 11&&(q )

— [113Q(q ) —s 11&13(q }]
s c

2e d 2 4=1+ (II33—2s 113g+s ling)
$ C dq q =mz

e2S2 e2(c2 s2)
, 11',~(q2)—,, 11,'~(q2),

c s C
(2.18)

e
Zz, ,=Za 1 —e Il&&(q ) — 2 [113&(q ) —s III3~(q )]

e d 2

=1+ 211)t — 2113'(q ) .
s dq q =m~ $

2[1—4s, (q )]
1+[1—4s, (q )]2

(2.20)

The Z width wi11 be given by

The final result of these rearrangements is

1
~Nc eeQ Q

q
2

Mz
(2.19)

2e, Zwe
Jkcc I+ I

2s, q
—Mw~

where all starred quantities are now functions of q . In
Ref. [12], Kennedy and Lynn showed that, with a proper
definition of the starred functions, this definition is
correct to all orders in vacuum polarizations and also
subsumes the major part of the standard-model direct
corrections.

The final equations (2.19} have exactly the same form
as the tree-level amplitudes, except that all the coupling
constants and gauge-boson parameters are replaced by
starred parameters. What this shows is that the oblique
corrections affect weak-interaction observables only via
the starred functions. In other words, given an observ-
able in terms of bare parameters at the tree level, we only
need to replace the bare parameters with their starred
counterparts evaluated at the appropriate momentum to
incorporate the corrections from vacuum-polarization di-
agrams. For instance, the obliquely corrected left-right
asymmetry AL~ will be given by

u+~z 2I z Zz* g (I3f S Qf )Nf, (2.21)
6$ C q —mz

where a„(q )=e, (q )/4m. , and Nf is the effective num-

ber of colors of the fermion fiavor f: For leptons Nf = 1;
for quarks

=3.12+0.01 at q =~z, (2.22)

corresponding to a, (mz)=0. 1220.01. We can assess
the effects of oblique corrections on these observables
through the effects of these corrections on the starred
functions, which are simply described by the relations
(2.10), (2.18). Of course, ALa and I z also receive correc-
tions from physics within the standard model which are
nonoblique. Kennedy and Lynn have shown that the
most important part of these corrections can also be
stuffed into the starred functions. The initial-state radia-
tive corrections to the Z parameters are large and must
be separately assessed. However, the remaining nonob-
lique corrections are small, only a few tenths of a percent,
at the Z pole and below. Therefore, the starred functions
are extremely useful tools to summarize the effects of ra-
diative corrections both from within and beyond the stan-
dard model.

While (2.19) contains all the information necessary to
see how various observables are corrected over the range
of energies, it is somewhat cumbersome to apply to low-

energy experiments. Therefore, let us return to (2.11) and
take the limit q ~0. The Z and 8' exchange parts of
(2.11) in this limit are
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Af Nc
—[I3—s, (0)Q]

2

4
+H33( 0)

- [I3 —s, (0)Q'],

1
cc 2 +

U +H„(0)

(2.23)

These matrix elements should be compared with the stan-
dard form of the low-energy effective Lagrangian of weak
interactions:

4GF
— {J+J" +p, (0)[J~q —s'„(0)Jg"]'],v'2 (2.24)

We denote the low-energy ratio of charged- to neutral-
current amplitudes by p„(0), to avoid confusion with the
Veltman definition (1.1). We can now inake the
identifications

1 U +H„(0),
4 2GF 4

1

p, (0)

2

4
+ H33(0)

2

+H„(0)

(2.25)

2
2+rgb, R =gL + (2.26)

=1—4&2G [II„(0)—II (0)] .

The predictions of weak-interaction theory for low-
energy experiments are expressed through the parameters
of the low-energy effective Lagrangian, and so relations
(2.25) and (2.10) for s, (0) codify the dependence of these
predictions on oblique corrections. For example, the fac-
tors gL and gz that relate the ratios of cross sections in
deep-inelastic neutrino scattering experiments,

from the lowest-order expressions for these observables
by replacing the bare parameters by the corresponding
starred parameters of Kennedy and Lynn. The depen-
dence of the starred functions on oblique corrections is
relatively simple; it is expressed in Eqs. (2.10), (2.18), and
(2.25). These relations may be reduced further by judi-
cious approximations, and we will do this in the next sec-
tion.

In the course of this section, we have given a few exam-
ples in which weak-interaction observables are expressed
in terms of the starred parameters. For reference, we list
in Appendix A a table of these relations for the most im-
portant observables of the current generation of weak-
interaction experiments.

III. THE S, T, UPARAMKTERS

As we have seen in the previous section, the effect of
oblique corrections on weak-interaction observables can
be summarized in the starred functions of Kennedy and
Lynn. However, the formulas we write are not yet quite
straightforward to apply, because even at lowest order,
the formulas depend on three parameters e, s, and U,
that is, on the SU(2) XU(l) gauge couplings g and g' and
the Higgs-boson vacuum expectation value. To make
predictions based on the Kennedy-Lynn formalism, we
must eliminate these three parameters in terms of three
observables. If we were considering a theory without
custodial symmetry, the lowest-order expressions would
have contained p as a fourth parameter, and we would
have needed a fourth observable to fix this variable. We
will restrict ourselves to the three parameter case in the
following.

The logical choice for the three input observables is a,
GF, and mz. They are the most accurately measured pa-
rameters of electroweak interactions and serve as excel-
lent reference points. Their measured values are current-
ly [22,23]

where

o(v„N —+v„X)
R, =

o(v„N ~p X)

a '= 137.035 989 5(61),

Gz = 1.166 37(2) X 10 (GeV)

mz=91. 174(21) GeV .

(3.1)

o(v„N~v„X)
R

o(v„N~p+X)

o(v„N~p+X)
T=

o(v„N~p X).
are given by [21]

gL =p„(0) [ —,
' —s„(0)+—,'s„(0)],

g~ =p„(0) [—,'s, (0) ] .

(2.27)

(2.28) 2mp
sg/: 1

mz
(3.2)

It is convenient to represent this information as a value
of the weak mixing angle. Here one must be a bit careful,
since there are many ways of defining the weak mixing
angle, and each of these appears as the favored definition
in some paper in the literature. In general, we follow the
usage of Ref. [4], which defines four versions of sin Oii'
the modified minimal subtraction (MS) definition, which
will not appear in this work; the Sirlin [24] definition,
based on the values of m ~ and mz,

We can apply (2.25) and (2.10) to determine the influence
of general oblique corrections on the value of these pa-
rameters.

We may summarize the results of this section as fol-
lows: The effects of oblique electroweak radiative correc-
tions on weak-interaction observables may be computed

a definition based on Z asymmetries,

s w=—s„(mz) (3.3)

(up to details of the treatment of box diagrams which are
numerically unimportant at the Z ); and a definition of so
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based on a, Gz, and mz,'
' 1/2'

4n.a, ,o(mz )
sin28o:—

2GF mz

where

(3.4}

a o(mz)=128. 80+0. 12 (3.5)

is the running electric charge evaluated at the Z mass,
with the running from q =0 to q =mz calculated from
known physics only [25]. The Sirlin definition is often
called the "on-shell scheme, " though sp and s ~ are also
on-shell definitions.

These various versions of sin 8~ are all equivalent at
lowest order to the bare values s, but they differ
significantly from this value and from one another as a
result of radiative corrections. Since sp requires only the
values (3.1), (3.5), as inputs, it is extremely accurately
known:

$0 =0.231 46+0.000 34 . (3.6)

5(sin eii ) =2sc58iv= 2$c
5 sin28s.

2 cos28g

s2c2 5 sin28w

c2—s2 sin28~
(3.7)

where s =sin8~ and c =cos8~, together with the rela-
tions (2.10), (2.12), (2.25) which give the shifts of a, G~,
and mz due to oblique corrections. This gives

Taking this value as a reference, we may predict the value
of any other sin 8~, or any other weak-interaction ob-
servable, in terms of radiative corrections.

We will now work out explicitly the part of that rela-
tion which is due to oblique corrections. To begin, we
need the relation between sp and the bare value s . This
is found by using the identity

2s'ci 1 &a.,o &GF

c —s 2 a 0 Gp

Smz
2

Pll z

$ c 2
=s + e II«(0)+ IIii(0)—

c s $ c Plz

2

(II —2s II &+s II«)(m )scmz
(3.8)

where we have included only oblique corrections due to new physics.
Combining (3.8) with (2.10) and (2.12), we find

2mp
C2 =s2 s20 0 $V

mz

2C 2 $2 c2 s2
z i II»(mz) —2s 11&&(mz)— i 11»(0)— i 11„(m~)

s (c —s )mz c c

e2$2C2+, , [11«(mz') —11«(0)]
c s

s2 (q2) s2—
2

c s2 2

II»(mz) —2s 113&(mz) —IIii(0) II&&(q )—(c —s )
Plz 2

2$2
+ ', ', [s'11«(m,')—c'11«(0)+(c'—s')11«(q')] .

c s
(3.9)

The remaining starred functions are defined as deviations from 1, and so the formulas of Sec. II may be evaluated
directly. From (2.25) and (2.18), we have

2

z, (0)—1= . . . [11„(0)—11„(0)],
s c mz

2

Zz, (q') —1=, ,$ c
d

dq q =m
(II —2s II &+s II«) —(c —s )II'&(q }—s II«(q )

z
(3.10)

2

Z„,(q ) —1= II„—113'(qi)
s dq q =m W'
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We note again that (3.9) and (3.10) present only the ob-

lique corrections to the various starred parameters. The
calculation of the full standard-model corrections is

much more involved and cannot be expressed in such
simple formulas. But it is remarkable that the entire
influence of new physics, to the extent that it is purely ob-

lique, follows from the relatively simple relations (3.9)
and (3.10) and the use of the starred functions to renor-
malize the tree-level formulas. This point has, of course,
been known for a long time; for example, it is the major
result of Ref. [6].

If the physics included in the vacuum polarization dia-

grams is associated with new heavy particles of mass
much larger than mz, the vacuum-polarization ampli-

tudes will have rapidly convergent Taylor-series expan-
sions in q . Thus, it is natural to expand the various H's

in q and to neglect terms of order q and above. This
gives

11«(q3)=q 11«(0),

113'(q )=q 113(3(0),

1133(q )=II33(0)+q II33(0),

II„(q )=II„(0)+q II'„(0) .

(3.11)

aS =4e [II33(0)—II3g(0)],

2

aT = [11»(0)—II33(0}],
semz

(3.12)

aU=4e [II'„(0)—II33(0)] .

This approximation should only induce a relative error of
(mz/mr ), where mr is the scale where the new physics
resides.

When we insert the approximate formulas (3.11) into
(3.9) and (3.10), three linear combinations of the six
Taylor-series coefficients must cancel out, since these
equations are differences of radiative corrections which
fix o.', GF, and mz. These subtractions remove the ultra-
violet divergences of perturbation theory, and so the
three combinations which remain must be differences of
coefficients with canceling ultraviolet divergences. It is
natural to define these three ultraviolet-finite combina-
tions of Taylor-series coefficients as new weak-interaction
parameters [13,14]

2
mw occ2-

c2—s2z

C —S——S+e T+ U
2 4s

c s

p, (0)—1 =aT, (3.13}

Zz, (q') —1= 3,S .
4s2c2

Zg, (q ) —1= (S+ U) .
4s

The error involved in the reduction from the original per-
turbative formulas to (3.13) is of order a(mz/mr),
where mz- is the scale of new physics. Subject to this un-

certainty, the relations (3.13) contain the most general
oblique correlations from new physics at very high ener-

gy.
It is a shame that (3.13) involves three new parameters,

since it is easier to think about the relation of observables
in a two-parameter space. However, the parameter U
plays a fairly unimportant role. The functions s, (q ),

p, (q ), and Zz, (q ) have no dependence on U. This
means that all neutral-current and low-energy observ-
ables depend only on S and T. In fact, the only accurate-
ly measured weak-interaction observable that depends on
U is mw. In addition, U is often predicted to be very
small. We are already assuming that a custodial symme-
try constrains the II»(0) and II33(0) to be equal to the
level of order 1%, with the difference generated by radia-
tive corrections. In most models, this approximate equal-
ity holds for all q, so that U should differ from zero by
only a percent of T. Altarelli and Barbieri [16] have
pointed out that this argument does not apply to models
with anomalous W interactions [26], so there is value in

expressing constraints in the three-parameter space.
However, we will often add to the assumptions above the
further assumption that U =0 and project down to a
two-dimensional parameter space in which the experi-
mental constraints are easy to visualize.

In either its two- or three-parameter form, the set of
relations (3.13) can be directly compared to observables
of the weak interactions. To make this comparison, we

simply use the formulas (3.13}to evaluate the shifts in the
starred functions, then use the formulas of Appendix A
to convert these to shifts of observables. Of course (3.13),
contains only the influence of new physics and is not in

any way a correct representation of the standard-model
contributions. But these shifts are small and accurately
represented. Thus, the relations (3.13) tell us what to add
on to a highly accurate standard-model calculation to
represent the effects of heavy physics. For example, from
the first line of (3.13), we infer

Several different notations for these parameters appear in

the literature; we review these notations and their interre-
lations in Appendix C.

We have already noted that, when the approximation
(3.11) is inserted into (3.9) and (3.10), these formulas
reduce to linear functions of S, T, and U. In fact, the re-
lations are quite transparent:

m~=m~(ref)
2—s2

4s
L

(3.14)

where m~(ref) is the value of ms, computed as accurate-

ly as possible in the standard model. We present the full
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set of these relations for the most important weak-
interaction observables in Appendix B.

A bit of further care is required to make relations of
the form of (3.14) precise. The values of weak-interaction
observables in the standard model depend on the un-
known masses of the top quark and the Higgs boson. In
order to specify properly the standard model from which
S, T, and U parametrize the deviations, we must specify
the values of m, and mH used in the standard-model
computation. Thus, when we determine the constraints
on S and T from the experimental data, we will specify
that these refer to a specific set of reference values:
m, =150 GeV, mH =1 TeV, in our analysis. (If the true
values of m, and mH differ from these, the discrepancies
will be approximately parametrized by shifts of S and T;
we will see how this works in Sec. IX.) Predictions for S
and T from specific models of new physics may also de-
pend on the reference point chosen, and this must be tak-
en into account in comparing theory and experiment.

On the other hand, if the values of m, and mH were
known, relation (3.14) and the other relations tabulated in

Appendix B would be a set of direct relations between ob-
servable quantities in terms of the three parameters S, T,
and U. The re1ations among the various formulas in Ap-
pendix B are the observable consequences of the assump-
tion that new physics, beyond the standard model, is
heavy and contributes obliquely. The final formulas are
independent of any calculational scheme. It is this
feature that motivated us to add the S and T parameters
to the already lengthy and confusing list of notations for
weak-interaction radiative corrections. Once one has un-
derstood the standard part of the calculation in one's own
favorite notation, these parameters provide a representa-
tion of the discrepancies expected from nonstandard
physics in a manner independent of the calculational con-
ventions.

IV. S, T, AND U, IN PERTURBATION THEORY

The parameters S and T have one additional important
property: They partition the contribution of electroweak
radiative corrections into pieces with distinct physical
significance. This separation is most clear in models
where U=O, so that a two-parameter representation ap-
plies. The parameter T obtains contributions only from
effects which violate the custodial isospin symmetry. On
the other hand, S is an isospin symmetric observable
which measures the momentum dependence of II33 (or,
more properly, the ultraviolet-finite part of this depen-
dence). In this section, we will see in several examples
that S is a dimensionless measure of the size of the sector
which contributes to II33.

The simplest example of oblique electroweak correc-
tions are those due to new heavy fermions. As long as we
can ignore small elements of the quark or lepton mixing
matrices, the contributions of new fermions to elec-
troweak processes appear via the simple one-loop dia-
grams shown in Fig. 2(a). For concreteness, we consider
a fermion doublet (N, E) with the usual left-handed cou-
pling to SU(2), hypercharge Y, and masses m~, mE. It is
straightforward to evaluate the vacuum-polarization dia-
grams which contribute to (3.12). In the limit

(a)

(b)
W, Z

FIG. 2. Diagrams contributing to one-loop electroweak radi-
ative corrections (a) due to a heavy fermion, (b) due to the
standard-model Higgs boson.

mN, mE &&mz, we find the contributions

S= 1 —Yln
1

6m.

2
mN

2
mE

2 21

2 2 2 N E
16ms c mz

2mNmE mN
2 2 2

mN mE mE

U= 1

6m.

SmN —22mNmE+ SmE

3(mN —mE')'

3mNmE 3mNmE ™E
6 4 2 2 4 6

(m~~ mE )—
2

mN
ln

mE

(4.1)

1

12~s c
(hm )

mz
(4.2)

2U=
15m

(hm)
2

mN

This shows that S and U are also positive in the limit
where the isospin breaking in the doublet is small. Also,
as conjectured, U is suppressed compared to Tby a factor
of (mz/m~).

Note that each extra fermion doublet that we put into
the theory will contribute additively to S and T. There-
fore, S can be thought of as the measure of the total size
of the new sector while T is the measure of the total
weak-isospin breaking induced by it. The contribution
S= 1/6m is the origin of the additive effective of degen-
erate heavy generations on the 8'mass and the Z polar-
ization asymmetry, highlighted by Bertolini and Sirlin
[28] and in Ref. [6).

As another example of the evaluation of S, T, and U,
let us consider the contribution of the Higgs boson.
Though the Higgs boson does not exactly qualify as be-
longing to physics beyond the standard model, it is true
that the only one-loop diagrams which depend on the
Higgs-boson mass are the oblique corrections shown in
Fig. 2(b). When the mass of the Higgs boson is very large
compared to mz, these contributions should be well
represented by S, T, and U. Keeping only the leading

The above expression for T is positive semidefinite [27]
while those for S and U are not. However, if we assume
that b, m = lm~ mE I

&&m~—, mE, we find

1S=
6m

'
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logarithms in the Higgs-boson mass, we find

1S= ln
12m

2
mH

2
mH, ref

U=O,

3
ln

16m.c

2
mH

2 7

mH, ref

(4.3)

where m& „f is the reference value of the Higgs-boson
mass from which S, T, and U are defined. Note that U is
small compared to S and T for this case as well.

As a third and final example, we consider the contribu-
tion of the t quark. Again, as was the case with the Higgs
boson, discussing the t-quark contribution in terms of S,
T, and U is only strictly correct when mz &&m, . Also,
unlike the Higgs boson, nonoblique t-quark corrections
cannot be neglected when the external fermion is a b
quark; this affects the prediction for I (Z ~bb). With
these caveats in mind, we can compute the top-quark
contribution to S, T, and U by evaluating (4.1) in the lim-
it mE~O, with an additional factor of 3 to account for
color. We obtain

1S=— ln6'
3

16~s c

m

2
mI, ref

2 2
t t, ref

2mz
(4.4)

1U= ln
2m

m

2
mf, ref

V. A DISPERSIVK REPRESENTATION OF S

Let us now consider how we would calculate the values

of the parameters of oblique corrections for theories in

which the relevant vacuum-polarization diagrams cannot
be computed by perturbation theory. The most impor-
tant examples of such theories are models of technicolor,
in which the Higgs sector is a strongly interacting gauge
theory with a characteristic scale near 1 TeV. As they
are usually constructed, technico1or theories have a cus-
todial SU(2) symmetry, the isospin symmetry of the tech-
nicolor strong interactions, which protects the relation
(1.1) from receiving large radiative corrections. Addi-

where m, „f is the reference value of the t-quark mass
used in defining the S and T parameters. Again, we find
U to be much smaller than T. In this case, S is small
also, so that the major effect of a shift of m, is just a shift
of T.

For contributions to the electroweak vacuum polariza-
tions from new heavy particles, the relations (4.2) give a
good idea of the generic situation. The contributions to
T are proportional to isospin-violating mass differences.
On the other hand, S receives isospin-independent contri-
butions which grow systematically with the size of the
new sector. In the next few sections, we will argue that
these properties of S and T also hold when the new phys-
ics is essentially nonperturbative.

J3 =
—,'(JIl —J"„), Jg=JIl+ —,'Jp . (5.1)

By our assumption that technicolor interactions conserve
isospin and parity, we find

(S.2)

where the II's on the right-hand side are the correlators
of isospin vector and axial-vector currents. Since the vec-
tor symmetries are exact, while the axial-vector sym-
metries are spontaneously broken,

tional interactions, called extended technicolor, must
break this symmetry to generate the observed isospin

asymmetry in the quark and lepton mass spectrum; in
general, then, these additional interactions will contribute
to T and U. However, since the isospin-violating effect
on the vacuum polarization must be small, the efFect on
the U parameter is doubly suppressed: U-T(mzlmr),
where mz is the technicolor mass scale. Thus, quite gen-
erally in technicolor theories, we can ignore U and adopt
a two-parameter (S, T) description of oblique corrections.

By distinguishing in this way between the effects of
technicolor and extended technicolor, we also clarify the
separate significance of S and T in these technicolor mod-
els. Contributions to T are generated by extended tech-
nicolor. These corrections are large and troublesome, but
they are diScult to estimate precisely and also strongly
dependent on the detailed implementation of extended
technicolor. (We will review various estimates of T in
Sec. VIII.) The contributions to T thus resemble the oth-
er prominent experimental constraints on technicolor,
such as the absence of light charged scalar particles and
Aavor-changing neutral currents: In the simplest models,
they are severe restrictions on the theory, but one can
reinterpret the problem as a constraint on the specific
structure of the extended technicolor couplings.

On the other hand, the basic idea of technicolor, that
the weak interactions are broken by dynamical chiral-
symmetry breaking due to a new set of strong interac-
tions, is a very attractive one. It would be wonderful if
we could test this idea directly without needing to ana-
lyze a highly embellished model. The parameter S gives
just such a test. In technicolor models, S receives contri-
butions from the largest effects in the new strong-
interaction sector. These effects are independent of iso-
spin or Aavor violation. Thus, to the extent that we can
obtain a bound on S independently of T, this bound con-
straints the basic idea that the Higgs sector is built from
a strongly interacting gauge theory.

In this section, we will set up a formalism for comput-
ing S in technicolor and related models in which the
Higgs sector is strongly interacting. Our strategy will be
to ~rite a representation for S as a dispersive integral
over the technicolor mass spectrum. In this analysis, we
will make the assumption that the technicolor interac-
tions have an exact isospin symmetry. For simplicity, we
will also assume that the technicolor sector conserves
parity; this is a property of most technicolor models.

To begin, we rewrite the electromagnetic and the left-
handed isospin currents in terms of the (conventional) hy-
percharge current and the isospin vector and axial-vector
currents:
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11vv(q )=q 11vv(q }

11„„(q')= 11„„(0)+q'11'„„(q')

=F +q II'„„(q ), (5.3)

where F =250 GeV is the technipion decay constant,
which is identified in technicolor models with the param-
eter U in (2.4). In terms of IIvv and IIz „we find

S = —4n [II'vv(0) —II'„q (0)] . (5.4)

R (s)= 3$
o (e+e —+y ~hadrons)

4m.a

The vacuum polarizations in (5.4} are expectation
values in a strong-interaction theory and cannot be com-
puted by perturbation theory. The problem is quite simi-
lar to another problem in precision electroweak theory,
that of computing the electromagnetic vacuum polariza-
tion due to the familiar strong interactions, to compute
the renormalization of a. This latter problem was solved
by using a dispersion relation to connect II&&(q2) to the
measured quantity R (s), the ratio of the cross sections
for e+e annihilation to hadrons and to 1M+@, [29].
Since

11vv(q') —ll ~ ~ (q')

=q [II'vv(q )—II'gg(q )]

)„ds R v(s) —R „(s)
12~ o ~ s —

q

2
7T

(5.8)

This equation gives some further properties of Rz and
R„.In asymptotically free gauge theories, one may show
that the left-hand side of (5.8) is of order 1/q as q ~ m

[30]. Thus, the first two terms in the expansion of (5.8)
for large q give the following identities, called the first
and second Weinberg rules [31]:

s Rv s —R„s =4mF„,
37T 0

3' 0

(5.9)

It is likely that at least the first of the these sum rules is
also true in gauge theories with nontrivial ultraviolet
fixed points [32].

Taking the q ~0 limit of (5.8), we can evaluate the
formula for S given in (5.4}. This gives the following, still
preliminary, result:

= —12~ Imiigg(s) (5.5)
S= Rzs —Rz s

377 0 $
(5.10)

we have the relation

ling(q ) —light(0)=—
1 ~ s 1

12m o ~ s —
q

q ~ ds R (s)
12m. o n s (s —q~)

1 R(s)
s

(5.6)

The integral in (5.6) can be evaluated directly from the
e+e data.

A similar method can be used to estimate (5.4). Define
vector and axial isospin analogues of R (s) by

R v(s) = —12m ImII'vv(s),

R z (s )—:—12m 1m II'„z (s ) .
(5.7)

These quantities would give the normalized e+e total
cross sections for a photon coupled to vector or axial iso-
spin rather than electric charge. Of course, Rv(s) and
R„(s}are not measured for any technicolor theory, but
we can infer many of their properties from our general
knowledge of gauge theories. For example, as s —+ ~, R z
and R~ both approach the sum of the squares of the
technifermion isospins, and thus also become asymptoti-
cally equal. On the other hand, at small s, R v(s) gets a
contribution only from m m. production. For m =0,
Rv(s)~1/4 as s~0. R„(s) gets its first contribution
from three-pion production, and so vanishes proportion-
ally to s as $~0. At intermediate values of s, Rz, and
R „should have peaks at the vector and axial-vector reso-
nances of the technicolor sector.

Using {5.7) and (5.3), we may write the dispersion rela-
tion

Thus S is a "zeroth Weinberg sum rule" of the strongly
interacting Higgs sector. We can estimate S by making a
reasonable model of the spectral functions R~ and R„,
consistent with the general constraints given above, and
then using this model to evaluate (5.10). We will describe
such an evaluation in Sec. VII.

Before attempting to estimate (5.10), however, we
should point out two unsatisfactory aspects of this formu-
la and repair them. First, we noted above that
Rv(s)~1/4 while R„(s)~0 as s~0. Thus, the integral
in {5.10} is divergent at the lower limit. (The Weinberg
sum rules imply that it is quite convergent as s —+~).
Second, we defined S as a difference between the
vacuum-polarization effects in a new theory and those in
the standard model. If we are using the technicolor
strong interactions to break SU(2)L XU(1)„,the standard
Higgs sector is superQuous and we should subtract its
contribution from the one-loop diagrams.

Fortunately, these two difficulties cancel one another.
This is most easily seen by working in the Landau gauge.
In this gauge, one must include, in addition to the physi-
cal Higgs boson, the unphysical Goldstone bosons which
are absorbed into the 8'+, 8', and Z in the Higgs
mechanism. In the Landau gauge, these Goldstone bo-
sons are massless. We may neglect their coupling to
external fermions, since this is proportional to the fer-
mion mass. Thus, at one-loop order, these particles con-
tribute only to vacuum-polarization diagrams; their con-
tribution to S comes only from the diagrams shown in
Fig. 3. These diagrams are easily evaluated and subtract-
ed. The diagram with a two-Goldstone-boson intermedi-
ate state gives a contribution to the dispersion relation
identical to the contribution from the two-pion state.
When we subtract this contribution from (5.10), the in-
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FIG. 3. The one-loop diagrams involving Higgs particles,
which contribute to S in Landau gauge.

frared divergence in (5.10) cancels and we are left with a
well-defined formula.

Explicitly subtracting the diagrams of Fig. 3 from
(5.10), we find the final dispersion formula:

S= R&s —Rz s3' 0 S

1
1 — 1—

4

2 3

(9(s —mH )

R~s —R~ s = 15
—1

o s ' " 12m
(5.12}

The integral is infrared finite because of the assumed
nonzero value of m . The infrared logarithm is absorbed
into the parameter l~. To extract this dependence, define

l~(p}=l5+In(m /p ) . (5.13)

Then /&(p) gives the high-mass contribution to the sum

rule, and we have separated out the leading chiral loga-
rithm. To relate this expression to S, one should modify
the standard-model subtraction terms in (5.11) to include
the Goldstone-boson mass m„, carry out the integral over
these terms, subtract the result from (5.12), and then take
the limit m„~O. This gives

2

S= l~(p}+In
z

—— (5.14)
12~

(5.11)

Notice that this formula depends on mH, the mass of the
physical Higgs boson in the standard-model calculation
taken as a reference point in defining S. In our evalua-
tion of S, we will take m& =1 TeV; one should take care
to use the same reference point in deriving predictions for
weak-interaction experiments.

We conclude this section by describing the relation be-
tween the parameter S as we have defined it and the pa-
rameters of chiral perturbation theory. Several of the
early papers [5,6,81 attempted to estimate the electroweak
radiative corrections from technicolor from the leading
logarithms of chiral perturbation theory. However, the
constant terms of the same order in derivatives are often
equally or more important, and this should properly be
taken into account. In their classic paper on renormal-
ized chiral perturbation theory, Gasser and Leutwyler
[33] discussed the sum rule (5.10) in a theory with
nonzero pion mass and gave the following expression for
it in terms of renormalized parameters:

This reproduces (with a slightly more careful evaluation)
the computation of the technicolor electroweak correc-
tion in Refs. [9,11j. The value of 1~(p) is known in the fa-
miliar case of two flavors and three colors from the work
of Gasser and Leutwyler; however, in more general situa-
tions, one needs a method of estimating this parameter.
This leads us back to the dispersive formula (5.11). We
will illustrate the use of this formula in Sec. VII.

VI. GAUGE INVARIANCE
OF THE DISPERSIVE INTEGRAL

At this point, it would be natural to present numerical
estimates for S based on the integral representation (5.11)
derived in the previous section. However, in this section,
we will pause to settle a lingering theoretical issue. The
derivation of (5.11) that we gave in the previous section
made essential use of the Landau gauge. We should,
then, discuss to what extent (5.11) can be considered a
gauge-invariant result. Our discussion will be somewhat
forma1. To simplify our notation, we will ignore the hy-
percharge gauge boson and consider a pure SU(2) weak-
interaction theory.

Before beginning this discussion, we would like to de-
scribe a bit more clearly the question we wish to address.
Weak-coupling perturbation theory in the standard mod-
e1 usually relies on the R& gauges, which are defined by a
gauge-fixing term of the form

(6.1)

where 8'„' are the gauge fields, m' are the Goldstone-
boson fields, and g is an arbitrary gauge parameter. In
this class of gauges, the Goldstone-boson fields have a
gauge-dependent mass equal to &/mid, . The inclusion of
this mass would distort the dispersive integral (5.11) in a
gauge-dependent way. In fact, in the minimal version of
the standard model, the g independence of fermion-
fermion scattering amplitudes follows from series of sub-
tle cancellations involving the Higgs- and gauge-boson
two-point functions, the gauge-boson-fermion vertices,
and the box diagrams. In a model in which the gauge
symmetry is broken dynamically and the Goldstone bo-
sons are composite, it is not clear whether it is convenient
or useful or even possible to define an analogue of the R

&

gauges. But the properties of these gauges in the minimal
version of the standard model cast doubt on any claim
that a pure self-energy calculation such as (5.11) has
gauge-invariant significance. Let us now address and
answer this question.

The Lagrangian of a general weak-interaction theory
may be written in the form

&= —
—,'(Fp )'+Xf+XH, (6.2)

where F„', is built from SU(2) gauge fields W„', Xf is the
Lagrangian governing the coupling of fermions to the 8'
bosons, and LH is the Lagrangian of the Higgs sector. In
principle, this last piece of the Lagrangian may contain
the interactions of any other heavy particles. We wi11

make three assumptions about the nature of XH. (1)J H
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where 4 is a generic expression for the dynamical fields

of the XH theory. Integration over 4 produces an

effective action for the W bosons and fermions:

s= fd'x[ ,'(F„',—)'+sf]+r [W„']. (6.4)

The last term of (6.4} modifies the W propagator and pro-
duces new vertices proportional to the successive func-
tional derivatives of I ~ with respect to W„'(x). These
are the connected correlation functions of the pure Higgs
theory. In particular, the two-point function

p v

i g" — q II (q&):—fd xeH 5W„'(x)5W, (0)

(6.5)

will have the Goldstone pole required by our assumption
(2):

2+2
IIH(q )= +q IIH(q ) .

4
(6.6)

Notice that, from our assumptions (1)—(3) above, the ver-
tices of I & are well defined and SU(2) symmetric. As a
result, the complete effective action is invariant under lo-
cal SU(2) gauge transformations. It is also important to
note that, since LH is a globally symmetric theory cou-
pled to external gauge bosons, the transition from (6.2) to
(6.4) requires no gauge fixing. This procedure of integrat-
ing out the Higgs sector can be applied to both weakly in-
teracting and strongly interacting Higgs sector theories.

Let us now modify the action (6.4) by introducing a pa-
rameter k as

is a self-contained quantum field theory with a global
SU(2) symmetry which is gauged by the Wbosons; (2}XH
spontaneously breaks this SU(2) symmetry; (3} XH pre-
dicts no massless particles except the SU(2) Goldstone
bosons. In the spirit of the previous sections, we might
wish to add a fourth assumption of obliqueness: (4) X&
does not contain any terms involving light fermions.
What we do not assume about XH is whether it is weakly

interacting (e.g., standard model) or strongly interacting

(e.g., technicolor}. If it is weakly interacting, the Gold-
stone bosons will be elementary and will have corre-
sponding Goldstone-boson "fields" in XH. If it is strong-

ly interacting, the Goldstone bosons will be composite
and their existence cannot be seen until the complete dy-
namics of XH has been worked out.

Because the theory XH is well defined in its own right,
we can integrate it out, producing an effective Lagrangian
with nonlocal vertices for the fermions and gauge bosons.
In this procedure, we consider the W„' fields as external
classical sources acting on the XH field theory. The W
fields then acquire new vertices corresponding to the con-
nected multicurrent amplitudes of the XH theory. To be

more explicit, let I H[W„'] be the effective action of the

XH theory:

I H[W&]= i ln—f2)@exp i f d xXH[N, W„']
I

(6.3}

1S =—S. (6.7}

We may now compute amplitudes governed by the action
S& as a perturbation series in A, . At this stage of the cal-
culation, we must introduce a gauge-fixing term and a
Faddeev-Popo v determinant. However, A, has been
defined before gauge fixing, and so physical quantities
computed from this action will be gauge invariant order
by order in A.. This situation is analogous to the usual
perturbation expansion in fi.

To carry out the A, expansion explicitly, we must
choose a gauge. Note that the usual R& gauges cannot be
used here. The Goldstone boson fields which appear in
(6.1) have already been integrated out. Also, if the Higgs
sector had been strongly interacting, there would have
been no Goldstone boson "fields" to begin with. %e
should therefore consider adding a gauge-fixing term
which involves only the unintegrated fields; for example,

'
(a W„')'. (6.8)

We may then display the A, perturbation theory diagram-
matically. We will represent the vertices following from
I H, that is, the functional derivatives of I H, as shaded

blobs, as shown in Fig. 4. To these must be added the
usual three-W and four-W vertices coming from the
(F„'„) term. We represent the sum of the elementary
Yang-Mills and Higgs-induced vertices by unshaded
blobs, as shown in Fig. 5(a). When the gauge-fixing term
(6.8) is used, the W propagator in the A, expansion is given

by

g""—q "q'/q q "q"
z 2 2 Z . i +& ziq~ —

—,'g2F2 —qiIIH(q ) (q )
(6.9)

FIG. 4. Diagrammatic expansion of the effective action I H.
The shaded blobs are connected multi-8'amp1itudes computed
from the Lagrangian XH.

this expression represents the sum of diagrams shown in
Fig. 5(b). We represent this propagator with a wavy line
with an unshaded blob on it.

Using these diagrammatical notations, we find that the
tree and one-loop order contributions (in the A, expansion)
to fermion-fermion scattering are those shown in Fig. 6.
We emphasize here again that this expansion is gauge in-
variant order by order since S& is gauge invariant.

The tree diagram of the A, expansion already includes
infinite orders of the fi expansion through F and IIH(q )

in the W propagator; Comparing (6.9} with the usual W
propagator of the fi expansion, we see that IIH(q } in-
cludes precisely the oblique corrections we were consider-



394 MICHAEL E. PESKIN AND TATSU TAKEUCHI

fields of the exponential of the standard-model Higgs La-
grangian XH. . Performing one of these functional in-

tegrations, we find an e5'ective action of the form

S=f d x[—
—,'(F„'„)2+&f+&OH]

+("H[II'„']—I H[~„'l) . (6.1 1)

+ + + ~ ~ ~

FIG. 5. Ingredients of the k expansion: (a) the 3-8'and 4- W
vertices, constructed from the gauge Lagrangian and the
effective action I 8,' (1) the 8'propagator.

ing in the previous sections. Indeed,

2

IIH(q') = [11'vv(q')+ 11'~~(q')] .
4

(6.10)

Thus, our whole formula for the oblique correction due
to the Higgs sector, including the specific piece (5.10)
contributing to S, is gauge invariant in the class of gauges
for which the X expansion makes sense.

However, even though our expression for (5.10) is

gauge invariant, we must worry that it is not infrared reg-
ular. In fact, we encountered massless Goldstone modes
when we integrated out the Higgs sector to derive (6.4);
also, in the gauges (6.8), unlike the usual R& gauges, the
W propagator contains massless poles. As a result, quan-
tities such as IIH(q ) diverge logarithmically as q ~0.
To cure this problem, we can apply in a quite general way
the method used at the end of the previous section: Go
back to the generating functional with action (6.2), and
multiply and divide by the functional integral over Higgs

Since the leading infrared singularities of I 0 are associat-
ed with soft pions, they are determined by chiral symme-
try and so are identical, and canceling, between I H and
I H. If we now carry out the A, expansion by taking the
term in parentheses in (6.11) as the perturbation, we find
a formula for the oblique corrections which implies our
final, subtracted formula (5.11). This derivation clarifies
that this formula is both gauge invariant and infrared
finite.

Another point of view on this question has been em-
phasized to us by Golden and Randall [34]. They point
out that the parameters of the chiral e6'ective Lagrang-
ian, such as 15 in (5.14), are gauge invariant. Our formal-
ism can be thought of as giving a relation between this
unambiguously defined parameter of the new strong in-
teractions and observable parameters of the weak interac-
tions.

VII. ESTIMATION OF S

Now that we have clarified the theoretical foundation
of the integral formula (5.11), let us put this formula to
use by estimating the value of S in a number of tech-
nicolor models. Estimates of S in technicolor theories re-
quires nontrivial information about the technicolor
strong interactions. Since no exact solution of strongly
interacting gauge theories is available, such estimates will
depend on the model assumptions used to treat the strong
interactions.

In our earlier paper, Ref. [13],we gave an estimate for
S based on scaling up the strong-interaction data on the
e+e total cross section to hadrons. In the literature, a
variety of other techniques have been used to estimate the
radiative corrections due to technicolor, including com-
putations based on vector-meson dominance and chiral
perturbation theory. Some of these models have been as-
sembled and compared by Cahn and Suzuki [35]. In this
section, we wi11 review these simpler methods of estima-
tion, then present an improved version of our calculation
of S, and finally assemble all of this information to deter-
mine the approximate value of S and its uncertainty.

The simplest model for R v(s) and R„(s) is the vector-
dominance model in which we saturate each of R v(s) and
R „(s)with a single vector-meson pole:

R v(s) =12m- F 5(s —m ~ ),PT PT

R~(s)=12m F, 6(s —m ),1T

(7.1)

FIG. 6. Diagrams contributing to fermion-fermion scattering
in the A, expansion {a}at tree level; {b}at one-loop order.

where I and rn, are the techni-p and techni-a,PT 1T
masses, respectively. As %'einberg observed in his origi-
nal paper, the parameters of (7.1) are constrained by the
first and second Weinberg sum rules [31]:
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s R& s —Rz s =12~2F2,

Idss[R&(s) —Rz(s)]=0,
(7.2)

where F =250 GeV is the technipion decay constant; we
find

m F„Py.m, F
1TF2 F2

Pz. m2 m2 ' 1T m2 m2
a1r pr a1r pr

This gives

(7.3)

3'lj s

2m
=4m 1+

m a 1T

F2
2m

(7.4)

Assuming the large-N rescaling relations between the
technisector and QCD [37],

2m

2
ma 1T

2
mp

ma
1

NrF Nrc f»
m 2 3 mPy. P

(7.5}

with f =93 MeV, m =770 MeV, and m, =1260 MeV,
we find

N~F N~cS=0.25
2 3

(7.6)

where NzF and Nzz are the numbers of technifiavors and
technicolors, respectively. Note that, in this estimate, the
integral under the p contributes 0.29 to the prefactor, and
so that the a

&
gives a relatively small subtraction.

A second simple model for R z and R z is that of keep-
ing only the leading logarithms of chiral perturbation
theory. In this approximation, we replace R z by the con-
tribution of pseudo Goldstone bosons (cut off at the same
of hadronic resonances, e.g., at m } and ignore altogeth-Pz.

er the higher-mass intermediate states which contribute
to R„. In a model with Nr„ flavors, there are (Nr„/2)
pairs of pseudo Goldstone bosons with I =+1. Each
pair contributes 4' to Rz. I.et us remove the true Gold-
stone bosons [which are subtracted in (5.11)],and assign
the remaining pseudo Goldstone bosons an averaged
mass m&. Then this approximation gives

cr(e+e ~hadrons)R s=
e(e+e ~p+p )

(7.9)

based on completely different physics. In particular, (7.7)
knows nothing about the strength of the p resonance,
which gives the major contribution to (7.6). Thus, one
cannot obtain a reasonable estimate of the value of S in a
particular technicolor theory by simple scaling, either
from (7.6) or from (7.7). One needs a more sophisticated
approach, which takes into account the fact that the con-
tributions to S from different intermediate states have a
different dependence on Nz„and Nzc and merges these
dependences into a coherent picture of the spectrum of
technicolor states in the vector and axial-vector channels.

We have attempted to construct such a picture based
on the general notion that technicolor dynamics is a
scaled-up version of the familiar strong interactions. Our
strategy is to write a parametric formula for R ~ and R „
which is a reasonable representation of the data from the
familiar strong interactions. We then assign each piece of
this formula its own characteristic dependence on N~F
and Nzc. For each value of these parameters, we obtain
a distorted spectral function which we can then integrate
to find the corresponding value of S.

Much of the recent work on technicolor models has
centered on the idea that technicolor dynamics is not
simply a scaled-up version of the familiar strong interac-
tions, but rather has a very different high-energy behav-
ior. On the other hand, Cahn and Suzuki [36,35] have ar-
gued that the technicolor strong interactions may also be
different at low energies, if the shape of the techni-p reso-
nance is distorted by the coupling of the techni-p to pseu-
do Goldstone bosons. Our analysis takes a much more
conservative picture of the strong technicolor interac-
tions. However, we believe that it can be useful in ad-
dressing the effect of a modification of the technicolor
theory, by indicating in one concrete scheme the fraction
of the final value of S which comes from the affected
momentum region. This allows one to estimate the un-
certainty in S that would result from a possible distortion
of the technicolor spectrum in this region.

We now present the details of our estimate. The first
step is to obtain functional descriptions of the values of
Rz and R„ in the familiar strong interactions. For
QCD, R ~(s}can be extracted from the data on

1

12m

m—1 ln
m&

(7.7}

This is because R (s} is the imaginary part of II&& while
R z(s) is the imaginary part of II'z~ and they are related
by

S=1.2 . (7.8)

The estimate (7.8) is consistent with (7.6), but this con-
sistency is misleading. The formulas (7.6) and (7.7) have
a completely different dependence on NrF and Nrc [35].
This difference rejects the fact that the two formulas are

In a minimal technicolor model with N~F=2, this ap-
proximation give no contribution to S. However, in a
model with N&F=8, one generation of technifermions,
and the values m =900 GeV, mp =200 GeV, in the log-

arithm, we find a quite substantial contribution:

(7.10)

Below roughly 3 GeV, only the u, d, and s quarks are
light enough to be pair created so the final hadronic prod-
ucts of e+e annihilation will consist of pions and
kaons. By looking at events in which only pions are pro-
duced we can effectively eliminate any s-quark contribu-
tion to R (s). The remaining pure pion events will be par-
tially I=0 and partially I =1. Because e+e annihila-
tion into hadrons goes through a vector current, the re-
sulting hadronic state will have C = —1. This means that
the I=0 states will have G parity G =C( —1) = —1
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while the I=1 states will have 6 parity 6 =+1. A
pion's G parity is —1 so the G = —1 states can only de-
cay into an odd number of pions while the G = + 1 states
can only decay into an even number of pions. Therefore,
looking at only the even pion production events wi11 give
us R,(s).

On the other hand, R z (s) for QCD can be extracted
from the data on ~ decay into a ~ neutrino and hadrons.
This decay goes through a virtual 8' so it measures the
imaginary part of

section at high energies. Our main interest here is to
present relatively simple functions which represent the
data but are amenable to scaling with XTF and XTC. The
values of the various parameters which appear in our rep-
resentation of R z and R z are presented in Appendix D.

The most important contribution to R z is the
e e ~2~ channel, which is dominated by the p. This
channel is well represented by the function [41]

%i=-.'(II'vv+11'~~ ) . (7.1 1) 1
R (s)= —1—

P

2 3/2
4m

8(s —4m )

2~+2~

~+~ 2m'

~3m.+3~

~2' 2' 2'

(7.12)

The H'zz and H'zz appearing on the right-hand side are
charged-current objects but they are equal to their
neutral-current counterparts because of isospin invari-
ance. This time, the virtual 8' only couples to I =1
states. Therefore, states produced by the vector current
will have C = —1 and 6 = + 1, and the states produced
by the axial-vector current will have C = + 1 and
6 = —1. Again, the conservation of 6 parity tells us that
the vector states only decay into an even number of pions
while the axial-vector states only decay into an odd num-
ber of pions. Looking at odd pion decays will give us
R„(s). Unfortunately, 7 decay can only tell us what
R„(s) is up to the r mass. The behavior of R„(s) above
that energy must be deduced by other means.

The analysis we present here improves substantially
over that described, in a rather sketchy fashion, in our
earlier paper. That analysis used only the e+e total
cross section data and used the two Weinberg sum rules
to determine the contribution of the a, . The numerical

values of S which we obtain here are smaller than those
of Ref. [13],mainly because r decay data implies a larger
coupling of the a

&
to the axial-vector current.

For e+e annihilation into hadrons we use the data
from the OLYA and CMD detectors at the Novosibirsk
collider VEPP-2M [38] in the energy range 460 —1400
MeV, and the Orsay detector DCI-DM2 [39] data in the

energy range 1350—2400 MeV for the reactions

4m

(s —m )+m I (s)
(7.14)

where

m s —4m„
' 3/2

I (s)=I (m ) — 8(s —4m„) .
s m,' —4m'

(7.15)

Note that I (m ) is given by

2 3/2
g „m 4m

47r 12
1—

P

(7.16)

Therefore, (7.15) can be written as

2

I (s)= 1—
P 48~ m

P

2 3/2
4m

8(s 4172 ),—(7.17)

9 m I ' ' I (s)
a (s —m ) +m I (s)

(7.18)

which is the convenient form for rescaling. Our fit to the
e+e —+m+m data of the OLYA and CMD detectors is
shown in Fig. 7(a).

To the e+e ~4~ channel data, we fit the following
Breit-%'igner function:

Note that the final state cannot consist of only m. 's be-
cause of C conservation. For ~ decay into hadrons we use
ARGUS [40] Collaboration data, from the DESY storage
ring DORIS II, for the reaction

where

P„,(s;47r)
I(s)=l(m )

PLt(m;47r)
(7.19)

'T ~V~7T 2' (7.13)

In both cases, we must take into account the unmeasured
channels such as e+e ~vr+m. 4~ and ~ ~v m 2~ .
This is done by assuming the simplest isospin assignments
of intermediate states in the decay processes. We assess
the contribution of the higher pion multiplicity channels
by smoothly matching to the measured e+e total cross

P„&(s;47r) stands for the 4-pion Lorentz-invariant phase
space. The fit to the e+e ~2m+2~ data of OLYA
and DM2 is shown in Fig. 7(b).

To the e+e ~6~ channel data, we fit a function in-
tended to represent the sum of the total cross sections to
6 and more pions:
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cont ( } ssymp

1 m—+arctan ——y+—
2 r

1—+arctan
2 y

D(s) . (7.20)

+
I „/m„=const—:y, I'„' I „=const . (7.22)

The parameter m is the mass of the lowest-lying reso-
nance contributing to this sum. The function D(s) is a
damping factor for killing off the tail of R „t(s}in the in-

frared which we take to be

D(s) =8(m —~s )e ('+' ~~'~~'r')+e(gz

(7.23)

This function can be interpreted as a superposition of
evenly spaced Breit-Wigner resonances [42]:

R„„,—g D (s) (7.21)
a (s —m„) +m2I „

with the condition

The expression (7.20) is compared to the DM2 data on
~6m in Fig. 7(c). We should note again that (7.20)

represents the sum of all multipion cross sections and so
tends at high energy to the asymptotic value of R ~.

Adding all these contributions together, we get the
solid curve shown in Fig. 8. In the figure, our representa-
tion of Rz(s) is compared to the values of R (s) from
OLYA, CMD [38], and the Frascati collider ADONE
[43]. As we can see, our function roughly follows the
contour of the R (s} data. The discrepancy comes from
the I =0 and ss channels.

To the ~ ~v,3m. channel we fit the Breit-Wigner func-
tion (7.18) except this time with

(7.24)
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FIG. 7. ComParison of components of our parametrization of Rv and R& to total cross-section data from the OL~A
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FIG. 8. Our parametrization of RI (s} (solid line) and R „(s) (broken line) for QCD. These functions are compared to the mea-
sured values of the e+e total cross section R (s) from OLYA, CMD, and ADONE.

PL, (s;3m) is the 3-pion Lorentz-invariant phase space.
This function is compared to the ARGUS results for
R„(s) in Fig. 7(d). While we have a fit for Rv(s) which
goes up to roughly 3 GeV, no data are available for
R„(s) above 1.8 GeV. We therefore add the function
(7.20) to R „(s) in this region with its position adjusted so
that the first Weinberg sum rule is satisfied. [Because the
integrand of the second Weinberg sum rule has an extra
power of s, the integral is dominated at higher momenta.
As a result, it does not help us determine to the shapes of
R v(s) and R „(s) in the infrared. ] The final result of this
fit is the dashed line shown in Fig. 8.

Now that we have obtained a function representing the
values of R ~ and R „ in the familiar strong interactions,
we can construct a model of Rz and R z in a technicolor
model by scaling the various fit parameters according to
the predictions of the large-N expansion, just as we did
for resonance parameters in (7.5). The formula (7.14) al-
lows us to disentangle the various dependences of the 2m

intermediate state on NTF and NTc. We represent the
techni-p contribution to R v(s) by a sum over the various
pseudo Goldstone bosons (PGB's) into which the techni-p
can decay:

3/2
4m, .

8(s —4m; }

2
2 3 g pan s

Pz N N 48~

3/2
4m;Xg 1 — g(s —4m;),

s
(7.26)

NTF +TC

mTc 2 3

Tc( m Tc ) NTF

mTc 2

2m gcD
2

3 1 QCD( QCD )

ÃTC m @CD

(7.27}

and m, is the mass of the ith pseudoscalar technimeson.
The sum runs over pairs of mesons with I =+1, includ-
ing the true Goldstone bosons. The factor (6/NTFNTC)
in front of the sum in (7.26) comes from the large-N re-
scaling of g „and the techni-p mass m is obtained

Py

from Eq. (7.5). The mass of true Goldstone boson is set
to zero while the masses of the PGB's are taken from
Ref. [44].

The dependence of the other pieces of R z and R „on
NTF and NTc is more straightforward. The parameters
of the Breit-Wigner function (7.8) and the continuum
function (7.20) are rescaled according to

In this formula,

4Pl

(s —m ) +m I (s)
(7.25)

and the entire function is multiplied by (NT„NTcl6).
The phase-space factors in (7.19) and (7.24) are calculated
with massless pions and PGB's. After rescaling the vec-
tor and axial spectral functions do not necessarily con-
verge rapidly at high energy. We thus evaluate S by cut-
ting off the integral at a value s+. We choose s+ so that
the rescaled spectral functions, integrated up to this



46 ESTIMATION OF OBLIQUE ELECTROWEAK CORRECTIONS 399
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FIG. 9. R z(s) (solid line) and R z (s) (broken line) for minimal

technicolor, NTF =2, for the cases NTC =, ,hT —2 3 4

cutoff, continue to obey the first Weinberg sum rule.
We evaluate S in this scheme for two types of tech-

nicolor model. The first is the minimal model with only
one doublet of technifermions (NTF=2). The rescaled
spectral functions are shown in Fig. 9 for the three cases

=2 3 d 4. We evaluate S using these spectraan
functions and find

(7.29)

The error in (7.29) reflects the experimental uncertainty
in the value of the pion charge radius and the structure
term in m+~l+vy, from which I5 is obtained. The
agreement of (7.29) with our determination for the case
NTc=3 is quite pleasing. To our knowledge, this is the
first accurate check of the sum rule (5.12) against data
from high-energy e+e reactions.

The second model we considered was that with one
generation of technifermions (NT„=8). In this model,
the techni-p decays through the following channels:

For the value of NTc =3, we estimate an error of +0.03
from the model dependence of the fit. The other values
contain additional uncertainties due to large-N rescaling.
We expect this uncertainty to be about 25%. As a chec
o our moe of d 1 of the spectrum, the value quoted for

.14N =3 should agree with the value obtained from (5. ),
using the Gasser-Leutwyler [33] value of l, and rnH =3=380
MeV (rescaled from 1 TeV):

2

S= 1&+ln ——=0.30920.034 .
1 — m~ 1

12m
'

m82 6

p+p color-octet PGB's, mp =230 GeV,

P'P '+P 'P ' color-triplet PGB's, mp =150 GeV,3 3 3 3 3
0P2~ P+P— color-singlet PGB's, mp =60 GeV, (7.30)

+
7TT 7TT technipions, m =0,~T

where we have used the notation of Ref. [45]. The masses
of the color-octet and -triplet PGB's were taken from
R f [44] while the mass of P+ was chosen to be largere.

bthan the experimental limit of roughly 40 GeV placed y
LEP [46]. Incorporating these decays into our techni-p
function (7.25), we obtain the spectral functions shown in
Fig. 10 for the three cases NTc =2, 3, and 4. The value of
S turns out to be

l

mediate state (dominated by the techni-p) contributes
roughly 0.4 to the prefactor of (7.32); the other contribu-
tions sum to a small subtraction from this value. To our
surprise, we see no sign of the quadratic dependence on

25 i y i s

20

S=0.80,

=1.20,

=1.62,

Tc=2

NTc =3

N,c—4.
(7.31)

15

10 (2)

These values should again be assigned a 25% error.
It is amusing that the results of this detailed computa-

tion are all roughly consistent with the simple formula

TF NTcS=0.3
2

(7.32)
0

0 1000 2000
vs (Gev)

3000
I I I

4000

only slightly larger than (7.6) and with the same depen-
dence on NTF and NTc. In all cases, the two-pion inter-

FIG. lo. R&(s) (solid line) and R„(s) (broken line) for one
generation of technifermions, N» =8, for the cases NTc =2,3,4.
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XT„ indicated in (7.7) except as a redistribution of spec-
tral weight between the techni-p peak and the two-pion
continuum.

Using our scaled-up QCD model as a reference point,
we can evaluate the effect of possible modifications of the
strong-interaction spectrum due to alterations of the
short-distance behavior of technicolor. One might expect
two distinct effects: First, if pseudo Goldstone bosons re-
ceive large masses from extended technicolor interac-
tions, their contribution to S is decreased. Second, if the
asymptotic behavior of the hadronic vacuum polarization
is altered, this can in turn alter the spectrum of reso-
nances and thus the value of S. Let us consider these two
effects in turn.

Within our model, it is straightforward to assess the
effect of increasing the pseudo-Goldstone-boson masses,
since these masses appear as parameters in (7.25). This
formula implies that, while increasing the pseudo-
Goldstone-boson masses does decrease the contribution
of the mass region well below the techni-p, it also has the
effect of making the techni-p a narrower and more prom-
inent resonance. In Fig. 11, we show the effect on Rz(s)
of varying the pseudo-Goldstone-boson mass, assuming a
common mass for all pairs of bosons into which the
techni-p decays, and values of the other parameters ap-
propriate to the case NTF =8, NTc=3. The main effect
of this modification is to shift spectral weight from low
mass to the techni-p resonance, approximately preserving
the total area. The value of S decreases only slightly as
the common mass m~ of the pseudo Goldstone bosons is
increased. For the case NTF=8, NTc=3, we find a
minimum of S for m&=400 GeV at the value S =1.00,
compared to S = 1.20 in (7.31).

On the other hand, changes in the short-distance be-
havior may induce larger changes in S. In a recent paper,
Sundrum and Hsu [47] have estimated the asymptotic be-
havior of the hadronic vacuum polarization in walking
technicolor theories and used this to compute the effect

on S. For the case NT„=2, NTC =3, they find that, well
above the low-lying resonances,

4

ilvv(e ) —11~~(e )-2 A

q
(7.33)

where A = 300 MeV (F /f ). To compute the change in

S, Sundrum and Hsu use an exotic method of analytic
continuation whose accuracy is difficult to estimate. To
understand how large an effect to expect, we find it useful
to apply the simple two-resonance model discussed at the
beginning of this section, using (7.33) as a replacement
for the second Weinberg sum rule. We find that the for-
mula for S given in (7.4) is corrected by a term

4~A
2

mp ma
(7.34)

1S= 6'
NTFNTc

2
(7.35)

This is a substantial decrease. However, this calculation
represents a worst case, the assumption that, while the
asymptotic behavior of the vacuum-polarization changes,
this function is still dominated by the two lowest-lying
resonances. This is quite unlikely, especially since the
second Weinberg sum rule is rigorously valid (although
very slowly convergent) in walking technicolor theories.
But if we model the change in the vector spectral func-
tion as a change in the contribution of the second, rather
than the lowest, resonance, the correction (7.34) de-
creases to 0.03 and is within the noise of our large-N re-
scaling.

Thus, we have some confidence that the simple formula
(7.32) gives a reasonable value of S not only in the simple
technicolor models based on scaled-up strong interactions
but also in modified, more realistic models of technicolor
dynamics. In all cases, the contribution to S in tech-
nicolor models is much larger than the value we would
naively obtain from (4.2),
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The factor of 2 enhancement from (7.35) to (7.32) is a
low-energy signature of the presence of new strong in-
teractions at the TeV energy scale.
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FIG. 11. The shape of the techni-p resonance as a function of
the PGB mass for the case N»=8, N»=3. The 15 pairs of
PGB's, into which the techni-p decays, are given a common
mass m~ which is varied from 50 to 450 GeV at 50 GeV inter-
vals.

Up to this point in our consideration of technicolor
theories, we have concentrated on the effects of tech-
nicolor interactions on S while ignoring their effects on T.
However, there are good reasons to expect that T is also
substantially modified by technicolor interactions. Con-
tributions to T arise from interactions which break custo-
dial SU(2) symmetry. In any realistic technicolor model,
such breaking must be present in order that the two
quarks or leptons belonging to the same SU(2) multiplet
receive different masses from the dynamical symmetry
breaking.

However, such isospin-breaking effects are extremely
difficult to estimate. For a systematic calculation using
the A,-expansion technique discussed in Sec. VI, we must
include the next-to-leading-order diagrams in k to get a
result comparable to the standard-model calculations.
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T= &rc
16~s c m

dk k
0 k2+X2 (k2) k2~X2 (k2)

2

(8.1)

This is because the analog of the standard-model diagram
shown in Fig. 12(a) is given by the diagram shown in Fig.
12(b). Therefore, in order to calculate T, we need not
only the two current correlator (vacuum polarization) but
also the three and four current correlators. Whereas the
two current correlator can be treated by writing a disper-
sive integral, it is much more diScult to represent and
evaluate the higher-point functions in a general strong-
interaction theory. In addition, even the leading-order
contribution in A. is uncertain, because it involves the
difference of charged and neutral spectral functions,
which arises from perturbations of the basic strong-
interaction dynamics.

In addition, the major source of isospin violation in
technicolor models is the extended technicolor interac-
tion. The form of this interaction is usually the most
model-dependent part of a realistic theory of technicolor.
A further complication comes from the fact that the iso-
spin mass splitting of the (t, b) doublet is extremely large
In constructing a model of extended technicolor, it is usu-
ally a dificult problem to allow enough isospin violation
to generate a large top-quark mass while restraining this
isospin violation from generating a large correction to the

p parameter or, in our notation, to T.
In the literature, two methods have been proposed to

solve this problem. In Refs. [7,48], it was proposed that
extended technicolor could generate a large top-quark
mass by enhancing the effect of hypercharge interactions,
which naturally create a larger condensate for the charge
+

3
member of a doub let of techniquarks. The authors of

Ref. [7] estimated the effect of this mechanism on T by
evaluating vacuum-polarization loops of noninteracting
technifermions with running masses XU(k ) and X~(k ):

3'
16~s c m

4&rc
9

(8.2)

IX. EXPERIMENTAL LIMITS ON SAND T

The factor in the parentheses is the standard t-quark con-
tribution. Note that if the technifermion doublet carries
color, (8.2) must be multiplied by a factor of 3. The
values of T for technicolor shown in Fig. 1 of Ref. [13]
were obtained from (8.2). This simple approximation is
not a bad representation of the more sophisticated nu-
merical evaluate of (8.1) given in Ref. [7]. Even with that
more careful evaluation, the contribution of (8.1) to T is
expected to be dangerously large if m, & 100 GeV.

A second method for obtaining a large m„explored by
King and Mannan [49] and by Einhorn and Nash [50],
places the isospin asymmetry in the spectrum of extended
technicolor gauge bosons. The lightest of these bosons
generates the top-quark mass. These authors have ob-
tained specific models with in which the contribution to
T is only a few tenths. The final result, though, is sensi-
tive to the detailed structure of the technifermion con-
densate as well as to the explicit coupling of extended
technicolor.

These two estimates of the contribution to T share the
feature that they are highly uncertain, both because they
are based on arbitrary and unsystematic reductions of the
full set of contributions to T and because they use crude
approximations to strong-interaction dynamics. It is un-
likely that anyone would claim that technicolor models
are ruled out if the true value of T turns out to be much
smaller than (8.2); the problem would simply be returned
to the theorists for a better calculation or a better model.
We consider it an important problem to devise a more
rigorous representation for T, which might be useful in
computing T more accurately in any given model for ex-
tended technicolor. But even if T could be computed ac-
curately in a given model, the model dependence of this
quantity limits its usefulness as a means of confirming or
excluding the idea of technicolor.

The momentum dependence of the X's were obtained by
solving the gap equation. The approximation which
leads to (8.1) is valid at momentum scales much higher
than the technicolor scale where technicolor interactions
are asymptotically free. However, the integral is dom-
inated by the contribution from the technicolor scale
which makes this estimate highly unreliable.

If we neglect the momentum dependence of the X's and
crudely assume XU —XD =m„ then (8.1) is reduced to
(4.2) and we find

H

(a)

FIG. 12. Comparison of leading diagrams contributing to T
in the standard loop expansion and the A, expansion.

In this section, we will discuss the determination of S
and T using the values of weak-interaction observables.
In particular, we will be interested in what constraints we
can put on S independently of T. We will see that, even if
T cannot be reliably estimated in technicolor models, the
present constraints on S are sufficiently strong to exclude
technicolor models with a full generation of technifer-
mions.

Since the appearance of Ref. [13],a number of authors
have presented fits of weak-interaction data in terms of S
and T or related parameters [14—18]. Because of the
dramatic improvement in the measured values of the Z
parameters and asymmetries from LEP, the constraints
on S and T are now considerably stronger than those
which could be obtained in the summer of 1990. The
analysis we will present in this section is quite similar to
the recent fits of Bhattacharyya, Banerjee, and Roy [18]
and Altarelli, Barbieri, and Jadach [16], and our con-
clusions agree substantially with those of these authors.
Given the progress of weak-interaction experimentation,
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it will also probably very soon be obsolete. But we feel it
is a valuable part of our general review of the (S,T) pa-
rametrization to explain the physics behind the experi-
mental determination of S and T.

In our formalism, each observable x depends linearly
on S and T. Let us write the relation for a general ob-
servable x as

x(S, T)=xsM(m„mH}+a, S+b T, (9.1)

where xsM(m„mH) is the standard-model prediction,
computed at the reference values of m„and mH. In Ap-
pendix B, we list these formulas for various observables
with m, = 150 GeV and mH = 1 TeV. According to (9.1},
a precise experimental determination of x will restrict S
and T to lie on a line in the S-T plane. By intersecting
the lines corresponding to different observables, we can
determine S and T and also, eventually, test the con-
sistency of the restriction to a two-parameter space. In
practice, experimental measurements have associated er-
rors, so that the lines become bands in the S-T plane, and
we must give a statistical criterion for their overlap.

The key to a determination of S and T is the fact that
different observables give lines of different slope in the S-
T plane. By inspecting the table in Appendix 8, we can
see that the various weak-interaction observables are to
be separated by their S and T dependence into three gen-
eral classes. In the first class are observables with rela-
tively weak dependence on S compared to T. This class
includes parameters R, and gL which measure the
charged- to neutral-current ratio in neutrino scattering,
the various partial widths of the Z, and, with only a
slightly stronger S dependence, the mass of the W. In
other words, this class includes all of the weak-
interaction observables which were known with high pre-
cision prior to the summer of 1990. The second class in-
cludes the Z asymmetries, quantities which depend on S
and T through s, (mz). The relative sensitivity of these

Q = —
p (0)[N —[1—4s (0) ]Z ], (9.2)

where N, Z are the number of neutrons and protons in the
nucleus. Expression (9.2) depends on T through both of
the starred functions. The two T-dependent terms are

—(aT)[N —(1—4s )Z]+ ZT .
e s

(9.3)

For the particular neutron content of cesium,
N/Z =1.41, the second term of (9.3) cancels 95%%uo of the
first term. A similar cancellation would hold for most
elements in the lower half of the periodic table. Krauss
[56] has pointed out that the same cancellation occurs in
the cross section for coherent neutral-current neutrino
scattering, which will eventually be observed by
bolometric detectors. Unfortunately, the cancellation
does not occur in the isotope effect in atomic parity viola-
tion, the coefficient of N in (9.2), which has been pro-
posed as an observable with a lower theoretical systemat-
ic error than Qii, [57]. This latter observable belongs to
the first class and so must compete with I z and R in its
significance for weak-interaction theory.

In Figs. 13 and 14, we show the present constraints on

quantities to S is made clear, for example, by comparing
the first two lines of (3.13).

Finally, there is a third class of measurements which
are almost insensitive to T and so measure S directly.
Marciano and Rosner [14] and Sandars [55] recognized
that the strength of atomic parity violation has this prop-
erty. To see why, take the matrix element of the low-
energy effective Lagrangian (2.24) and consider the piece
which involves the axial-vector current of the electron
times and coherent vector current matrix element in the
atomic nucleus. This gives the fo11owing expression for
the weak charge which determines the magnitude of
atomic parity violation:

—4—6

FIG. 13. Bands in the S-T plane allowed, within the 10. errors, by the first four measurements listed in Table I. These obesrvables

belong to the first class discussed in the text.
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FIG. 14. Bands in the S-T plane allowed, within 10. errors, by the last five measurements listed in Table I. These observables be-

long to the second and third classes discussed in the text.

where the normalization factor N is such that

fdS dT L (x,„p„'S,T)= 1 . (9 5)

S and T from the measurement of the set of weak-
interaction parameters listed in Table I. The experimen-
tal values are plotted as bands in the S-T plane whose
boundaries correspond to the 1o. errors. Figure 13 shows
the best-measured variables of the first class (plus the
value of ga, which is obtained from the difference of R„
and R„). Figure 14 shows the quite different constraint
which comes from the second and third classes of observ-
ables.

Just by inspection we can see that the overlap of the
bands is greatest in the third quadrant of the S-T plane.
To describe this overlap more quantitatively, we con-
struct the likelihood function of S and T, given by [58]

x,„,—x(S, T)
L (x,„,;S, T)=N exp

X X

(9.4)

The point which maximizes L(x,„,;S,T) is found to be

(S,T)=( —1.52, —0.69) . (9.6)

L (x,„p„'S)=f dT L ( xp„S,T)'
and interpret the quantity

p(S &S)=f dSL(x,„„;S)

(9.7)

(9.8)

as the probability that S &S. The 90% and the 95%
one-sided upper confidence limits obtained from (9.8) are
shown with the larger notches on the lower part of Fig.
15. This determination corresponds to S = —1.5220. 84.

Let us emphasize that these limits on S and T refer
specifically to their definition as deviations from the stan-
dard model with the reference values m, =150 GeV,

Figures 15 and 16 show this point and the 68% and 90%
confidence level contours around it. In order to obtain
the limits on S independent of T, we integrate
L (x,„,;S,T) over T to obtain a likelihood function of
only S:

TABLE I. Measurements entering our determination of S and T. The value of s~ (mz) listed is that
determined from A „z. The standard-model predictions are given for the reference conditions m, =150
GeV, mB=1 TeV.

Observable

m w/mz
I z [GeV]

2
gL,

2
gz
Rz
s~(mz)
AFB
P,
Qp (,',"Cs)

Measured value

0.8791+0.0034
2.487+0.009

0.2977+0.0042
0.0317+0.0034

20.94+0.12
0.2317+0.0030
0. 135%0.031

—0. 152+0.045
—71.04+ 1.81

Reference

[51]
[23]
[52]
[52]
[23]
[23]
[23]
[53]
[54]

Standard model

0.8787
2.484
0.3001
0.0302

20.78
0.2337
0.0848

—0.1297
—73.31
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FIG. 15. Contours of the likelihood function of S and T corresponding to 68% and 90% probability, computed from the measure-
ments listed in Table I. The long notches at the bottom of the figure correspond to the 90% and 95% confidence upper limits on S in

an unbiased analysis. The shorter notches show the locations of these limits if one imposes a priori that S )0.

mH =1 TeV. For di6'erent values of m, and mH, the posi-
tion of the likelihood contours on the S-T plane will be
different. However, the shapes and sizes of these con-
tours would be the same. This gives a convenient way to
plot the inhuence of the reference m, and mH on the S-T
analysis: We simply hold the position of the likelihood

contours fixed and plot the relative position of the origin
with respect to these contours. As we vary m„ this rela-
tive position then sweeps out a contour in the S-T plane
which roughly follows the displacements (4.4) but gives a
more accurate accounting for small values of m, . In
Figs. 15 and 16, we have plotted the contours corre-

I I I I I I I I I I I I I I I I] I I I I I I I I I
% /
/ %

mH=100 GeV

m„=1
5 I/

TeV

LL /
/

0— 1 generation
SU(4) TC

1 doublet SU(4) TC—

0
I I I I I I I I I

1 2

FIG. 16. Enlarged version of Fig. 15, showing the comparison of the region preferred by the fit with the predictions of the minimal

standard model and two technicolor models. The values of S and T for the minimal standard model are computed as described in the

text, for Higgs-boson masses for 100 GeV and 1 TeV, as a function of the top-quark mass. The stars denote values of m, from 75 to

250 GeV in 25 GeV steps. The values of S in technicolor models are the values for ETC=4 from Sec. VII. The values of T due to
technicolor are computed from (8.2), as an indication of the possible size of this effect. Again, the stars denote values of m, increasing

from 75 GeV in steps of 25 GeV.
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S & 0.93 (95%%uo C.L. ) . (9.10)

We emphasize that this is a new constraint for tech-
nicolor models, independent of previous constraints from
flavor-changing neutral currents or the p parameter, and
one which is much less dependent on the details of tech-
nicolor and extended technicolor model building. We
have argued in Sec. VII that this bound excludes tech-
nicolor models with a full generation of technifermions
except in special limiting circumstances.

Given the rate of progress in weak-interaction exper-
imentation, we feel confident that the results quoted in
Table I, and thus the bounds we have quoted on S and T,
will soon be obsolete. We encourage experimenters, espe-
cially experiments involving the Z parameters and
deep-inelastic neutrino scattering which measure several
observables, to present limits on S and T from their own
experimental data as a complement to their more conven-
tional fits to sin O~, m„ma. We are pleased that the
ALEPH Collaboration experiment has already published
a determination of S based only on their own data and
taking into account the correlations and asymmetric er-
rors of data points in a proper way [59]. Converted to
our conventions, their result is S = —1.9+1.1; this com-
pares favorably with the end result of our global analysis.
Though the ALEPH paper reaches S through the deter-
mination of partial widths and asymmetries, it is also
straightforward, and may eventually be more effective, to
fit the measured differential cross sections directly to
functions of S and T [60].

To give an idea of the accuracy which should be

sponding to Higgs-boson masses of 1 TeV and 100 GeV.
We find this plot a useful way to view the precision
weak-interaction data even in reference to the minimal
standard model. For example, the subtle preference of
the data for lo~er values of mH, noted by many authors,
is apparent in these figures.

We have also plotted in the two figures our estimates of
S and T for technicolor models with one doublet and one
generation of technifermions. The estimate for S is that
given in (7.28) and (7.31), and the estimates for T were
obtained from (8.2). It seems that the data does not par-
ticularly favor either choice and seems quite inconsistent
with the 1 generation case.

In fact, it is noteworthy that, whereas the standard
model gives small values of S and the corrections due to
technicolor are positive, the experimental results favor a
sizable negative value of S. This makes it dificult to state
the precise constraint on technicolor models that the data
provides. A conservative criterion is the following: let us
assume a priori that the value of S is positive. Then the a
posteriori probability that S & S is given by

p(S &S)= (9.9)
dS L x~ pt S

0

This criterion gives slightly weaker 90% and 95% one-
sided upper confidence limits, which are shown with the
unmarked smaller notches on Fig. 15. In particular, we

conclude that technicolor models must satisfy the con-
straint

achievable, we have evaluated the constraint on S which
would follow, later in this decade, from the following set
of precision measurements: mz, to 100 meU; I z to 6
MeV (the systematic error in the theoretical prediction
due to the uncertainty in a, ); A „"8 to 0.005; and Azz to
0.01. This set of measurements would determine S to
+0.35. If A&R could be measured to 0.003, S will be
known to +0.23. This is approximately equal to 4/6m. ,
the shift of S due to one heavy generation.

There remains the question of whether, if the negative
central value of S is confirmed, there is a model which
can account for this. We do not know a simple model
which gives such a large negative value of S. Recent
works by Bertolini and Sirlin [61],and Gates and Terning
[62] suggest that one may be able to construct a model
which predicts negative values for both S and T by in-
cluding Majorana particles. Dugan and Randall [63] and
Georgi [64] have given other examples of weak quantum
number assignments which lead to a negative value of S.
Whether such an approach leads to a realistic theory
which is compatible with the limits on S and T remains
to be seen.

X. CONCLUSIONS

In this paper, we reviewed the general analysis of the
oblique electroweak corrections to precision measure-
ments. We started by reviewing the formalism of Ken-
nedy and Lynn which summarized the effect of oblique
corrections into the starred functions. A momentum ex-
pansion of the vacuum-polarization amplitudes let us
reduce the starred functions to just three parameters S,
T, and- U.

The use of dispersion relations let us estimate S for
strongly interacting theories in which perturbation
theory cannot be used. For QCD-like technicolor, we
found S to be positive and roughly proportional to the
number of technifermion doublets.

Analysis of the precision electroweak measurements
puts a limit on S and T. The experimentally favored
value of S turns out to be negative which rules out QCD-
like technicolor theories with a large technisector.

Constructing a model which predicts negative values
for S and T, and finding a reliable method for estimating
T from theory remain as open problems.
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APPENDIX A

In this appendix, we tabulate the dependence of vari-
ous observables on oblique radiative corrections, by ex-
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pressing their dependence on the starred functions.
These formulas can be used to derive the (S, T) depen-
dences of observables listed in Appendix B. One should
note that certain observables, in particular I

b&
and A „B,

can receive sizable nonstandard corrections from vertex
diagrams in specific models. On the other hand, these ex-
pressions are not adequate for deriving the standard-
model predictions for these observables, since there are
nontrivial parts of vertex and box diagrams can be impor-
tant. QCD corrections are included in Nq„„k and k„.

Z' widths:

{x~mz —2 2r,=z„, , y(i,f s, Qf—)
65 c Z

Deep-inelastic neutrino scattering:

gL =p„(0)'[(gL, )'+ (gL, )']

=p, (0) [—,
' —s, (0)+—', s, (0)],

gR =p.(0)'[(gR. )'+(gR* )']

=p, (0)'[—,'s', (0)],
R —gL+rg

=p (0)2[—,
' —s „(0)+—'(1+r)s, (0)],

2

R =gL+
V r

=3I +3I, , +I „,
a*mz

I =Z
24 2 2

S+C+ q =mz

=p, (0)2 —,
' —s „(0)+—', 1+—s, (0)

Atomic parity violation:

Cl P*(0)(gL* gR )(gL +g

=p„(0)[——,'+-', s„(0)],
C1d P»( )(gl»g. R» )(gL» +gR» )

=p, (0)[—,
' —

—,'s, (0)],

Qrr(Z, N) = —2[(2Z +N)C, „+(Z +2N)C, d ]

p„(0)[N——[1—4s„(0)]Z} .

APPENDIX 8

r„,„=2r +3r„,—.

Asymmetries at the Z pole:

«L. )'+«R. )',
—,'+s'. (q')) —[s'. (q')]'

[ ——,'+s, (q )) +[s, (q )]

2[1—4s, (q )]

1+[1—4s, (q )]2

b =3
FB ~LR4

=3
4 LR

a,
X

(gL, )' —(gR, )' a,
I —k~

[ ——'+ —' '. (q')]' —[—' '(q')]'
[ —1+ ls2(q2)]2+[12(2)]2 mz

=o. 8787 —
( 3. 15 X 10 '

)S + (4. 86 X 10 '
) T

+(3.70X10 3)U,

The following numbers are evaluated with m, =150
GeV, mH =1000 GeV, e =4ma» 0(mz)=4m/129,
s =sin 00=0.23, and a, =0.12. The constant terms on
the right-hand sides are the standard-model predictions
including oblique and direct corrections, and QED and
QCD corrections. They are dependent on the values of
m, and mH while the coefficients of S, T, and U are not.
For example, the standard-model predictions for I dd and
I

bb
differ due to the fact that I

&b
receives an m, -

dependent correction from the vertex diagrams contain-
ing the t quark. However, the coefficients for S and T are
the same because the oblique corrections are common.
To evaluate R, and R, we have used the CERN-
Dortmund-Heidelberg-Saclay (CDHS) [65] Collaboration
values of r. Other experiments should use their own mea-
sured values of r together with the formulae for gL, gR
below:

I~ FB
——

(~LR )'

(gL, )' —(g„', )'

(gL, )'+(g„', )' LR

rz =2 484 —(9.58 x 10 ')S+ (2.615x 10 ) T (GeV),

, —=0.0835 —( 1.91 X 10 )S+(7.83 X 10 4) T

(GeV),

r„„=0.2962 —(1.92X10 3)S+(3.67X10 3)T (GeV),
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AppENDIx c
In this appendix, we clarify the relation of the parame-

ters of oblique corrections defined in Sec. III to those of
other authors.

First of all, we would like to clarify precisely how our
formalism is a specialization of the formalism of Kennedy
and Lynn [12]. As a part of their analysis, Kennedy and
Lynn defined a running Fermi constant GF, (q )and a
running p parameter p, (q ) as

U2

4 2GF, (q )
+[II))(q )

—113'(q }],
1

(C 1)
=1—4~26F, (q )[II))(q ) —II33(q )] .

p, (q')

These functions enable us to write

Z4
2 2

q
—Mz,

ZWe
2 2

q
—~w.

2
1

2 2s,c, 4&26F,p,

2e~

s, 4&2GF„

Therefore, in the original version of the Kennedy-Lynn
formalism, the effects of oblique corrections were summa-
rized in the four starred functions: e~(q ), s~(q ),
GF, (q ), and p„(q ).

Kennedy and Lynn further define

I
dd

=0 3823—(1.72X10 )S+(4.20X10 )T (GeV),

I"&-=0.3779—(1.72X10 )S+(4.20X10 )T (GeV),

I h,d=1.7348 —(9.00X10 )S+(1.993X10 )T

(GeV),

~Z =I h,d/I, +, —

=20.78—(5.99X10 )S+(4.24X10 )T,
s, (mz ) =0.2337+ ( 3.59 X 10 )S—(2.54 X 10 )T,
Ata = P,=—0. 1297—(2.82X10 2)S+(2.00X10 2)T,

A Fa =0.0848 —(1.97 X 10 )S+(1.40X 10 )T,
AFa=0. 0126—(6.72X10 )S+(4.76X10 )T,

gL =0.3001—(2.67X10 )S+(6.53X10 )T,

ga =0.0302+(9.17X10 )S—(1.94X10 )T,
R„=0.3126—(2.32X 10 )S+(6.46X10 )T

(r =0.383),
R-„=0.3824 —(2.77 X 10 )S+(6.03 X 10 )T

(r =0.371),

Qa (55 Cs) = —73.31—0.790S—0.011T,

b, (q )—= II&i(q ) —II33(q ),
a,(q')—= —[11»(q')—11»(0)—11,~(q')],

53(q ):——[II33(q ) II33(0) 113Q(q )]

(C2)

1

4&26~, (q ) 4&2GF
—h, (q ),

1 1

4&26~~(q )p, (q ) 4&26+p, (0)
—b3(q ) .

(C3)

Note that only two of the 5's are independent; the three
functions are related by

b, ,(q )
—bi(q )=b, (0)—b, (q ) . (C4)

In our approximation (3.11), the II's do not contribute to
the running of e, (q ) and s, (q ) so we only need to con-
sider the running of Gz, (q ) and p„(q ). The b, 's in this
approximation are given by

a,(q') = [II„(0)—11„(0)]+q'[II;,(0)—11'„(0)],
&t(q )= —

q [III)(0)—113' (0)],
&3(q )= —

q [II33(0)—113ti(0)] .

(C5)

Comparing with our definitions of S, T, and U in (3.12),
we find

&3(q')
aS = —4e~

eaT= 5 (0),
g2~2m 2

b, (q ) —b, (0)
aU=4e

b, ,(q )= —4e
2

&3(q')

q
2

where the contribution from the reference standard mod-
el must be subtracted out from the 6's and the right hand
sides of S and U must be evaluated at a q where the ap-
proximation (C5) is valid.

In our original paper [13], we introduced a two-
parameter representation of electroweak corrections us-
ing S and T. In this paper, we have presented the three-
parameter generalization with the additional parameter
U. Other three-parameter representations have appeared
in the literature. Kennedy and Langacker [15) define
their parameters h&z, h~w, h& by

These 6's determine the running of p, (q ), Gz, (q ), and

Gz, (q )p, (q ) in the following way:

=1 4&—26~, (q )b, (q },
p, (q )
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, a,(mz')
ahaz = —4e

mz

h, (mn )
ah~~= —4e

mw

2

ah~= . . .Ap(0) .
5 C Pl

(C7)

2tr channel [cf. (7.14), (7.17)]:

m =776.0+0.5 (MeV),

&Parer

48m
=0.184+0.001 .

4' channel [cf. (7.18), (7.19)]:

m =1710+17 (MeV),

Comparing with (C6), we find that h az =S
=(S+U), and hv=T. Marciano and Rosner [14]

have used the parameters Sz=S, Sn, =(S+U), and T;
while Altarelli and Barbieri [16] have used the parame-
ters e, =aT, @2=—aU/4s, and e3 aS/4s .2 2

Almost every analysis has used a di6'erent choice of the
parameters of the reference standard model. We expect
that, in the future, still more choices will be used as the
preferred value of the top-quark mass wanders. We hope
that those who use this formalism will at least take care
to state their reference point clearly.

APPENDIX D

In this appendix, we present the parameters of the fit
described in Sec. VII. Numbers without errors have not
been fit but chosen. We remind the reader that the dom-
inant source of error in our evaluation of S comes not
from the choice of these parameters but rather from the
fact that our parametrization is too simple to provide a
complete description of the e+e data.

I (m )=1440+120 (MeV),

I' ' =0.0084+0.0004 (MeV) .

[6tr+8n+ ] channel [cf. (7.20)]:

m =2040+7 ( Me V ),

8„„,=1.875 .

3tr channel [cf. (7.18), (7.24)]:

m =1175+7 (MeV),

I (m )=387+19 (MeV),

I" ' =0.00420+0.00014 (MeV) .

[Sm.+7'+ ] channel [cf. (7.20)]:

m =1740 (MeV),

R zsymP 1 0 875 0
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