Exercise 1. Oblique Corrections

In this exercise we want to investigate the so-called oblique corrections to electro-weak interactions. These corrections were introduced to analyse new physics phenomena for processes of $e^{+} e-\rightarrow q \bar{q}$ as measured at LEP. In the Standard Model fermionic currents $J_{Q}^{\mu}\left(p^{2}\right)$ are coupled to the $S U_{I}(2) \times U_{Y}(1)$ gauge fields via the interaction Lagrangian

$$
\mathcal{L}=g W_{\mu}^{+} J_{+}^{\mu}+g W_{\mu}^{-} J_{-}^{\mu}+g Z_{\mu} J_{Z}^{\mu}+e A_{\mu} J_{E M}^{\mu},
$$

where

$$
J_{Q}^{\mu}=i \bar{\psi} \gamma^{\mu} Q \psi .
$$

The different charges for the interactions are given by

$$
Q_{ \pm}=\frac{1}{\sqrt{2}} T^{ \pm} P_{L}, \quad Q_{Z}=\frac{1}{c_{W}}\left(T^{3}-s_{W}^{2} Q\right) P_{L}, \quad Q_{E M}=e Q .
$$

We want to consider one-loop corrections to resonant $q \bar{q}$ production in lepton collisions. Some leading corrections are given by fermion loops inserted into the gauge boson propagator. The gauge bosons A and B can be $W^{ \pm}, Z$ or γ.

We can decompose the resonant propagator corrections as

$$
\Pi_{A B}^{\mu \nu}(p)=g^{\mu \nu} \Pi_{A B}\left(p^{2}\right)+\frac{p^{\mu} p^{\nu}}{p^{2}} \Delta_{A B}\left(p^{2}\right) .
$$

(a) If we are interested in processes as described above why can we restrict ourselves to terms proportional to $g^{\mu \nu}$?
(b) Calculated $\Pi_{A B}\left(p^{2}\right)$ for two left-handed $\Pi_{L L}\left(p^{2}\right)$ and one left- and one right-handed $\Pi_{L R}\left(p^{2}\right)$ current with two different fermion masses in the loop. Use dimensional regularisation in combination with anti-commuting γ^{5} matrices. To compute the loop integrals introduce Feynman parameters and express your result in terms of the following integral definitions. Compute up to finite order in the dimensional regulator $d=4-2 \epsilon$.

$$
\begin{align*}
& b_{0}\left(p^{2}, m_{1}, m_{2}\right)=\int_{0}^{1} d x \log \left(x m_{1}^{2}+(1-x) m_{2}^{2}-p^{2} x(1-x)\right), \tag{1}\\
& b_{1}\left(p^{2}, m_{1}, m_{2}\right)=\int_{0}^{1} d x x \log \left(x m_{1}^{2}+(1-x) m_{2}^{2}-p^{2} x(1-x)\right), \tag{2}\\
& b_{2}\left(p^{2}, m_{1}, m_{2}\right)=\int_{0}^{1} d x x(1-x) \log \left(x m_{1}^{2}+(1-x) m_{2}^{2}-p^{2} x(1-x)\right) . \tag{3}
\end{align*}
$$

(c) Use your result from above to compute the correction to the photon propagator $e^{2} \Pi_{Q Q}\left(p^{2}\right)$. You should find that your corrections vanish as $p^{2} \rightarrow 0$. Can you make a connection between the propagator correction of the photon and its renormalisation counter-terms? Why does the correction have to vanish as p^{2} goes to zero?

In the lecture you introduced the Peskin-Takeuchi parameters S and T. These are related to the propagator corrections as

$$
\begin{align*}
S & \sim 4 e^{2}\left[\Pi_{33}^{\prime}(0)-\Pi_{3 Q}^{\prime}(0)\right] \tag{4}\\
T & \sim \frac{e^{2}}{s_{W}^{2} c_{W}^{2} M_{Z}^{2}}\left[\Pi_{++}(0)-\Pi_{33}(0)\right] . \tag{5}
\end{align*}
$$

(d) Compute the leading corrections to the T parameter for the third family of standard model quarks. Consider the mass of the top quark to be larger than the bottom quark mass: $m_{t} \gg m_{b}$. You should find

$$
\left[\Pi_{++}(0)-\Pi_{33}(0)\right]=\frac{N_{c}}{16 \pi^{2}} \frac{m_{t}^{2}}{4}+\mathcal{O}\left(\frac{m_{b}^{2}}{m_{t}^{2}}\right) .
$$

