Exercise 1. Show that the $S U_{L}(2) \otimes S U_{R}(2)$ group has the same algebra as $S O(4)$. You can proceed as follows: Compute explicitly the 6 generators of $S O(4)$ in terms of 4×4 matrices. Show that you can construct the same commutation relations with the $S O(4)$ generators as with the $S U_{L}(2) \otimes S U_{R}(2)$ generators.

Exercise 2. Consider the $S O(4)$ invariant linear sigma model

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi_{n} \partial^{\mu} \phi_{n}-\frac{1}{2} m^{2}|\vec{\phi}|^{2}-\frac{\lambda}{4!}\left(|\vec{\phi}|^{2}\right)^{2} .
$$

Show that the space-time dependent reparametrisation

$$
\begin{aligned}
\phi_{n} & =R_{n 4} \sigma, \\
R_{44} & =\frac{1-\vec{\xi}^{2}}{1+\vec{\xi}^{2}}, \quad R_{a, 4}=\frac{2 \xi^{a}}{1+\vec{\xi}^{2}}, \quad a \in\{1,2,3\}
\end{aligned}
$$

yields the Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma+2 \sigma^{2} \vec{D}_{\mu} \vec{D}^{\mu}-\frac{m^{2}}{2} \sigma^{2}-\frac{\lambda}{4!} \sigma^{4}, \quad \vec{D}_{\mu}=\frac{\partial_{\mu} \vec{\xi}}{1+\vec{\xi}^{2}} .
$$

Exercise 3. The charges associated with the chiral symmetry of the 2-flavour QCD Lagrangian are

$$
\begin{align*}
& \vec{T}=i \int d^{3} x \vec{q} t \gamma^{0} q \\
& \vec{X}=i \int d^{3} x \vec{q} \vec{t} \gamma^{0} \gamma_{5} q . \tag{1}
\end{align*}
$$

Consider the chiral four-vectors $\Phi_{\mu}^{ \pm}$

$$
\begin{array}{rlr}
\vec{\Phi}^{+} & =i \bar{q} \gamma_{5} \vec{t} q, & \Phi_{4}^{+}=\frac{1}{2} \bar{q} q \\
\vec{\Phi}^{-} & =i \vec{q} \vec{q} q, & \Phi_{4}^{-}=-\frac{1}{2} \bar{q} \gamma_{5} q . \tag{2}
\end{array}
$$

Check the following commutation relations:

$$
\begin{align*}
{\left[T^{i}, T^{j}\right] } & =i \epsilon^{i j k} T^{k}, \\
{\left[T^{i}, X^{j}\right] } & =i \epsilon^{i j k} X^{k}, \\
{\left[X^{i}, X^{j}\right] } & =i \epsilon^{i j k} T^{k}, \\
{\left[T^{i}, \Phi_{n}^{ \pm}\right] } & =-\mathcal{T}_{n m}^{i} \Phi_{m}^{ \pm}, \\
{\left[X^{i}, \Phi_{n}^{ \pm}\right] } & =-\mathcal{X}_{n m}^{i} \Phi_{m}^{ \pm}, \tag{3}
\end{align*}
$$

where the indices n, m run from 1 to 4 and i, j, k run from 1 to 3 . Find that

$$
\begin{equation*}
\mathcal{T}_{j k}^{i}=-i \epsilon_{j k}^{i}, \quad \mathcal{X}_{j 4}^{i}=-\mathcal{X}_{4 j}^{i}=-i \delta_{j}^{i}, \tag{4}
\end{equation*}
$$

and all other components are zero.

