Exercise 1. Low-energy pion scattering

In this exercise we look at pion scattering in the non-linear σ-model. The effective Lagrangian for the pion sector is given by

$$
\begin{equation*}
\mathcal{L}_{\pi}=\frac{F^{2}}{2} \vec{D}_{\mu} \cdot \vec{D}^{\mu}-\frac{c_{4}}{4}\left(\vec{D}_{\mu} \cdot \vec{D}^{\mu}\right)\left(\vec{D}_{\nu} \cdot \vec{D}^{\nu}\right)-\frac{c_{4}^{\prime}}{4}\left(\vec{D}_{\mu} \cdot \vec{D}_{\nu}\right)\left(\vec{D}^{\mu} \cdot \vec{D}^{\nu}\right)-\ldots \tag{1}
\end{equation*}
$$

The dots indicate higher order effective operators and \vec{D}^{μ} is the covariant derivative given by

$$
\vec{D}^{\mu}=\frac{\partial^{\mu} \vec{\pi}}{1+\vec{\pi}^{2} / F^{2}},
$$

where the constant F is the pion decay amplitude and $\vec{\pi}=\left(\pi_{1}, \ldots, \pi_{4}\right)$ are the pion fields.
We look here at the 4 -pion scattering $\pi_{a}\left(p_{1}\right) \pi_{b}\left(p_{2}\right) \rightarrow \pi_{c}\left(p_{3}\right) \pi_{d}\left(p_{4}\right)$ in the low-energy limit, i.e the limit where the energy of the pions is much lower than F, and want to compute the corresponding scattering amplitude as a series in $1 / F^{2}$.

(a) Show that in the limit where $F \rightarrow \infty$ the part of \mathcal{L}_{π} relevant to 4 -pion scattering is given by

$$
\begin{aligned}
\mathcal{L}_{\pi}= & \frac{1}{2}\left(\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}\right)-\frac{1}{F^{2}}\left(\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}\right) \vec{\pi}^{2}+\frac{1}{F^{4}}\left(\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}\right)\left(\vec{\pi}^{2}\right)^{2} \\
& -\frac{c_{4}}{4 F^{4}}\left(\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}\right)\left(\partial_{\nu} \vec{\pi} \cdot \partial^{\nu} \vec{\pi}\right)-\frac{c_{4}^{\prime}}{4 F^{4}}\left(\partial_{\mu} \vec{\pi} \cdot \partial_{\nu} \vec{\pi}\right)\left(\partial^{\mu} \vec{\pi} \cdot \partial^{\nu} \vec{\pi}\right) \\
& + \text { higher point interactions }+\mathcal{O}\left(F^{-6}\right) .
\end{aligned}
$$

(b) The leading contribution to the amplitude is only given by the vertex $\left(\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}\right) \vec{\pi}^{2} / F^{2}$. By obtaining the Feynman rules, show that this contribution is

$$
\begin{equation*}
\frac{4}{F^{2}}\left(\delta_{a b} \delta_{c d}\left(p_{1} \cdot p_{2}+p_{3} \cdot p_{4}\right)-\delta_{a c} \delta_{b d}\left(p_{1} \cdot p_{3}+p_{2} \cdot p_{4}\right)-\delta_{a d} \delta_{b c}\left(p_{1} \cdot p_{4}+p_{2} \cdot p_{3}\right)\right) . \tag{2}
\end{equation*}
$$

At order F^{-4}, we get loop contributions arising from the vertex (2) and contributions coming from the terms proportional to c_{4} and c_{4}^{\prime}. The corresponding diagrams read

(c) The loop integrals need to be regularised since they are ultra-violet divergent. Using a cutoff Λ show that the bubble intergal reads

$$
\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}(k+P)^{2}}=\frac{1}{16 \pi^{2}}\left(1-\log P^{2}+\log \Lambda^{2}\right)
$$

in the $\Lambda \rightarrow \infty$ limit.
(d) Show that the diagrams sum up to

$$
\begin{aligned}
-\frac{\delta_{a b} \delta_{c d}}{F^{4}}(& \frac{s^{2} \log (s)}{2 \pi^{2}}-\frac{\left(u^{2}-s^{2}+3 t^{2}\right) \log (t)}{12 \pi^{2}}-\frac{\left(t^{2}-s^{2}+3 u^{2}\right) \log (u)}{12 \pi^{2}} \\
& \left.+\frac{\left(s^{2}+t^{2}+u^{2}\right) \log \Lambda^{2}}{3 \pi^{2}}-\frac{1}{2} c_{4} s^{2}-\frac{1}{4} c_{4}^{\prime}\left(t^{2}+u^{2}\right)\right) \\
& + \text { crossed terms }
\end{aligned}
$$

where 'crossed terms' denotes terms given by interchanging the pions $2 \leftrightarrow 3$ and $2 \leftrightarrow 4$, and s, t, and u are the Mandelstam variables

$$
s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}, \quad u=\left(p_{1}-p_{4}\right)^{2}
$$

Finally, note that the ultra-violet divergences can be absorbed by renormalization of the constants

$$
c_{4 R}=c_{4}-\frac{2}{3 \pi^{2}} \log \left(\frac{\Lambda^{2}}{\mu^{2}}\right), \quad c_{4 R}^{\prime}=c_{4}^{\prime}-\frac{4}{3 \pi^{2}} \log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)
$$

Hence, we see that even if we are working with an effective Lagrangian, it is possible to absorb all divergences by including higher dimensional operators in (1), order by order.

