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Exercise 1. Goldstone’s theorem and the effective potential

Let us consider φ4 theory for a scalar doublet ~φ =

(
φ1

φ2

)
with the action

S[φi] =

∫
d4p L[φi], with L[φi] =

1

2
∂µφi∂

µφi − 1

2
m2φ2

i −
λ

4!
(φ2
i )

2,

where summation over i is implied.

(a) What is the global symmetry of this action? Give an example of a generator and an
explicit symmetry transformation.

The effective action iΓ[φ] has been introduced in the QFT II as the sum of all one-particle
irreducible (1PI) connected graphs, with arbitrary number of external lines such that each
external lines comes with a factor of φ. We want to analyse a space-time independent field ~φ0

i

and compute the contributions to the effective action arising from quantum fluctuations. The
effective action for the constant field can be written using a shifted action S[φ+ φ0] as

eiΓ[φ0i ] =

∫
1PI

connected

D~φ(x) eiS[φi+φ
0
i ] .

We define the effective potential V [φ0
i ] via

Γ[φ0
i ] = −VV (φ0

i ) V =

∫
ddx = (2π)dδd(p− p).

(b) Compute the shifted action S[φi+φ
0
i ] and rewrite it in terms of the field-dependent masses

µ2
i (φ

0
i ). What are the new vertices? Do they all contribute to the 1PI diagrams? Show

that the zero-loop contribution to the effective potential is simply given by

V (0)(φ0
i ) =

1

2
m2(φ0

i )
2 +

λ

4!
((φ0

i )
2)2.

Draw all diagrams contributing to the one- and two-loop corrections to the effective po-
tential.

(c) The one-loop contribution for a single scalar field to the effective action is given by the
following path integral

iΓ(1)[φ0] = log

∫
Dφ(x) exp

{
i

2

∫
d4x

1

2
∂µφ∂

µφ− 1

2
µ2(φ0)φ2

}
= log det[

−i
π

(∂2 + µ2 − iε)]−1/2 = −1

2
Tr log

−i
π

(∂2 + µ2 − iε)

where the operator trace can be computed in momentum space

Tr log
−i
π

(∂2 + µ2 − iε) =

∫
d4p Kp,p

1



with

Kp,q =

∫
d4x

(2π)2

∫
d4y

(2π)2
e−ixp+iyq log

(
i

π
(∂x · ∂y − µ2 + iε)

)
δ4(x− y).

Using this expression, show that the one-loop contribution to the effective potential is
given by

V (1)(φ0) = I(µ2(φ0)) = − i

2(2π)4

∫
d4p log

i

π
(p2 − µ2(φ0) + iε).

What happens in the case of our two scalar fields? Calculate the effective potential in this
case.

(d) Expand the effective potential up to O(g2) in the coupling constant, neglect all terms not
proportional to the fields and show that the one-loop contribution is given by

V (1)(φ0
i ) = I(m2) =

ig

3(2π)4
(φ0
i )

2

∫
d4p

p2 −m2 + iε
+O(g2).

(e) The integral I(m2) is badly UV divergent and hence needs to be regularized. This can
be done using the following trick: First differentiate I(m2) two times with respect to m2,
then integrate over p after performing a Wick rotation (m2 > 0), and finally integrate back
two times with respect to m2. Using this, show that I(m2) can be written as

I(m2) =
g

3(4π)2
m2(φ0

i )
2 log(m2) + gA(φ0

i )
2m2 + gB(φ0

i )
2,

where A and B are unknown integration constants. Note that these constants must be
infinite, since I(µ2) and I ′(µ2) are divergent. Renormalize the mass and coupling using

m2
R = m2 + 2gB + 2m2gA+O(g2), gR = g +O(g2).

What happens with the mass of the scalar fields?

(f) We can take a look back at our calculation and try to understand the situation in the case
where m2 < 0. Our Wick rotation in the computation of the integral I(m2) is not valid
anymore. Compute the effective potential up top O(g2) by Wick rotating pi, i = 1, 2, 3
instead of p0. Plot V (~φ0) as a function of (φ0

i )
2 and see that it develops a non-trivial

minimum in the case m2
R < 0, gR > 0. Find a value of the fields that minimise the zero-

and one-loop effective potential., i.e. the vacuum.

(g) Recall that the second derivative of the effective potential with respect to the fields is
related to the reciprocal of the momentum space propagator. At the vacuum, i.e. at zero
momentum, this corresponds to the mass matrix of the theory

∂2V (~φ)

∂φi∂φj

∣∣∣
φ=φ0

= Mij

Show for the zero- and one-loop effective potential that the mass matrix has two distinct
eigenvalues for m2

R < 0. Show that one of the eigenvalues is zero in both cases. What
conclusions can you draw?
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