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1 Non-Linear Realizations of a Symmetry

In this lecture, I will mostly follow Jose Santiago’s notes, Pokorski [1], the review by

Feruglio [2] as well as the original papers by CWZ [3] and CCWZ [4].

Due to several interesting features that we will review in Section 2, we will consider

theories where the Higgs boson is identified with the pseudo Nambu-Goldstone bosons

(pNGB) associated to the spontaneous breaking of some global symmetry G. One of the

key ingredients in order to compute the corresponding low energy effective theory is the

use of non-linear σ-models, that you have already encountered throughout this course. In

the following we will review and introduce some useful concepts, most of which were first

introduced in [3, 4].

Let us consider a real analytic manifold M , together with a Lie Group G acting on M

ϕ : G×M −→ M

(g,Φ(x)) 7−→ T (g) ·Φ(x)
(1.1)

which we will assume hereinafter to be compact, connected and semi-simple. We will

also assume that ϕ is analytical on its two arguments. The physical situation that we

have in mind is that of a manifold of scalar fields Φ(x), with the origin describing the

vacuum configuration Σ0, whereas the Lie group G acting on these fields correspond to the

symmetry group of the theory1. Let us call H to the continuous subgroup of G formed by

all the elements of G leaving the origin invariant, i.e.,

H = {h ∈ G : T (h) ·Σ0 = Σ0} = ϕ( · ,Σ0)
−1 ({Σ0}) . (1.2)

If we assume that H 6= ∅, we will be just dealing with the spontaneous symmetry break-

ing G → H. Our goal is somehow to classify all possible non-linear realizations of this

symmetry breaking. This is a very ambitious task that fortunately can be reduced to the

study of some particular class of them, where H acts linearly on the manifold M . Those

1We will assume for the moment that this group is global, although we will change this later on.
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for which this happens are said to be in the standard form. The first important step in this

direction is provided by the so called Haag’s theorem [5], which assures the existence of

some particular type of coordinate transformation leading to equivalent physical theories.

Theorem 1 (Haag’s Theorem) If a theory is defined by a Lagrangian density

L = L(φ, ∂µφ) (1.3)

depending on a set of scalar fields φ, and the following local transformation of fields is

performed

φ = F (φ′), (1.4)

then the transformed Lagrangian density:

L′(φ′, ∂µφ′) (1.5)

defines a new theory with same S−matrix elements provided the transformation (1.4) has

a Jacobian determinant equal to one at the origin.

The transformations fulfilling the conditions of the previous theorem will be called allowed

ones. It turns out that it is always possible to choose coordinates on M (i.e., scalar field

representations) such that the action of H on M is linear.

Theorem 2 If H is the subgroup of G leaving the origin invariant, then it is always possible

to choose coordinates on M so that

T (h) ·Φ(x) = D(h)Φ(x), ∀h ∈ H, (1.6)

where D(h) is a linear representation of H.

As we already mentioned, this set of coordinates is said to be in standard form. Finally,

it can be shown that any non-linear representation of the group G acting on M can be

always brought to the standard form by means of an allowed coordinate transformation,

so we just need to care about the study of the latter.

Theorem 3 Any non-linear realization of G can be put into the standard form by an

allowed coordinate transformation.

Let be Φ0(x) some field which transforms according to a linear representation of G,

i.e.,

T (g) ·Φ0(x) = D(g)Φ0(x), ∀g ∈ G. (1.7)

In some neighborhood of the identity g = e, we can write an element of G as,

D(g) = exp
(
−iξâX â

)
exp

(
−iuiY i

)
(1.8)
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where X â and Y i are the broken and unbroken generators, respectively, which we assume

to be orthonormal with regard to the Cartan-Killing inner product, i.e., Tr(T aT b) = δab
with T a, T b ∈ {X â, Y i}. The scalar fields ξâ(x) can be seen as the coordinates of the

manifold of left cosets G/H (remember that G/H = {[l], l ∈ G}, where [l] = {lh, h ∈ H})
at each point of space-time. The decomposition (1.8) means that every element of the

group g ∈ G can be uniquely decomposed as a product g = l(ξ)h where h ∈ H and l(ξ) is

the representative member of the coset to which g belongs, i.e., g ∈ [l] with some l(ξ) ∈ G.

Let us define

Φ0(x) = exp
(
−iξâX â

)
Φ(x) ≡ UΦ(x), (1.9)

Let us now perform an arbitrary G transformation on the field Φ0

Φ′0(x) = exp (−iαaT a) Φ0(x) = exp (−iαaT a) exp
(
−iξâX â

)
Φ(x)

= exp
(
−iα′aT a

)
Φ(x) = exp

(
−iξ′â(ξ, α)X â

)
exp

(
−iui(ξ, α)Y i

)
Φ(x), (1.10)

where in the last steps we have just used that

gl(ξ) = g′(g, ξ) = l(ξ′)h, (1.11)

where h = h(g, ξ) and ξ′ = ξ′(g, ξ). We can then parametrize Φ0 with the fields ξâ(x) and

Φ(x), transforming as follows

ξâ(x) → ξ′â(x) = ξ′â(g, ξ(x)), (1.12)

Φ(x) → exp
(
−iui(x)Y i

)
Φ(x) = D(h(g, ξ(x)))Φ(x). (1.13)

This means that we can represent Φ0(x) by the couple of fields {ξ(x),Φ(x)}, where ξ(x)

transforms non-linearly under the global group G and Φ transforms locally under the

unbroken subgroup H. What happens if the transformation is under the unbroken group

H? In this case

Φ′0(x) = exp
(
−iαiY i

)
exp

(
−iξâX â

)
1 Φ(x) = exp

(
−iαiY i

)
exp

(
−iξâX â

)
exp

(
iαiY

i
)

· exp
(
−iαiY i

)
Φ(x) = exp

(
−iξâRâb̂X

b̂
)

exp
(
−iαiY i

)
Φ(x)

= exp
(
−iξ′b̂X b̂

)
exp

(
−iαiY i

)
Φ(x), (1.14)

where Râb̂ is the matrix representation of the linear transformation of the broken generators

under the unbroken group,

exp
(
−iαiY i

)
X âexp

(
iαiY

i
)

= Râb̂X
b̂. (1.15)

We can thus see that under global transformations h ∈ H, both ξâ(x) and Φ(x) transform

linearly and globally

ξâ(x) → RT
âb̂
ξb̂(x), (1.16)

Φ(x) → D(h)Φ(x). (1.17)
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We would like to use this non-linear realization of the group to construct G-invariant

Lagrangians. However, despite the fact that the symmetry is global, the non-linear realiza-

tion involves the Goldstone fields ξâ which transform locally. Thus derivatives have to be

transformed into covariant derivatives. To this end, we will consider the following object2

ωµ ≡ U †∂µU = eiξ ·X∂µe−iξ ·X = idâµX
â + iEiµY

i ≡ idµ + iEµ. (1.18)

If we compute

∂µΦ0 = ∂µ

[
e−iξ ·XΦ

]
= e−iξ ·Xeiξ ·X∂µ

[
e−iξ ·XΦ

]
= e−iξ ·X

[
idâµX

âΦ + (∂µ + iEiµY
i)Φ
]
, (1.19)

and note that ∂µΦ0 transforms under a global transformation g in the same was as Φ0

does, one can readily conclude that[
idâµX

âΦ + (∂µ + iEiµY
i)Φ
]
→ D(h(g, ξ(x)))

[
idâµX

âΦ + (∂µ + iEiµY
i)Φ
]
. (1.20)

As different representations of the unbroken group H are not mixed by D(h(g, ξ(x))) it is

clear that both terms inside the square brackets transform independently. Therefore,

dâµX
âΦ → D(h(g, ξ(x)))dâµX

âΦ = d′âµX
âΦ′

= D(h(g, ξ(x)))D(h(g, ξ(x)))−1d′âµX
âD(h(g, ξ(x)))Φ. (1.21)

This means in particular that,

d′µ = D(h(g, ξ(x)))dµD(h(g, ξ(x)))−1 = db̂µe
−iu(g,ξ(x)) ·YXb̂e

iu(g,ξ(x)) ·Y

= db̂µRb̂â(g, ξ(x))X â. (1.22)

Analogously,(
∂µ + iEiµY

i
)

Φ → D(h(g, ξ(x))) (∂µ + iEµ) Φ =
(
∂µ + iE′µ

)
Φ′

= D(h(g, ξ(x)))
[
∂µ + iD(h(g, ξ(x)))−1E′µD(h(g, ξ(x)))

+ D(h(g, ξ(x)))−1∂µD(h(g, ξ(x)))
]

Φ, (1.23)

and thus

E′µ = D(h(g, ξ(x)))EµD(h(g, ξ(x)))−1 + i [∂µD(h(g, ξ(x)))]D(h(g, ξ(x)))−1

= D(h(g, ξ(x)))EµD(h(g, ξ(x)))−1 − iD(h(g, ξ(x)))
[
∂µD(h(g, ξ(x)))−1

]
. (1.24)

Summarizing, under a global transformation g ∈ G,

Φ → D(h(g, ξ(x)))Φ, (1.25)

dµ → D(h(g, ξ(x)))dµD(h(g, ξ(x)))−1, dâµ →
(
Râb̂(g, ξ(x))

)T
db̂µ, (1.26)

Eµ → D(h(g, ξ(x)))EµD(h(g, ξ(x)))−1 − iD(h(g, ξ(x)))∂µD(h(g, ξ(x)))−1. (1.27)

2Technically, this is the so called Maurer-Cartan one form.
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Moreover, the quantity Eµ ≡ ∂µ + iEµ acts as an H-covariant derivative,

EµΦ→ D(h(g, ξ(x)))EµΦ. (1.28)

With these building blocks we can construct in a very simple way G-invariant Lagrangians

out of multiplets of the unbroken group. In particular, the Lagrangian describing the

dynamics of the NGBs associated to G/H, at the level of two derivatives, is given by

L =
f2π
4

Tr (dµd
µ) =

f2π
4

Tr
[
−iU †∂µUT â

]
Tr
[
−iU †∂µUT â

]
=
f2π
4

(∂µξ
â(x))(∂µξâ(x)) + . . . (1.29)

where fπ is a dimensionfull quantity that we need to have the correct mass dimensions 3.

What happens if some subgroup H0 ⊂ G is gauged? Essentially, the same formalism

can be used, with the replacement of the usual derivative with the gauge covariant one,

∂µ → ∂µ + iAȧµT
ȧ = ∂µ + iAµ, where T ȧ ∈ Alg(H0). (1.30)

Defining

eiξ ·X
[
∂µ + iAȧµT

ȧ
]
e−iξ ·X = id̄âµX

â + iĒiµY
i = id̄µ + iĒµ, (1.31)

where now d̄µ = d̄µ(ξ, A) and Ēµ = Ēµ(ξ, A).

(∂µ + iAµ) Φ0 = (∂µ + iAµ) e−iξ ·XΦ = e−iξ ·X
(
∂µ + eiξ ·X∂µe−iξ ·X + ieiξ ·XAµe−iξ ·X

)
Φ

= e−iξ ·X
{
∂µ + eiξ ·X [∂µ + iAµ] e−iξ ·X

}
Φ

= e−iξ ·X
{
id̄µ +

(
∂µ + iĒµ

)}
Φ. (1.32)

But since under a local G transformation, (∂µ + iAµ)Φ0 transforms in the same way as Φ0

does, that means that [id̄µ + (∂µ + iĒµ)]Φ transforms as Φ does. Therefore, under local G

transformations we have,

Φ → D(h(g(x), ξ(x)))Φ, (1.33)

d̄µ → D(h(g(x), ξ(x)))d̄µD(h(g(x), ξ(x)))−1, (1.34)

Ēµ ≡ (∂µ + iĒµ)Φ → D(h(g(x), ξ(x)))ĒµΦ. (1.35)

Now, the leading order Lagrangian for the gauge fields and the scalars ξâ reads

L =
f2π
4

Tr
(
d̄µd̄

µ
)
− 1

4
F ȧµνF

ȧµν (1.36)

where F ȧµν is the usual field-strength tensor. If we expand (1.36) in powers of ξâ(x) and

make the redefinition (see e.g. footnote 3) ξâ(x)→
√

2ξâ(x)/fπ we get

L =
1

2
(Dµξ

â(x))†(Dµξâ(x)) + . . . , (1.37)

with canonically normalized kinetic terms.

3In particular, making the redefinition ξâ(x)→
√

2ξâ(x)/fπ we get canonically normalized kinetic terms.
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2 Composite Higgs Models

In this section we will mostly follow Jose Santiago’s notes as well as Roberto Contino’s

lectures [6].

2.1 General Picture

The main idea behind Composite Higgs models (CHM) is that the Higgs boson could emerge

as a bound state of a strongly interacting sector, instead of being an elementary scalar.

In this way, the quadratic sensitivity of the Higgs boson mass to the ultra-violet (UV) is

saturated by new physics at some scale Λ before the new strong interaction featuring the

Higgs as a bound state starts to be resolved. This provides a natural solution to what have

been called the hierarchy problem. Moreover, if the Higgs is the pNGB associated to an

enlarged global symmetry of the strong dynamics, the Higgs can be much lighter than the

composite scale Λ. The main idea is sketched in Figure 1.

Figure 1. Sketch of the general picture in CHM. The spontaneous global symmetry breaking at

the scale fπ, G → H, delivers some NGB ξâ(x). However, the gauging of some subgroup H0 ⊂ G

generates a potential at the loop level for some of them that will be identified with the Higgs degrees

of freedom.

We consider some global symmetry group G, which is spontaneously broken at the

scale fπ to some subgroup H, delivering n = dim(G)− dim(H) Nambu-Goldstone bosons

(NGB) ξâ(x). From these n NGB, n0 = dim(H0)− dim(H) will be eaten to provide gauge

boson longitudinal degrees of freedom after the gauging of the subgroup H0 ⊂ G, where

H ≡ H1∩H0 is the unbroken gauge group. The remaining n−n0 are thus pNGB which we

will identify with the Higgs degrees of freedom. The interaction with the elementary sector,

formed by gauge bosons and fermions transforming under H0, will generate a potential for

these degrees of freedom at the loop level. In particular

m2
ξâ =

�
ξâ ξâ

ϕ

+

�
ξâ ξâ

Aȧµ

. (2.1)
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This is also interesting as contrary to the SM case, where the Higgs potential is some

ad-hoc term in the Lagrangian, in these models we have a dynamical explanation of the

electroweak symmetry breaking (EWSB) and the Higgs mass.

2.2 Minimal Composite Higgs Models

We will consider now some explicit examples, focusing in particular in what is known by

the Minimal Composite Higgs Model (MCHM).

2.2.1 Minimal Composite Higgs model (the real one)

Let us consider the minimal composite Higgs model. We want H0 to include the electroweak

group, so minimality requires it to be the electroweak (EW) group H0 = SU(2)L×U(1)Y .

We also need to have a least four Goldstone bosons to be identify with the Higgs doublet.

So, the minimal choice would be a group G with 8 = 4 + 4 generators. The very first

example which may come to our mind is G = SU(3). Indeed, SU(3) contains a SU(2)

and a additional U(1) that we can try to identify with the EW group. We use the usual

Gell-Mann matrices as the generators of SU(3),

T a =
λa

2
, a = 1, . . . , 8, (2.2)

with

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 , λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 , (2.3)

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 , λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 . (2.4)

They satisfy commutations relations, [T a, T b] = ifabcT
c, with

f123 = 1, f458 = f678 =

√
3

2
, (2.5)

f147 = f165 = f246 = f257 = f345 = f376 =
1

2
. (2.6)

All the others (which are not related by total antisymmetry) are zero. In particular, we

have

[T i, T j ] = iεijkT k, [T i, T 8] = 0, i, j, k ∈ {1, 2, 3}, (2.7)

so that T a generate an SU(2) subgroup and T 8 generates a U(1) one, as anticipated. The

coset space is panned by T â with â = 4, 5, 6, 7. Defining T+ ≡ T 4− iT 5 and T 0 ≡ T 6− iT 7

and grouping them in a two dimensional vector,

Tφ =

(
T+

T 0

)
, (2.8)
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and using the commutations relations, we get

[T i, Tφ] = −σ
i

2
Tφ, [T 8, Tφ] = −

√
3

2
Tφ. (2.9)

Therefore, using (1.15) we get

e−iαjT
j
Tφe

iαkT
k

= Tφ − iαj [T j , Tφ] + . . . = (1 + iαj
σj

2
)Tφ + . . . = eiαj

σj

2 Tφ (2.10)

and (
ξ+(x)

ξ0(x)

)∗
→
(
eiαj

σj

2

)T (
ξ+(x)

ξ0(x)

)∗
⇒

(
ξ+(x)

ξ0(x)

)
→ e−iαj

σj

2

(
ξ+(x)

ξ0(x)

)
. (2.11)

Thus one can see that (
ξ+(x)

ξ0(x)

)
(2.12)

have the correct quantum numbers to be identified with the SM Higgs. Let us define

U ≡ exp

(
−i 2

fπ
ξâ(x)T â

)
(2.13)

=


(ξ6)2+(ξ7)2+((ξ4)2+(ξ5)2) cos

(
ξ
fπ

)
ξ2

(ξ4−iξ5)(ξ6+iξ7)
(
cos

(
ξ
fπ

)
−1

)
ξ2

(−iξ4−ξ5) sin
(
ξ
fπ

)
ξ

(ξ4+iξ5)(ξ6−iξ7)
(
cos

(
ξ
fπ

)
−1

)
ξ2

(ξ4)2+(ξ5)2+((ξ6)2+(ξ7)2) cos
(
ξ
fπ

)
ξ2

(−iξ6−ξ7) sin
(
ξ
fπ

)
ξ

(ξ5−iξ4) sin
(
ξ
fπ

)
ξ

(ξ7−iξ6) sin
(
ξ
fπ

)
ξ cos( ξ

fπ
)

 ,

where ξ ≡
(∑

â(ξ
â)2
)1/2

. For the sake of simplicity we can go to the unitary gauge, where

three of the NGBs are eaten by the gauge bosons. In such a gauge, it is always possible

to take the physical Higgs h to be aligned with ξ6, i.e. h ≡ ξ6, without loss of generality,

obtaining

U =

 1 0 0

0 cos(h/fπ) −i sin(h/fπ)

0 −i sin(h/fπ) cos(h/fπ)

 . (2.14)

Therefore,

Lξ =
f2π
4

(
d̄âµd̄

âµ
)

=
f2π
2

Tr
[
−iU †DµUT

â
]

Tr
[
−iU †DµUT â

]
, (2.15)

and

L = −1

4
W i
µνW

iµν − 1

4
BµνB

µν +
f2π
2

Tr
[
−iU †DµUT

â
]

Tr
[
−iU †DµUT â

]
(2.16)

where in (2.15) we have used that Tr
(
T a ·T b

)
= δab/2 and the covariant derivative read

Dµ = ∂µ − igW j
µT

j − ig′BµY

= ∂µ − igW±µ T± − i
g

cW
(T 3 − s2WQ)Zµ − igsWAµQ (2.17)
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where we have defined

Aµ ≡ sWW
3
µ + cWBµ, Zµ ≡ cWW 3

µ − sWBµ, (2.18)

cW ≡
g√

g2 + g′2
, sW ≡

g′√
g2 + g′2

, (2.19)

W±µ ≡
W 1 ∓ iW 2

√
2

, T± ≡ T 1 ± iT 2

√
2

, (2.20)

and

Q ≡ T 3 + Y, Y ≡
√

1

3
T 8. (2.21)

This leads in particular to

d̄4µ = −1

2
ig(W−µ −W+

µ ) sin

(
h

fπ

)
, d̄5µ = −1

2
g(W−µ +W+

µ ) sin

(
h

fπ

)
, (2.22)

d̄6µ = −
√

2∂µh, d̄7µ =
1

2
√

2

g

cW
Zµ sin

(
2h

fπ

)
, (2.23)

and

Lξ =
1

2
(∂µh) (∂µh) +

g2

4
f2π sin2

(
h

fπ

)
W+
µ W

−µ +
g2

32c2W
f2π sin2

(
2
h

fπ

)
ZµZ

µ. (2.24)

Looking at the above expression one could notice already that we have encounter some

phenomenological problem. In order to see it more explicitly, let us assume that that the

Higgs boson gets a vev 〈h〉 = ṽ, which will give masses to the EW bosons W± and Z,

m2
W =

g2

4
f2π sin2

(
ṽ

fπ

)
=
g2

4
ṽ2
(

1− 1

3

ṽ2

f2π
+O(ṽ4/f4π)

)
, (2.25)

m2
Z =

g2

16c2W
f2π sin2

(
2
ṽ

fπ

)
=

g2

4c2W
ṽ2
(

1− 4

3

ṽ2

f2π
+O(ṽ4/f4π)

)
. (2.26)

If we compute the ρ parameter

ρ ≡
m2
W

m2
Zc

2
W

= 1 +
ṽ2

f2π
+O(ṽ4/f4π), (2.27)

we can see that in order to be in agreement with EW precision data, we need to increase

fπ significantly in order to make ṽ2/f2π small enough. Taking into account that v ≡ vSM =

fπ sin(ṽ/fπ) ∼ v, this leads to fπ ∼ O(10 TeV), putting any possible experimental probe

of this idea beyond current experiments. Moreover, as we will see later, the tuning of these

models scales with fπ/ṽ, making this particular model not too compelling. One possibility

of curing this problem is to incorporate custodial symmetry and we will consider this case

in the following.
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2.2.2 Minimal Composite Higgs model (the custodial one)

As mentioned, we can protect the ρ parameter from new physics corrections with the help

of the custodial symmetry. To do so, we just need to make sure that SU(2)L×SU(2)R ⊂ G.

It can be seen that the minimal choice for G would be then SO(5). However, at the end of

the day, if one wants also to add the interaction with the elementary fermions of the SM (as

we do), in order to reproduce the correct hypercharges it is required to add an additional

U(1)X under which the Higgs is not charged. Thus, we will consider G = SO(5)× U(1)X
and H = SO(4) × U(1)X . Let us assume for concreteness the following basis for the

SO(5) generators, {Tα, α = 1, . . . , 10} = {T aL, T bR, T âC , a, b = 1, 2, 3, â = 1, . . . , 4}, in the

fundamental representation

T aL,ij = − i
2

[
1

2
εabc

(
δbi δ

c
j − δbjδci

)
+
(
δai δ

4
j − δaj δ4i

)]
, a = 1, 2, 3,

T aR,ij = − i
2

[
1

2
εabc

(
δbi δ

c
j − δbjδci

)
−
(
δai δ

4
j − δaj δ4i

)]
, a = 1, 2, 3, (2.28)

T âC,ij = − i√
2

[
δâi δ

5
j − δâj δ5i

]
, â = 1, 2, 3, 4,

that have been chosen fulfilling Tr
(
Tα ·T β

)
= δαβ. They satisfy the following commutation

relations [
T aL, T

b
L

]
= iεabcT cL,

[
T aR, T

b
R

]
= iεabcT cR,

[
T aL, T

b
R

]
= 0, (2.29)[

T aC , T
b
C

]
=

i

2
εabc(T cL + T cR),

[
T aC , T

4
C

]
=
i

2
(T aL − T aR), (2.30)[

T aL,R, T
b
C

]
=

i

2
(εabcT cC ± δabT 4

C),
[
T aL,R, T

4
C

]
= ∓ i

2
T aC . (2.31)

From the previous commutation relations it can be seen that SU(2)L × SU(2) ∼= SO(4) ⊂
SO(5) and that the generators in the coset space (and the corresponding Goldstone bosons)

transform as a (2,2) of SU(2)L × SU(2)R (or equivalently, a 4 of SO(4)). Indeed, if we

define

Tφ =

(
T 2
C + iT 1

C

T 4
C − iT 3

C

)
(2.32)

we obtain

[T aL, Tφ] = −1

2
σaTφ, [T 3

R, Tφ] = −1

2
Tφ, (2.33)

and thus (
ξ2 + iξ1

ξ4 − iξ3

)
→ e−iαa

σa

2

(
ξ2 + iξ1

ξ4 − iξ3

)
, (2.34)

under a global SU(2)L rotation, having therefore the correct quantum numbers to be

identified with the Higgs doublet. Looking at the generators (2.29) it is clear that one can

take the following vacuum

ΣT
0 ≡ (0, 0, 0, 0, 1), (2.35)
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which satisfies

T aL ·Σ0 = 0, T aR ·Σ0 = 0, a = 1, 2, 3, (2.36)

and

1

2
Tr(T âC ·T b̂C) = ΣT

0 ·T âC ·T b̂C ·Σ0 =
1

2
δâb̂ (2.37)

Therefore, if we define 4

Σ ≡ U ·Σ0 = exp
(
i
√

2T âCξ
â(x)/fπ

)
·Σ0 (2.38)

we can write

DµΣ = iUd̄âµT
â
CΣ0 (2.39)

and thus

f2π
2

(DµΣ)† · (DµΣ) =
f2π
2
d̄âµd̄

b̂µ
[
−iΣT

0 T
â
CU
†
]
·
[
iUT b̂CΣ0

]
=
f2π
2
d̄âµd̄

b̂µ
(

ΣT
0 ·T âC ·T b̂C ·Σ0

)
=
f2π
4
d̄âµd̄

âµ. (2.40)

In particular,

ΣT =
sin(ξ̂/fπ)

ξ̂

(
ξ1, ξ2, ξ3, ξ4, ξ̂ cot(ξ̂/fπ)

)
, ξ̂ ≡

(∑
â

(
ξâ
)2)1/2

. (2.41)

Without loss of generality, we can assume that, in the unitary gauge,

ΣT = (0, 0, 0, sin(h/fπ), cos(h/fπ)) , (2.42)

where h(x) ≡ ξ4(x).

Gauge Bosons As shown in (2.40), we can write the low energy effective Lagrangian as

follows

L =
f2π
2

(DµΣ)† (DµΣ)− 1

4
W i
µνW

iµν − 1

4
BµνB

µν , (2.43)

with

Dµ = ∂µ − igW a
µT

a
L − ig′BµY

= ∂µ − igW±µ T±L − i
g

cW
(T 3
L − s2WQ)Zµ − igsWAµQ (2.44)

and5

Y ≡ T 3
R +QX , Q ≡ T 3

L + T 3
R +QX , T±L ≡

1√
2

(
T 1
L ± iT 2

L

)
, (2.45)

4For convenience, we are rescaling the pNGB with an additional minus sign, compared to previous

sections, i.e., ξâ → −
√

2ξâ/fπ.
5Remember that the Goldstones are not charged under U(1)X and thus QX = 0.
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leading to

L =
1

2
(∂µh) (∂µh) +

g2

4
f2π sin2

(
h

fπ

)
W+
µ W

−µ +
g2

8c2W
f2π sin2

(
h

fπ

)
ZµZ

µ

− 1

4
W i
µνW

iµν − 1

4
BµνB

µν . (2.46)

Assuming that, as we will see, the Higgs takes a vev 〈h〉 = ṽ 6= 0 and expanding around

this value h→ ṽ + h we get

f2π sin2

(
h

fπ

)
→ f2π

[
sin2

(
ṽ

fπ

)
+ 2 sin

(
ṽ

fπ

)
cos

(
ṽ

fπ

)(
h

fπ

)
+

(
1− 2 sin2

(
ṽ

fπ

))(
h

fπ

)2

+ . . .

]
= v2 + 2v

√
1− v2/f2πh+

(
1− 2v2/f2π

)
h2 + . . . , (2.47)

where we have used that, analogously to the SU(3) case, in order to get the physical W

mass,

v = fπ sin

(
ṽ

fπ

)
. (2.48)

In particular, that means that the SM couplings to the gauge bosons V = W,Z are modified

as follows

gV V h = gSMV V h
√

1− v2/f2π , gSMV V hh = gSMV V hh(1− 2v2/f2π). (2.49)

On the other hand, if we compute again the ρ parameter, contrary to the SU(3) case, we

get

ρ =
m2
W

m2
Zc

2
W

= 1, (2.50)

with no new physics corrections modifying this value, which is a direct consequence of the

custodial setup of the model.

We want now to obtain some information about the gauge boson contribution to

the Coleman-Weinberg (CW) potential. In order to do so, we write the most general

SO(5) × U(1)X invariant Lagrangian build out of the Goldstone bosons and the external

(elementary) gauge fields, adding some spurions gauge fields, so that the external gauge

fields form a complete adjoint representation of SO(5)×U(1)X . At the quadratic level and

in momentum space, the relevant Lagrangian reads

L =
1

2
(PT )µν

[
ΠX

0 (p2)XµX
µ + Π0(p

2)Tr (Aµ ·Aν) + Π1(p
2)ΣT ·Aµ ·Aν ·Σ

]
, (2.51)

where Xµ is the gauge boson associated to U(1)X and we have defined

Aµ ≡ AαµTα = W a
LµT

a
L +W a

RµT
a
R +AâµT

â
C (2.52)
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and

(PT )µν ≡ ηµν −
pµpν
p2

(2.53)

is the transverse projector so that terms with two gauge fields are the (quadratic) transverse

part of Fµν , which transforms as Fµν → ΩFµνΩ−1. Also we have Σ→ ΩΣ. Since we want

to derive only the Higgs potential and not its derivative interactions, the field Σ has been

treated as a classical background, with vanishing momentum. The form factors ΠX
0 ,Π0,1

encode the dynamics of the strong sector, including the effect of the fluctuations around

the background Σ. If we switch off the unphysical gauge fields for a moment, keeping only

those of SU(2)L × U(1)Y , we obtain

L =
1

2
(PT )µν

[(
Π0(p

2) +
sin2(h/fπ)

4
Π1(p

2)

)
W a
µW

a
ν − 2sX

sin2(h/fπ)

4
Π1(p

2)W 3
µBν(

c2XΠX
0 (p2) + s2X

(
Π0(p

2) +
sin2(h/fπ)

4
Π1(p

2)

))
BµB

µ

]
, (2.54)

where Wµ = WLµ and the hypercharge gauge boson Bµ is embedded as follows

Bµ = sXW
3
Rµ + cXXµ, (2.55)

with

sX ≡
gX√
g2 + g2X

=
g′

g
, cX ≡

g√
g2 + g2X

=

√
1− g′2

g2
. (2.56)

and thus W 3
Rµ

∣∣∣
phys

= sXBµ, Xµ|phys = cXBµ. If we call

ΠWW = Π0(p
2) +

sin2(h/fπ)

4
Π1(p

2), (2.57)

ΠBB = c2XΠX
0 (p2) + s2X

(
Π0(p

2) +
sin2(h/fπ)

4
Π1(p

2)

)
, (2.58)

ΠW3B = = −sX
sin2(h/fπ)

4
Π1(p

2), (2.59)

we can write

L =
1

2
(PT )µν

[
2ΠWWW

+
µ W

−
ν + ΠWWW

3
µW

3
µ + ΠBBBµBν + 2ΠWBW

3
µBν

]
. (2.60)

Moreover, after EWSB, the form factor ΠWB is related to the S-parameter [7]:

∆S = −16π

gg′
Π′WB(0) ≈ 16π

g2
sin2(ṽ/fπ)

4
Π′1(0), (2.61)

where ∆S = S − SSM and ′ stands for a derivative with respect to p2. This is the more

important constraint coming from EW precision data and typically implies that v2/f2π ≡
sin2(ṽ/fπ) < 1. If we expand the above two-point functions in powers of p2 and take
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+ + + · · ·

Figure 2. One-loop contribution of the SM gauge fields to the Higgs potential. A grey blob

represents the strong dynamics encoded by the form factor Π1. Figure taken from [6].

the leading terms, obtained by evaluating them at zero-momentum, we should recover the

results of (2.46). This leads in particular to

Π0(0) = 0 = ΠX
0 (0), Π1(0) = g2f2π , (2.62)

where we have used that

ΠWW (0) = Π0(0) +
sin2(h/fπ)

4
Π1(0) =

g2

4
f2π sin2(h/fπ), (2.63)

and(
0 0

0 g2

4c2W
f2π sin2(h/fπ)

)
=

(
cW sW
−sW cW

)(
ΠBB(0) ΠWB(0)

ΠWB(0) ΠWW (0)

)(
cW −sW
sW cW

)
=(

c2WΠBB(0) + s2WΠWW (0) + 2cW sWΠWB(0) cW sW [ΠWW (0)−ΠBB(0)] + (c2W − s2W )ΠWB(0)

cW sW [ΠWW (0)−ΠBB(0)] + (c2W − s2W )ΠWB(0) s2WΠBB(0) + c2WΠWW (0)− 2cW sWΠWB(0)

)
.

Let now study the gauge contribution to the one-loop Coleman-Weinberg potential.

For the sake of simplicity, we will neglect hereinafter the contribution coming from the

hypercharge gauge boson Bµ. After adding the following gauge-fixing term

LGF = − 1

2ζ

(
∂µW a

µ

)2
, (2.64)

we obtain the following expressions for the gauge boson propagator and its effective inter-

action with the Higgs [6]

Gµν =
i

Π0(p2)
(PT )µν − ζ

i

p2
(PL)µν ,

iΓµν =
iΠ1(p

2)

4
sin2(h/fπ)(PT )µν ,

where (PL)µν = pµpν/p2 is the longitudinal projector. The one-loop Coleman-Weinberg

potential can be computed resumming the infinite series of diagrams shown in Figure 2.

One gets, integrating in Euclidean space,

Vg(h) =
9

2

∫ ∞
0

d4pE
(2π)4

log

(
1 +

1

4

Π1(−p2E)

Π0(−p2E)
sin2(h/fπ)

)
, (2.65)
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where the factor 9 arises from summing over the three polarizations and the three SU(2)

gauge fields. We can obtain some more information going to the so called large-N limit,

see [8–10]. One assumes a SU(N) gauge theory and that it is a confining theory for large

N . Then it is possible to write the n-point Green functions of quark bilinears, in the large

N -limit, as an infinite sum over stable intermediate meson resonances created out of the

vacuum. In particular, that means that

〈Jµa Jνa 〉 ≡ 〈0|T{Jµa Jνa }|0〉 = (PT )µν Πa(p
2) =

(
p2ηµν − pµpν

)
g2
∞∑
n=1

f2ρn
p2 −mρn

, (2.66)

〈Jµâ J
ν
â 〉 ≡ 〈0|T{J

µ
â J

ν
â }|0〉 = (PT )µν Πâ(p

2)

=
(
p2ηµν − pµpν

)
g2

[ ∞∑
n=1

f2an
p2 −man

+
1

p2
f2π
2

]
, (2.67)

where ρn and an, n ∈ N, are the tower of vector resonances associated to the broken T â

and unbroken T a generators, respectively, and the last term in (2.67) correspond to the

corresponding massless NGBs. If we expand the Lagrangian (2.51) around the SO(4)-

preserving vacuum Σ0 and use that

ΣT
0 ·T âC ·T b̂C ·Σ =

1

2
Tr(T âC ·T b̂C) =

1

2
δâb̂, T aL ·Σ0 = T aR ·Σ0 = 0, (2.68)

we obtain

Πa(p
2) = Π0(p

2), Πâ(p
2) = Π0 +

1

2
Π1(p

2). (2.69)

That means in particular that

Π0(p
2) = p2g2

∞∑
n=1

f2ρn
p2 −mρn

, (2.70)

Π1(p
2) = g2f2π + 2p2g2

[ ∞∑
n=1

f2an
p2 −man

−
∞∑
n=1

f2ρn
p2 −mρn

]
, (2.71)

Note that the above form factors will generically lead to modifications of the gauge cou-

plings g and g′ introduced in (2.44) after canonically normalize the gauge kinetic terms.

In particular, after adding also the bare kinetic terms of (2.43) one gets

1

g2phys
= −Π′0(0)

g2
+

1

g2
⇒ g2phys = g2

(
1 +

∞∑
n=1

g2

g2ρn

)−1
, gρn ≡ mρn/fρn . (2.72)

At energies much above the scale of symmetry breaking, the SO(5) invariance is restored,

and the difference of two-point functions along broken and unbroken directions is expected

to vanish, i.e.,

lim
p2E→∞

g−2Π1(−p2E) = f2π + 2

∞∑
n=1

f2an − 2

∞∑
n=1

f2ρn = 0. (2.73)
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λqL∆1 Σ λtRΓ1

Q1 T1
tL tR

Figure 3. Schematic description of the mechanism giving rise to the fermion masses in the frame-

work of partial compositeness.

The above condition, which relates the spectra of ”vector” and ”axial” currents, is known as

the first Weinberg sum rule [11]. In particular, this is also telling us that for large Euclidean

momenta Π1(−p2E) goes at least like p−2E . This means that the gauge contribution to the

Higgs potential,

Vg(h) =
9

32π2

∫ ∞
0

dp2Ep
2
E log

(
1 +

1

4

Π1(−p2E)

Π0(−p2E)
sin2(h/fπ)

)
, (2.74)

is at most logarithmically divergent, as Π′0(0) 6= 0 ⇒ Π0(−p2E) ∝ p2E for large Euclidean

momenta. In some specific UV completions of these scenarios, like holographic composite

Higgs models [12, 13] or their discretized n-site versions [14, 15], the above contribution to

the Higgs potential is actually finite. In this case, one would have

lim
p2E→∞

g−2p2EΠ1(−p2E) = 2
∞∑
n=1

f2anm
2
an − 2

∞∑
n=1

f2ρnm
2
ρn = 0, (2.75)

condition which is known as the second Weinberg sum rule.

Fermions Fermions are added in the framework of composite Higgs models through

linear mixings to composite operators, i.e.,

Lmix = λqLq̄LO
q
L + λtRt̄ROtR + h.c. 〈0|OqL|Qn〉 = ∆n 〈0|OtR|Tn〉 = Γn, (2.76)

which induces the low energy effective Lagrangian

Lmix = λqL∆1q̄LQ1R + λtRΓ1t̄RT1R + h.c.+ . . . . (2.77)

The SM states will be a mixture of elementary and composite states, with masses after

EWSB given by

mt ∼
v√
2

λqL∆1

mQ1

λtRΓ1

mT1

Y

fπ
. (2.78)

This mechanism is thus known by the name of partial compositeness.

Similarly to the gauge boson case, the linear interactions of the elementary fermions

to the composite sector explicitly break the Goldstone symmetry and generate thus a

contribution to the Coleman-Weinberg potential. The breaking of the Goldstone symmetry

and thus the size of the contribution to the loop potential will depend on the size of the
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Figure 4. Schematic representation of the top contribution to the one-loop Coleman-Weinberg

potential.

linear mixings in equation (2.77). As the fermion masses are also controlled by the same

linear mixings, as depicted in Figure 3, one expects the top quark – the heaviest elementary

particle in the spectrum – to give the most important contribution. Then, neglecting

contribution of leptons and light quarks as a first approximation, one would have sum up

an infinite number of loop diagrams as the ones shown in Figure 4. However, one could

still get very useful information performing an spurion analysis, analogously to what we

did in the gauge boson case.

We will assume for concreteness that the composite operators coupled to the elemen-

tary fermions transform in fundamental representations of SO(5). For simplicity, let us

introduce just one fermion excitation of such operators, ψ, transforming also as a 5 of

SO(5). Similarly to what we did for the case of scalars in Section 1, one can decompose

this fermionic multiplet of SO(5) in its SO(4) components with the help of the U matrix

defined in (2.38),

ψ = U

(
Q

T

)
, (2.79)

where Q ∼ (2,2) and T ∼ (1,1) under SO(4) ∼= SU(2)L×SU(2)R. Then, the most general

mass-mixing Lagrangian read [16]

∆L = −mQQ̄LQR −mT T̄LTR − ytLfπ (q̄L∆t
L)I
(
atLUIiQ

i
R + btLUI5TR

)
− ytRfπ (t̄R∆t

R)I
(
atRUIiQ

i
L + btRUI5TL

)
+ h.c.,

(2.80)

where

∆t
L =

1√
2

(
0 0 1 −i 0

1 i 0 0 0

)
, ∆t

R = −i
(

0 0 0 0 1
)
. (2.81)

Before EWSB, the above Lagrangian is completely invariant under SU(2)L × U(1)Y . In

the limit of ytL = ytR = 0, it is also invariant under the bigger symmetry SO(5) × U(1)X .

However, we can restore the SO(5) invariance even in the limit of non-vanishing linear

mixings by promoting the coupling matrices ∆t
L,R to spurions ∆̂t

L,R, transforming under

the global SO(5) of the strong sector in the same way the corresponding resonances do.

Indeed, if the ∆̂t
L,R transform in addition appropriately under the elementary symmetry

group SU(2)L × U(1)R of the elementary fermions, also the linear mixings are invariant
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under the full global symmetry of the rest of the Lagrangian. As a consequence, also

the Higgs potential needs to formally respect the SO(5) symmetry (and the elementary

symmetry), which should then be broken by the vevs of the spurions 〈∆̂t
L,R〉 = ∆t

L,R in

order to generate a non-trivial potential. Thus the form of the Higgs potential can be

constructed by forming all possible invariants under the full global symmetry, containing

at least one spurion ∆t
L,R, set to its vev, and the Goldstone-Higgs matrix U . As the

spurions are always accompanied by the linear mixing parameters ytL,R, taking the role of

an expansion parameter, a series in powers of the spurions can be established. In order for

the elementary SU(2)L ×U(1)R symmetry to be respected, the spurions can only enter in

the combinations ∆t
L
†
∆t
L and ∆t

R
†
∆t
R.

For the case under consideration, the form of the potential at O(∆2) is thus fixed to

V2(h) =
Ncm

4
ψ

16π2

[
yt 2L
g2ψ

ctL v
(5)
L (h) +

yt 2R
g2ψ

ctR v
(5)
R (h)

]
, (2.82)

where the prefactors follow from naive dimensional analysis and the fact that quarks enter

in Nc = 3 colors. mψ is the general mass scale for the first fermionic resonances whereas

gψ ≡ mψ/fπ. The concrete values for the coefficients cL,R, which are generically of O(1),

need to be determined from an explicit calculation and cannot be fixed by symmetries

alone. Nevertheless, the SO(5) symmetry already tells us that the Higgs field can only

enter in two structures at this order [17]

vL(h) =
(
UT∆t

L
†
∆t
LU
)
55

=
1

2
sin2(h/fπ) ,

vR(h) =
(
UT∆t

R
†
∆t
RU
)
55

= cos2(h/fπ) = 1− sin2(h/fπ) ,
(2.83)

where we have employed (2.81) and the explicit form of the Goldstone matrix. We inspect

that, since the constant term in the second line can be neglected in the Higgs potential,

only one functional dependence on the Higgs field is present. The combinations of spurions

exhibit a block-diagonal structure and do not mix the fifth component of UI5 = Σ with the

other four components. In consequence (dropping a constant), we get

V2(h) ∼=
Ncm

4
ψ

16π2g2ψ

[
ctL
yt 2L
2
− ctR yt 2R

]
sin2(h/fπ) . (2.84)

This leading contribution to the potential does however not yet lead to a viable phe-

nomenology. Its minimum is realized for h/fπ = 0, π2 , ... , which means that we can not

have a realistic symmetry breaking with 0 < v < fπ. To fix this problem we need to take

into account formally subleading contributions. While no new independent SO(5) invari-

ant structures appear at O(∆4), one can have products of the structures (2.83) which lead
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to a different trigonometric dependence on h,

V4(h) =
Ncm

4
ψ

16π2

[
yt 4L
g4ψ

ctLL [vL(h)]2 +
yt 4R
g4ψ

ctRR [vR(h)]2 +
yt 2L y

t 2
R

g4ψ
ctLR vL(h) vR(h)

]

∼=
Ncm

4
ψ

16π2g4ψ

[(
ctLL

yt 4L
4
− ctRRyt 4R

)
sin2(h/fπ) (2.85)

−
(
ctLL

yt 4L
4

+ ctRRy
t 4
R − ctLR

yt 2L y
t 2
R

2

)
sin2(h/fπ) cos2(h/fπ)

]
.

In particular, defining generally

V (h) = V2(h) + V4(h) ≡ α sin2(h/fπ)− β sin2(h/fπ) cos2(h/fπ) , (2.86)

we naturally obtain

α ∼ yt 2L,R/g2ψ, β ∼ yt 2L,Ryt 2L,R/g4ψ. (2.87)

In order to allow for a viable EWSB, the leading contribution to α, originating from V2(h),

needs to feature a tuning within its contributions that brings it from its natural size of

O(yt 2L,R/g
2
ψ) down to O(yt 4L,R/g

4
ψ). Explicitly, the (non-trivial) minimum of the potential

(2.86) occurs at

sin2(h/fπ) =
β − α

2β
, (2.88)

which requires α− β to be as small as

α− β = −2β sin2(v/fπ) (2.89)

in order to allow for the sought solution. Comparing this required size to its natural size

of α− β ∼ y2t /g2ψ , we obtain the famous “double tuning” [16]

∆−1 ∼
y4t /g

4
ψ sin2(v/fπ)

y2t /g
2
ψ

=
y2t
g2ψ

sin2(v/fπ) , (2.90)

i.e., the coefficients entering V (h) need not only to cancel to ∼ sin2(v/fπ)y2t /g
2
ψ � y2t /g

2
ψ

(the standard tuning due to v � f), but another tuning in the contributions to V2 is

required to make it also one order smaller in y2t /g
2
ψ. Moreover we observe that

m2
H =

8

f2π
cos2(v/fπ) sin2(v/fπ)β

= f2π
Nc

2π2

(
ctLL
4
yt 4L −

ctLR
2
yt 2L y

t 2
R + ctRRy

t 4
R

)
cos2(v/fπ) sin2(v/fπ) ,

(2.91)

and thus

mH ∼
√

3

2π2
y2t v . (2.92)
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