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c© 2013 ETH Zurich

This document as well as its parts is protected by copyright.
Reproduction of any part in any form without prior written
consent of ETH Zurich is permissible only for private,
scientific and non-commercial use.



Contents

Sheet 1 1.1
1.1. On the importance of quantum gravity . . . . . . . . . . . . . . . . . . . 1.1
1.2. Relativistic point particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
1.3. Polynomial action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2

Sheet 2 2.1
2.1. Symmetries of the classical string . . . . . . . . . . . . . . . . . . . . . . . 2.1
2.2. Classical spinning strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2

Sheet 3 3.1
3.1. Light cone tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1
3.2. Light cone gauge and mode expansion . . . . . . . . . . . . . . . . . . . . 3.1
3.3. Maxwell and Kalb–Ramond fields . . . . . . . . . . . . . . . . . . . . . . 3.2

Sheet 4 4.1
4.1. Virasoro algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1
4.2. Analytical continuation of the zeta-function . . . . . . . . . . . . . . . . . 4.2
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Introduction to String Theory Problem Set 1
ETH Zürich, HS13 R. Hecht, Prof. N. Beisert, Dr. J. Brödel

1.1. On the importance of quantum gravity

Let us get some intuition on the order of magnitudes:

a) Consider a gravitational atom, an electron bound to a neutron by the gravitational
force. Electromagnetic dipole effects can be neglected. Perform a semiclassical calcu-
lation to determine the radius of the orbit of the electron (first Bohr radius). Relate
this radius to an appropriate distance in physics.

b) In “natural units”, where ~, G and c are set to 1, a stellar black hole radiates like
a black body at a temperature given by kT = 1/8πM . Give the temperature in SI
units (reinsert G, ~ and c) and calculate the temperature of a black hole weighing
one solar mass.

1.2. Relativistic point particle

The action of a relativistic point particle is given by

Srp = −α
∫
P
ds

with the relativistic line element

ds2 = −ηµνdXµdXν = c2dt2 − dx2 − dy2 − dz2

and α a (yet to be determined) constant. The path P between two points Xµ
1 and Xµ

2

can be parametrised by a parameter τ . The integral over the line element ds becomes an
integral over the parameter

Srp = −α
τ2∫
τ1

dτ

√
−ηµν

∂Xµ

∂τ

∂Xν

∂τ
. (1.1)

a) Parametrise the path by the time coordinate t and take the non-relativistic limit
|~̇x| � c to determine the value of the constant α. Characterise the appearing terms.

b) Derive the equations of motion by varying the action in (1.1). (You may set c = 1
from now on.) Hint: Calculate the canonically conjugate momentum Pµ first.

c) Show that the form of the action is invariant under reparametrisations τ ′ = f(τ).
This is what we call manifestly invariant.

d) Consider an electrically charged particle with charge q. In the presence of an external
gauge field Aµ there is an additional term in the action governing the interaction
between particle and field given by

Sem =
q

c

∫
dτ Aµ(X)

∂Xµ

∂τ
.

Find the variation of Aµ(X) under a variation of the path δXµ. Vary the action
S = Srp + Sem w.r.t. Xµ to find the equations of motion for the particle. Hint: Use
Pµ from above to simplify the expression.

−→
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1.3. Polynomial action

There is another way to write the action of a relativistic particle. We introduce an
auxiliary field called vierbein (or “einbein” in this case) e along the worldline of the
particle and rewrite the action in the form

Spp =

∫
dτ(e−1Ẋ2 −m2e).

a) Show that Spp is equivalent to Srp above by eliminating the einbein from the action.

b) Derive the equations of motion by varying Spp with respect to X and e.

c) Show that Spp is invariant under infinitesimal reparametrisations δτ = −ε(τ) to linear
order in ε. First find the correct transformation of Xµ. The einbein transforms like
(can you derive it?)

δe = ∂τ (ε(τ)e).

d) Reparametrisation invariance is a gauge invariance. Thus by fixing a gauge we can
eliminate one degree of freedom. Assume a gauge in which e is constant. Show that
e can be written like

e =
`

τ2 − τ1

,

where ` is the invariant length of the worldline for a path starting at Xµ(τ1) and
ending at Xµ(τ2). Hint: Meditate on the role of the einbein and on how to define `.

1.2
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2.1. Symmetries of the classical string

In this exercise we examine the classical symmetries of the Polyakov string

SP = −T
2

∫
d2ξ
√
−g gαβ ∂αXµ ∂βX

ν ηµν .

We start with the global symmetries – Lorentz and translational symmetry – and proceed
to gauge symmetries – reparametrisation and Weyl symmetry.

a) Consider the transformation

Xµ → ΛµνX
µ + aµ

which is a combination of a Lorentz transformation and a translation, a.k.a. a Poincaré
transformation. Using the Noether procedure show that in conformal gauge gαβ = ηαβ
the Noether currents corresponding to these symmetries are given by

Pαµ = −T∂αXµ, J α
µν = PαµXν − PανXµ.

b) Find and identify the conserved charges associated with Lorentz boosts and time
translations. Hint: For the Lorentz boost assume X0 = t.

c) Show that the Polyakov string action is invariant under a reparametrisation ξα →
ξ̃α(ξ).

d) Show that the Polyakov string is also invariant under Weyl transformations: local
length-changing but angle preserving transformations of the metric gαβ → e2ω(ξ)gαβ.

e) Consider an infinitesimal Weyl transformation

δgαβ = 2ωgαβ and δXµ = 0

and show that Weyl symmetry implies the vanishing of the trace of the worldsheet
energy-momentum tensor

Tαα = 0.

Hint: The variation of the determinant is given by

δ det g = − det g gαβ δg
αβ.

−→
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2.2. Classical spinning strings

The classical solution for the wave equation is given by

Xµ(σ, τ) = Xµ
L(τ + σ) +Xµ

R(τ − σ),

the constraints by
Ẋ ·X ′ = 0 and Ẋ2 +X ′2 = 0.

It will be beneficial to work in static gauge X0(σ, τ) = Rτ (τ being the worldsheet time).

a) Show that

X0 = Rτ

X1 = R cos(σ) cos(τ)

X2 = R cos(σ) sin(τ)

can be written in the form of the general solution of the wave equation and that it
fulfils the constraints. Calculate the energy P 0 = E and the angular momentum Jij
of the solution.

b) Show that

X0 = Rτ

X1 = R cos(σ) cos(τ)

X2 = R cos(2σ) sin(2τ)

can be written in the form of the general solution of the wave equation but does not
fulfil the constraint equations.

c) Closed strings can develop cusps. These points σ0 on the string are indicated by a
singularity in the parametrisation

∂ ~X

∂σ
(σ0, t) = 0.

Show that the string reaches the speed of light at a cusp. Moreover, show that cusps
will appear and disappear periodically along the string.

d) Explain why cusps form generically in 3+1 dimensions but not so in higher dimensions.

2.2
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3.1. Light cone tensors

We want to derive some relations between Lorentz tensors Lµν and light cone tensors.

a) Find the transformation matrix naµ that transforms a Lorentz vector into light cone
coordinates Xa = naµX

µ where the index a runs through +,−, 1, . . . , D−2 and µ is the
usual spacetime index. Furthermore calculate the metric ηab in light cone coordinates
and show that

X+ = −1

2
X−, X− = −1

2
X+.

b) Show that the equality of components of the Lorentz tensors Aµ1µ2...µn = Bµ1µ2...µn

implies the equality of the light cone tensor components, i.e.

A++...+ = B++...+, A++...− = B++...−, . . . A−−...− = B−−...−,

and give explicitly the light cone components L++, L+−, L−+, L−− in terms of the
components of a Lorentz 2-tensor Lµν .

c) Furthermore, show that the trace of a rank-2 light cone tensor A is given by

Aµµ = −2A+− − 2A−+ + Aii.

3.2. Light cone gauge and mode expansion

Using our newly found knowledge about light cone tensors, we will investigate the form
of the angular momentum generator. The mode expansion is given by

Xµ(σ, τ) = xµ0 + κ2pµτ +
iκ√

2

∑
n6=0

αµn
n
e−in(τ−σ) +

iκ√
2

∑
n6=0

α̃µn
n
e−in(τ+σ).

a) In the earlier problem 2.1a) you derived the angular momentum current J µν
α and its

conserved charge

Jµν =

∫ 2π

0

dσ J µν
0 .

Express Pµ0 in terms of the mode expansion. Calculate Jµν in terms of the mode
expansion. Hint: Contemplate the meaning of conserved quantity and use∫ 2π

0

dσ einσ = 2πδn,0.

b) Express J−i in terms of the above derived mode expansion for the Lorentz tensor
Jµν . In a quantum field theory, symmetry generators should be realised by hermitian
operators

(Jµν)† = Jµν .

Assume canonical commutation relations [xµ, pν ] = iηµν , and show that J−i is not
hermitian. “Hermiticise” the generator.

−→
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3.3. Maxwell and Kalb–Ramond fields

Light cone gauge is not only useful in string theory to extract physical information. It
also is a valid gauge in other theories. First we will work on the Maxwell gauge field
Aµ. Then we will turn to the Kalb–Ramond field Bµν which will enter our description of
quantum string theory in due course. (If you feel confident enough you can skip parts a)
and b). Otherwise work carefully through all the subproblems for maximal benefit! You
may find chapter 10 in Zwiebach – “A first course in String theory” useful.)

a) The Maxwell field Aµ(x) has a gauge symmetry

A′µ = Aµ + ∂µε(x).

We define the antisymmetric field strength tensor Fµν by

Fµν = ∂µAν − ∂νAµ.

Show that Fµν is gauge invariant and derive the equations of motion for Aµ from the
action (leaving coupling constants aside)

SYM = −1

4

∫
dDxFµνF

µν .

Rewrite the equations of motion in momentum space ∂µ ↔ pµ.

b) We want to implement light cone gauge. Express the gauge transformation in mo-
mentum space. Show that, by a sensible choice of ε(p), you can gauge away the
+-component of the light cone gauge field (A+, A−, Ai) and deduce that the equation
of motion in momentum space drastically simplifies in this gauge. Count the total
number of independent degrees of freedom of the gauged Maxwell field.

The Kalb–Ramond field Bµν is an antisymmetric Lorentz tensor with the gauge symmetry
transformation

δBµν = ∂µεν − ∂νεµ.
We define a field strength and an action for Bµν by

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν and SKR = − 1

12

∫
dDxHµνρH

µνρ.

c) Show that the gauge transformation of Bµν has a redundancy

ε′µ = εµ + ∂µλ

under which δBµν is invariant. Express the gauge transformations in light cone mo-
mentum space and show that you can gauge away the component ε+, such that the
effective gauge transformation of Bµν is generated by ε− and εi.

d) Go through the steps in a), b) for Bµν and Hµνρ – bearing in mind the result of c) –
and show that the Kalb–Ramond field has only one independent degree of freedom
in four dimensions.

e) In four dimensions, we can define a “dual field” H̄µ by contracting the field strength
Hµνρ with the totally antisymmetric tensor of fourth order

H̄µ = εµνρκH
νρκ.

Using the result you found in the last part of this problem show that the dual field
can be expressed by the derivative of a single scalar field. What does this imply for
the Kalb–Ramond field in four dimensions?

3.2
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4.1. Virasoro algebra

In this exercise we want to investigate in detail the Virasoro algebra as it appears in light
cone string theory. For simplicity we will only work with the left movers LL

n as the right
movers LR

n commute with these and satisfy an identical algebra. The mode operators αin
(with i = 1, . . . , D − 2) satisfy the algebra (we drop the L/R superscript)

[αin, α
j
m] = mδijδn+m,

and the normal ordered Virasoro generators are given by

Ln =
1

2

∑
p≥0

αin−pα
i
p +

1

2

∑
p<0

αipα
i
n−p.

An algebra g is a Lie algebra if its product [·, ·] : g × g → g (called the Lie bracket) is
antisymmetric [a, b] = −[b, a] for all a, b ∈ g and satisfies the Jacobi identity[

a, [b, c]
]

+
[
b, [c, a]

]
+
[
c, [a, b]

]
= 0 for all a, b, c ∈ g.

a) Show that the commutator of two Virasoro generators with m+ n 6= 0 is given by

[Lm, Ln] =
1

2

∑
p

pαim−pα
i
p+n + (m− p)αin+m−pα

i
p.

b) By relabelling the summands, rewrite the above result in the following form

[Lm, Ln] = (m− n)Ln+m.

Argue that the complete solution, including the terms n = −m is given by

[Lm, Ln] = (m− n)Lm+n + C(m)δm+n,0,

where C(m) is a real valued, odd (C(−m) = −C(m)) function. The last term is called
the central extension of the Virasoro algebra. Determine C(m) up to two constants by
considering the Jacobi identity. The solution is given by C(m) = 1

12
(D− 2)(m3−m).

−→
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4.2. Analytical continuation of the zeta-function

In the lecture you have seen the peculiar result of the sum ζ(−1) =
∑∞

n=1 n = − 1
12

. In this
exercise we will try to understand where the result comes from by analytically continuing
the ζ-function. The Γ and ζ functions of a complex variable z are given by

Γ(z) =

∫ ∞
0

dt e−ttz−1 and ζ(z) =
∞∑
n=1

1

nz
.

a) We start by regularising ζ(−1) using a small parameter ε. Show that we can write
the zeta function like ζε(−1) = − ∂

∂ε

∑∞
n=1 e

−nε in the limit ε → 0. Argue that the
sum in this expression is convergent and give the solution. Expand the expression for
small ε and show that the result is given by ζε(−1) ≈ 1

ε2
− 1

12
+O(ε).

b) Show that for Re(z) > 1 you can write

Γ(z)ζ(z) =

∫ ∞
0

dt tz−1

et − 1
.

Conclude that it is possible to rewrite the integral to give

Γ(z)ζ(z) =

∫ 1

0

dt tz−1

(
1

et − 1
− 1

t
+

1

2
− t

12

)
+

1

z − 1
− 1

2z
+

1

12(z + 1)

+

∫ ∞
1

dt tz−1

et − 1
.

c) The right hand side is well defined for Re(z) > −2 (why?). We know that Γ(z) has
poles for z = 0,−1,−2, . . . with residues

Resz0=−n
[
Γ(z0)

]
=

(−1)n

n!
.

Conclude that the values of ζ(z) at z = 0 and z = −1 are

ζ(0) = −1

2
and ζ(−1) = − 1

12
.

4.3. Poincaré transformations

Poincaré transformations xµ 7→ Λµνx
ν + aµ form a group whose product is defined as

T (Λ1, a1)T (Λ2, a2) = T (Λ1Λ2, a1 + Λ1a2). The inverse reads T (Λ, a)−1 = T (Λ−1,−Λ−1a).

Consider an infinitesimal transformation with generators J and P

T (1 + ω, ε) = 1 +
i

2
ωµνJµν − iεµPµ + . . . .

They define the Lie algebra of the Poincaré group. Show that

T (Λ, a)T (1 + ω, ε)T (Λ, a)−1 = T
(
Λ(1 + ω)Λ−1, Λε− ΛωΛ−1a

)
.

How do J and P transform under T (Λ, a)? What relations do you get when you take Λ,
a to be infinitesimal as well?

4.2
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5.1. Lorentz invariance in light cone gauge

Since Lorentz invariance is obscured due to the light cone gauge it is not obvious that the
following commutator vanishes

[J −i,J −k] ?
= 0 .

This exercise sheet will be solely concerned with the calculation of this commutator and
its physical implications for bosonic string theory. In a previous sheet the generator was
determined to be given by (up to a doubling of the latter term due to left and right
movers)

J −i =
1

2
(p−xi0 + xi0p

−)− x−0 pi + i

∞∑
n=1

(α−−nα
i
n − αi−nα−n ).

Furthermore, we have

p− =
L0

2κ2p+
and α−n =

√
2

κp+
Ln

with Ln the Virasoro generators from the previous sheets. We depart here from the
definition of sheet 4 and account for the normal ordering ambiguity in L0 by defining

L0 =
1

2
α2

0 +
∞∑
n=1

αi−nα
i
n − a,

where a is the so called intercept. This means we have two free parameters to adjust
during this calculation: the intercept a and the dimension D of spacetime. There are
many subtleties in this calculation. Careful checks after every step are recommended.

a) Begin by calculating all the possible commutators between the zero modes p+, p−, pi,
x−0 , xi0 and the αin, α

−
n modes using the given commutators

[p+, x−0 ] = i, [pj, xk] = −iδjk, [αim, α
j
n] = mδm+nδ

ij.

Hint: Watch out for subtleties when it comes to commutators with p− and α−. The
commutator [α−m, α

−
n ] is the hardest here. However, you know its naive form already

from the last sheet. Remember that there is a normal ordering ambiguity for α−0 !

b) Calculate the commutator. The expected result is

[J −i,J −j] = 2

(
p− −

√
2

κ
α−0

)
1

p+

∞∑
n=1

1

n
α

[i
−nα

j]
n

+
2

κ2(p+)2

∞∑
n=1

([
D − 2

12
− 2

]
n+

1

n

[
2a− D − 2

12

])
α

[i
−nα

j]
n .

For general values of a and D we say that the symmetry is anomalous because the
right hand side is not zero. However, we can make it vanish. What are the reasons
for the first term and conditions for the second term in this expression to vanish?

−→
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5.2. T-duality: self-dual radius

When compactifying one dimension of string theory on a circle, new stringy effects appear
that cannot be seen in field theory. One of these effects is winding of the string around
the compactified dimension. We compactify the coordinate D − 2 on a circle (drop the
index D − 2 for simplicity) and request that

XD−2(σ + 2π, τ) = XD−2(σ, τ) + 2πκ2w

where w = mR/κ2 is the winding. The left and right movers are then defined as usual for
all directions except for the compact dimension where

XL =
1

2
x+

κ2

2
(p+ w)ξL +

iκ√
2

∑
n6=0

αL
n

n
exp(−inξL),

XR =
1

2
x+

κ2

2
(p− w)ξR +

iκ√
2

∑
n 6=0

αR
n

n
exp(−inξR).

a) Derive the (D−1)-dimensional mass-squared M2 = −p2 of states in the presence of a
compact dimension in terms of the level operators NL and NR, the winding number m
and compact momentum p = n/R. Hint: Use the Virasoro constraints LL

0 = LR
0 = a.

b) Show that the level matching constraint NL = NR does not hold for strings with both
winding number m and Kaluza–Klein momentum number n not equal zero. What
happens to these states at R→∞?

c) Consider the mass formula for the cases

m = n = 0; m = 0, n 6= 0; m 6= 0, n = 0; m = n = ±1; m = −n = ±1.

For which values of NL and NR does the spectrum (possibly) contain tachyonic and
massless states? What is their spin (scalar, vector, tensor) as viewed from D − 1
non-compact spacetime dimensions?

d) In the case of non-zero winding and non-zero compact momentum (m = n = ±1 and
m = −n = ±1) show that there is a special radius R∗ where some states become
massless. What happens for the other cases at this radius?

5.2



Introduction to String Theory Problem Set 6
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6.1. Stretched strings

An open string can stretch between two Dp-branes. In fact there are four possibilities
for a string to stretch between two branes, called sectors. Two of the sectors are strings
beginning and ending on the same branes denoted [11] and [22]. The sectors [12] and
[21] contain the cases where the string stretched between the brane. The last two cases
are different because orientation matters. We will be interested in the case where the
endpoints of the string lie on two different branes.

a) Write down the mode expansion for a string stretched between two parallel Dp-branes
and interpret the result.

b) How does the distance between the branes affect the spectrum of the string? What
happens for coincident branes? Hint: Consider the mass-squared.

6.2. Orbifolds

After having seen how a string behaves under compactification of one dimension, we
want to find out how it behaves under restricting it to the half line xD−1 ≥ 0 by the
identification

xD−1 ∼ −xD−1.

Such a space is called orbifold in string theory. Again we abbreviate the relevant coordi-
nate X(ξ) := XD−1(ξ), and introduce an operator U acting as (µ = 0, . . . D − 2)

UX(σ)U−1 = −X(σ + π), UXµ(σ)U−1 = Xµ(σ + π).

U is a symmetry of the orbifold theory, so only states invariant under U are physical.

a) How does U act on the modes x, p, αL
n and αR

n of the coordinate X?

b) Define the string vacuum |0; qµ, r〉 where µ = 0, . . . , D− 2 and r is the momentum in
the folded dimension. We assume that

U |0; qµ, 0〉 = |0; qµ, 0〉.

Give the action of U on |0; qa, r〉 and write down the ground states of the orbifold
theory.

c) What are the massless states of the orbifold theory?

−→
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6.3. Two-point function

In this exercise we want to compute the closed string propagator

〈
Xµ(z, z̄)Xν(z′, z̄′)

〉
= −κ

2

2
ηµν log |z − z′|2

which is given by the difference of the time-ordered and the normal ordered product of
the operators Xµ(z, z̄) and Xν(z′, z̄′). Assume |z| > |z′|. Hint: You may ignore the effects
of the centre of mass coordinates xµ or use :pµxν : = xνpµ.

6.4. Conformal transformations

Consider conformal transformations z → z′(z). Primary fields transform as tensors under
conformal transformations

O′(z, z̄) =

(
∂z′

∂z

)h(
∂z̄′

∂z̄

)h̄
O(z′(z), z̄′(z̄))

a) How does a primary field transform under infinitesimal transformations z′ → z+ζ(z)?

b) Show that the operator :eikX : for a single scalar field X is primary by computing its
OPE with the stress-energy tensor. Determine the conformal weights h and h̄.

6.2
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7.1. The complex logarithm

The propagator that you calculated above and the two-point function〈
∂Xµ(z, z̄)∂̄Xν(w, w̄)

〉
= πκ2ηµνδ2(z − w, z̄ − w̄)

are related by the two derivatives. Show that

∂∂̄ log |z|2 = 2πδ2(z, z̄)

a) . . . by considering the divergence theorem∫
D1

dzdz̄(∂vz + ∂̄vz̄) = i

∮
∂D1

(dz̄vz − dzvz̄),

b) . . . by regulating the singularity at z = 0 by

∂∂̄ log |z|2 := lim
ε→0

∂∂̄ log(|z|2 + ε2).

where ε > 0 is a small parameter.

7.2. Schwarzian derivative

The stress-energy tensor transforms under a finite conformal transformation z → z′ = f(z)
as

T (z)→ T ′(z) = (∂f)2T (z′) +
c

12
S(z′, z)

where

S(z′, z) =
∂f(z)∂3f(z)− 3

2
(∂2f(z))2

(∂f)2

is the Schwarzian derivative.

a) Show that the Schwarzian derivative reproduces the correct infinitesimal transforma-
tion.

b) Show that the Schwarzian derivative has the correct property under successive con-
formal transformations, i.e. x→ x′ → x′′ and x→ x′′ yield the same transformation
of T .

c) Prove that for a transformation

f(z) =
az + b

cz + d

the Schwarzian derivative yields S(z′, z) = 0. Why is this not surprising?

−→

7.1



7.3. Virasoro algebra from stress-energy OPE

The commutation relations for the Virasoro algebra can be derived from the stress-energy
tensor T (z). After Laurent expanding, the stress-energy tensor reads

T (z) =
∞∑

m=−∞

Lm
zm+2

.

Convince yourself that the Virasoro generators Lm can be written as

Lm =
1

2πi

∮
dz zm+1T (z).

Calculate the commutators [Lm, Ln] making use of the stress-energy OPE

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ · · · .

Hint: Think about along which contours you have to integrate and the meaning of radial
ordering. Once done so, expand zm+1 in terms of the second insertion point w.

7.2
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8.1. Veneziano amplitude

The Veneziano amplitude led to the discovery of string theory. In this problem we will
attempt to calculate this amplitude. The open string tachyon vertex operator is given by
an integral over the boundary of the string

V (k) =
√
gs

∫
dx :exp(ikµX

µ(x)):

such that the four tachyon scattering amplitude A4(k1, k2, k3, k4) is given by the expression

A4(k1, k2, k3, k4) ∼ 1

gs

〈
V1 . . . V4

〉
∼ gs

∫
xi<xi+1

4∏
i=1

dxi
〈
:eik1·X(x1): . . . :eik4·X(x4):

〉
.

The ordering of insertions xi is due to Chan–Paton factors.

a) The expectation value is computed using Wick’s theorem and the two-point correlator〈
Xµ(x)Xν(y)

〉
= −2κ2ηµν log |x− y|.

As a first step to calculate the expectation value apply Wick’s theorem to only two
insertions, i.e. show that

:eiki·X(xi): :eikj ·X(xj): = e〈(iki·X(xi))(ikj ·X(xj))〉:eiki·X(xi)+ikj ·X(xj):.

b) Now calculate the expectation value for four points〈
:eik1·X(x1): :eik2·X(x2): :eik3·X(x3): :eik4·X(x4):

〉
.

Hint: After doing that you should obtain the following integral expression for A4 (up
to the momentum-conserving delta function which is more subtle)

A4 ∼ gsδ
26(k1 + k2 + k3 + k4)

∫ 4∏
i=1

dxi
∏
j<l

|xj − xl|2κ
2kj ·kl .

c) Show that the integral is invariant under the SL(2,R) Möbius transformation

xi →
axi + b

cxi + d

for on-shell momenta k2
i = κ−2. Hint: Use momentum conservation

∑
i ki = 0.

−→
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d) The integral given above is divergent because it has the non-compact Möbius group
as a symmetry. It thus contains an irrelevant factor of the group volume which is
infinite. We divide by the latter and use the symmetry to set x1 = 0, x2 = x, x3 = 1
and x4 →∞. Explain why the amplitude after the transformation reduces to

A4 ∼ gsδ
26(k1 + k2 + k3 + k4)

∫
dx |x|2κ2k1·k2|1− x|2κ2k2·k3 + (k2 ↔ k3).

What is the integration range of x2 now? Why? What happened to the normalisation
in front of the integral?

e) The resulting integral is well known. It is in the form of the Euler beta function

B(a, b) =

∫ 1

0

dy ya−1(1− y)b−1 =
Γ(a) Γ(b)

Γ(a+ b)
.

Write down the solution for the amplitude. Hint: Use the Mandelstam variables

s = −(k1 + k2)2, t = −(k1 + k3)2, u = −(k1 + k4)2

to simplify the result.

f) Where does this amplitude have poles? What do these poles correspond to?

8.2
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9.1. Gravity background and renormalisation

So far we only considered flat Minkowski space. From GR we know however that gravity
causes curved spacetime. Consider now the Polyakov action in conformal gauge where
the flat metric tensor is replaced by a general coordinate-dependent one, ηµν → Gµν(X),

S =
1

4πκ2

∫
d2ξ Gµν(X)∂αX

µ∂αXν .

a) Consider small fluctuations about the constant solution Xµ(ξ) = Xµ
0 + κY µ(ξ). Ex-

pand the action up to fourth order in Y . Hint: Use that locally you can always choose
Riemann normal coordinates

Gµν(X) = ηµν −
κ2

3
Rµλνκ(X0)Y λY κ +O(Y 3).

We can now study this as an interacting QFT of the fields Y . Let us look at the correction
to the two-point correlator

〈0|Y λ(ξ1)Y κ(ξ2)|0〉int =
〈0|Y λ(ξ1)Y κ(ξ2) expSint[Y ]|0〉

〈0| expSint[Y ]|0〉
with

Sint[Y ] = − 1

4π

κ2

3
Rµωνρ(X0)

∫
d2ξ Y ω(ξ)Y ρ(ξ)∂αY

µ(ξ)∂αY ν(ξ) +O(Y 5) .

At first order in the exponent you get a divergent contribution from a tadpole diagram.
This divergence is caused by the propagator at coincident points ξ → ξ′

〈0|Y µ(ξ)Y ν(ξ′)|0〉 = −1

2
ηµν ln |ξ − ξ′|2 = 2πηµν

∫
d2k

(2π)2

eik(ξ−ξ′)

k2
.

It can however be absorbed by renormalisation.

b) To give you a taste of renormalisation, let us first isolate the UV singularity of the
integral in dimensional regularisation∫

dDk

(2π)D
1

k2 +m2
.

(The mass is only introduced so that you do not have to worry about IR divergences.)

Hint: This is the recipe:

• Go to spherical coordinates and use
∫
dΩD = 2πD/2/Γ(D/2).

• Rewrite the radial part such that you recognise

Γ(a) Γ(γ)

Γ(α + γ)
=

∫ ∞
0

dy yα−1(1 + y)−α−γ .

• Write D = 2− ε and expand in ε. Use

Γ(ε/2) =
2

ε
+ Γ′(1) +O(ε).

−→
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c) Now we can renormalise the theory by introducing a counterterm into the action that
removes the divergent part

κ2

12πε
Rµν ∂αY

µ ∂αY ν .

Show that you can absorb the counterterm in a renormalisation of the field and the
metric in the leading-order action

Y µ → Y µ − κ2

6ε
RµνYν , Gµν → Gµν +

κ2

ε
Rµν .

d) What does this imply for the beta function βµν(G)?

9.2. Low-energy effective action

In the string frame the low-energy effective action is given by

S =
1

2κ2

∫
d26X

√
− detGe−2Φ

(
R− 1

12
HµνλH

µνλ + 4∂µΦ∂
µΦ
)
.

HereGµν is the metric, R the associated Ricci scalar, Hµνλ = 3∂[µBνλ] is the Kalb–Ramond
field strength and Φ is a scalar, the dilaton field.

a) Show that the equations of motion of these fields are equivalent to the vanishing of
the β functions

βµν(G) = κ2Rµν + 2κ2DµDνΦ− 1
4
κ2HµλσHν

λσ,

βµν(B) = −1
2
κ2DλHλµν + κ2DλΦHλµν ,

β(Φ) = −1
2
κ2DµDµΦ+ κ2DµΦD

µΦ− 1
24
κ2HµνλH

µνλ.

b) The kinetic energy term of the dilaton in the action seems to have the wrong sign.
Explain why this is not so.

9.2
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10.1. Linear dilaton

The general worldsheet action for massless background fields is given by

S =
1

4πκ2

∫
d2ξ
((√

− det g gαβGµν + εαβBµν

)
∂αX

µ∂βX
ν + κ2

√
− det g R[g]Φ

)
.

To consider a concrete example of a background for string theory we want to have a look
at the linear dilaton background where

Gµν = ηµν , Bµν = 0 and Φ = VµX
µ

with Vµ a constant vector and R[g] the worldsheet Ricci scalar.

a) Show that the beta functions defined on the last problem sheet vanish for VµV
µ =

(26−D)/6κ2.

b) Derive the holomorphic worldsheet stress-energy tensor

T (z) = − 1

κ2
:∂Xµ∂Xµ: + Vµ∂

2Xµ

of this theory and show that the central charge is given by

c = D + 6κ2VµV
µ.

10.2. Worldsheet supersymmetry

An action with global worldsheet supersymmetry is given by

S = − 1

4πκ2

∫
d2ξ(∂αXµ ∂αXµ + Ψ̄µρα∂αΨµ).

The Grassmann-valued fields Ψµ are two-dimensional Dirac spinors. The ρα are 2 × 2
matrices satisfying the Clifford algebra

{ρα, ρβ} = 2ηαβ

and the Dirac conjugate is Ψ̄ = iΨ †ρ0 with representation

ρ0 =

(
0 −1

+1 0

)
, ρ1 =

(
0 1
1 0

)
.

a) Show that this action is invariant under N = 1 supersymmetry

δXµ = ε̄Ψµ, δΨµ = ρα∂αX
µε.

b) Evaluate the commutators [δ1, δ2]Xµ and [δ1, δ2]Ψµ to show that the commutator of
two supersymmetry transformations amount to a translation along the worldsheet.

c) Derive the Noether current (supercurrent) of supersymmetry transformations.

d) Explain why you can decompose the Dirac spinors into real chiral (Majorana–Weyl)
spinors. Write the Lagrangian in terms of these components.

e) Find the equations of motion for the chiral components. What are the boundary
conditions that have to be satisfied in order to make the boundary term vanish?

You will find two distinct conditions. How does the mode expansion of the fermion
fields look like in each case?

10.1
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ETH Zürich, HS13 R. Hecht, Prof. N. Beisert, Dr. J. Brödel

11.1. Kawai–Lewellen–Tye relations

In 1985, H. Kawai, D. C. Lewellen and S.-H. H. Tye discovered that closed string am-
plitudes can be expressed in terms of amplitudes in corresponding open string theories.
Although the Kawai–Lewellen–Tye (KLT) relations connect the full string theory am-
plitudes, they are nowadays mostly used to relate low-energy limits of string theories.
A prominent example for their application is the calculation of tree — and with some
additional techniques as well loop — amplitudes in (supersymmetric) gravity theories
from known amplitudes in (supersymmetric) gauge theories. We will use the conventional
Regge slope parameter α′ = κ2 to keep track of the orders in the low-energy expansion
more easily.

a) The four-point tachyon amplitudes in open and closed string theory read

Aopen
4,tach(s, t) ∼ Γ(−1− α′s) Γ(−1− α′t)

Γ(+2 + α′u)

and

M closed
4,tach (s, t) ∼ Γ(−1− α′s/4) Γ(−1− α′t/4) Γ(−1− α′u/4)

Γ(+2 + α′s/4) Γ(+2 + α′t/4) Γ(+2 + α′u/4)
,

respectively, where the Mandelstam invariants s, t, u are defined in terms of the ex-
ternal momenta qi as

s = −(q1 + q2)2, t = −(q1 + q4)2, u = −(q1 + q3)2.

The open and closed string tachyons come with mass m2 = −q2
i = −1/α′ and m2 =

−q2
i = −4/α′ respectively.

Calculate the total mass square s + t + u of the participating particles for the open
and closed string amplitude. Using these results, convince yourself that the two
amplitudes do indeed have the form of Euler Beta-functions. That is,

Aopen
4,tach ∼ B(a, b) =

Γ(a) Γ(b)

Γ(c)
with a+ b = c,

M closed
4,tach ∼ B(d, e, f) =

Γ(d) Γ(e) Γ(f)

Γ(d+ e) Γ(d+ f) Γ(e+ f)
with d+ e+ f = 1.

b) Show explicitly, that the KLT-relation

M closed
4,tach (s, t) ∼ 1

π
sin(α′πt/4)Aopen

4,tach(s/4, t/4)Aopen
4,tach(t/4, u/4)

does indeed relate the amplitudes Aopen
4,tach and M closed

4,tach . Note: The following relation is
useful:

Γ(a) Γ(1− a) =
π

sin πa
.

−→
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c) In order to relate massless open-string amplitudes Aopen
4 (1, 2, 3, 4) (“gluon ampli-

tudes”) to massless amplitudes M closed(1, 2, 3, 4) in closed string theory (“graviton
amplitudes”), one can write the KLT relations in the following form:

M closed
4 (1, 2, 3, 4) = − i

α′π
sin(α′πs)Aopen

4 (1, 2, 3, 4)Aopen
4 (1, 2, 4, 3) ,

where now, dealing with massless particles, s+ t+ u = 0. Using the expansion of the
four-point open-string amplitude

Aopen
4 (1, 2, 3, 4) = AYM

4 (1, 2, 3, 4)
(

1− α′2 1
6
π2st+ α′3 ζ3 stu+O(α′4)

)
,

where AYM
4 denotes the low-energy limit α′ → 0, show that the O(α′2)-correction

of the closed-string amplitude vanishes. Derive the O(α′3)-correction and write the
α′-expansion of the closed string four-point amplitude up to this order. Convince
yourself of the total symmetry under exchange of the legs, as required for the gravity
amplitude.

11.2. Number of independent open string amplitudes

Open string n-point gluon amplitudes are calculated from inserting appropriate vertex
operators at a worldsheet with disk topology. While a näıve counting would imply n! dif-
ferent amplitudes, there are two immediate symmetries built into the procedure: cyclicity
and (worldsheet-) reflection

Aopen
n (1, 2, . . . , n) = Aopen

n (n, 1, 2, . . . , n− 1) and

Aopen
n (1, 2, . . . , n) = (−1)nAopen

n (n, n− 1, . . . , 2, 1).

a) Convince yourself that the above relations reduce the number of independent open-
string gluon amplitudes to (n− 1)!/2.

b) In addition, there are further less obvious relations: the so-called monodromy relations

Aopen
n (1, 2, 3, 4, . . . , n) + eiα

′πs12Aopen
n (2, 1, 3, 4, . . . , n)

+ eiα
′π(s12+s13)Aopen

n (2, 3, 1, 4, . . . , n)

+ . . .+ eiα
′π(s12+s13+...+s1,n−1)Aopen

n (2, 3, 4, . . . , n− 1, 1, n) = 0 ,

where sij = −(qi + qj)
2. Consider O(α′0) and O(α′1) in the α′-expansion of the

monodromy relations for the four- and five-point amplitude. Show for those examples
that the number of independent amplitudes reduces to (n− 3)!. This is true for all n.

11.2
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12.1. T-duality for the non-linear sigma-model: Buscher-rules

Consider the non-linear bosonic sigma-model in conformal gauge

S =− 1

4πκ2

∫
d2ξ
(
ηαβ Gµν − εαβ Bµν

)
∂αX

µ ∂βX
ν ,

where α, β = 1, 2 are worldsheet indices and µ, ν = 0, . . . , 9 are target space indices.
We assume that the background fields Gµν and Bµν are independent of the coordinate
X := X9, and we split the target space indices into the index 9 denoting the direction of
the isometry as well as Latin indices i, j = 0, . . . , 8 for the remaining dimensions.

The goal of this exercise is to calculate how T-duality along the direction X relates the
original fields G and B with their T-dual counterparts G̃ and B̃. The original calculation
was performed by T. H. Buscher in 1987.

This exercise is designed to guide you through a calculation which will lead to the action
of the T-dual non-linear sigma-model. Written in terms of T-dual fields G̃ and X̃, the
action can be brought into the same form as above, if the following Buscher rules are
employed to relate original and T-dual fields:

G̃ij = Gij −
Gi9Gj9 −Bi9Bj9

G99

, G̃9i = −B9i

G99

, G̃99 =
1

G99

,

B̃ij = Bij +
Gi9Bj9 −Gj9Bi9

G99

, B̃9i = −G9i

G99

.

a) Consider the derivatives of the coordinate X to be an independent field Vα = ∂αX
and rewrite the above action in terms of the fields Vα and X i. In order to ensure
equality to the original action, a term containing the Lagrange multiplier X̃ needs to
be added to the action:

− 1

2πκ2

∫
d2ξ εαβX̃ ∂αVβ.

Convince yourself that the above action can be recovered from your action accompa-
nied by the above term after making use of the equation of motion for X̃.

b) In order to find the T-dual form of the action, derive the equation of motion for the
field Vα. You should find that

Vα =
1

G99

ηαγ

[
−εγβ∂βX̃ −

(
ηγβG9i − εγβB9i

)
∂βX

i
]
.

c) Using its equation of motion, eliminate the field Vα and rewrite the action including
the term with the Lagrange multiplier in terms of dual coordinates (X i, X̃). By doing
so, you will have to rename several dummy indices. Note: The following identity is
helpful:

εαγηγδε
δβ = ηαβ .

After collecting the terms into contributions proportional to ∂αX̃∂βX̃, ∂αX̃∂βX
i and

∂αX
i∂βX

j, you should find that the T-dual fields G̃ and B̃ are indeed related to the
original fields G and B by the Buscher rules.

12.1
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13.1. S-duality in four-dimensional heterotic string theory

In this exercise, the SL(2,R)-symmetry of the equations of motion in heterotic string
theory compactified to four dimensions shall be considered. The reduction of the vector
fields corresponding to the gauge groups SO(32) or E8 × E8, however, leads to numerous
vector fields and scalars in four dimensions. As it is not particularly enlightening to deal
with the symmetry transformations of all those fields, let us instead consider a simpler
example of an effective action governing the dynamics of the metric GS, the antisymmetric
tensor B, the dilaton Φ and just a single U(1) gauge field Aµ

S ∼
∫
d4x
√
− detGS e

−2Φ
(
RS + 4∂µΦ∂

µΦ− 1
12
HµνρH

µνρ + 1
4
FµνF

µν
)
,

where the subscript S refers to the metric in the string frame. Furthermore

Hµνρ = (∂µBνρ + cyclic)− 1
2
(AµFνρ + cyclic)

and
Fµν = ∂µAν − ∂νAµ

are the field strengths associated to the fields Bµν and Aµ respectively. In the Einstein
frame

Gµν = e−2ΦGS,µν .

the equations of motion for the fields Gµν , Bµν , Aµ and the dilaton Φ read

0 = Rµν − 2DµΦDνΦ−GµνD
ρDρΦ− 1

4
e−4ΦHµρτHν

ρτ − 1
2
e−2ΦFµρFν

ρ,

0 = Dρ

(
e−4ΦHµνρ

)
,

0 = Dµ

(
e−2ΦF µν

)
+1

2
e−4ΦHρµ

νF ρµ,

0 = DµDµΦ+ 1
12
e−4ΦHµνρH

µνρ − 1
8
e−2ΦFµνF

µν .

a) The Bianchi identities arise as a consistency conditions for any field strength tensor.
For our situation, the Bianchi identity for the field strength Hµνρ is given by(√

− detG
)−1

εµνρσ∂µHνρσ = −3
2
FµνF̃

µν ,

where the dual field strength F̃µν is defined as

F̃ µν = 1
2

(√
− detG

)−1
εµνρσFρσ .

As has been shown already in a previous exercise, the field strength Hµνρ can be
written in terms of a scalar field Ψ . Convince yourself that

Hµνρ = −
(√
− detG

)−1
εµνρσe4Φ∂σΨ

solves the equation of motion for Hµνρ. Plug the above identity into the Bianchi
identity to obtain a relation between the scalar Ψ and the field strength Fµν and its
dual.

−→
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b) Define the complex field

λ = Ψ + ie−2Φ = λ1 + iλ2

and use the above identities as well as

F± = F ± iF̃

in order to rewrite the equations of motion and the result from the last subproblem
in terms of λ and the fields F± only.

c) Convince yourself that the equations of motion written in the last subproblem are
invariant under shifting λ by a real number

λ→ λ+ r where r ∈ R .

Show furthermore that the following set of transformations leaves the set of equations
of motion invariant

λ→ −1

λ
, F+ → −λF+, F− → −λ̄F− .

While invariance under the real shift is manifest for all equations of motion, under
the second set of transformations two equations get interchanged. The equation of
motion containing the Riemann tensor transforms into itself plus an extra term. In
order for SL(2,R) to be symmetry, this extra term should better vanish. While one
can show that it indeed vanishes for a particular solution of the equation of motion,
convince yourself that any SL(2,R)-transformation is just a scaling.

The transformations above generate the group SL(2,R). Its action can be written as

λ→ aλ+ b

cλ+ d
with ad− bc = 1 and F+ → −(cλ+ d)F+ .

Thus the considered model exhibits an S-duality relating the weak- and strong-coupling
regimes of the theory.

13.2
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