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Exercise 13.1 One-time Pad

Consider three random variables: a message M , a secret key K and a ciphertext C. We want to encode
M as a ciphertext C using K with perfect secrecy, so that no one can guess the message from the cipher:
I(C : M) = 0.
After the transmission, we want to be able to decode the ciphertext: someone that knows the key and the
cipher should be able to obtain the message perfectly, i.e. H(M |C,K) = 0.
Show that this is only possible if the key contains at least as much randomness as the message, namely
H(K) ≥ H(M). Give an optimal algorithm for encoding and decoding.

First note that

I(C : M)− I(C : M |K) = I(M : K)− I(M : K|C)

= I(K : C)− I(K : C|M),

and that mutual information is non-negative. We introduce x = I(C : M |K), y = I(M : K|C) and
z = I(K : C|M) and, using I(C : M) = 0, we get

x− I(C;M) = x = y − I(M ;K) = z − I(K;C). (1)

Using the two conditions, we write

H(M) = H(M |C,K) + I(C : M) + I(K : M |C) = y, and

H(K) = H(K|M,C) + I(M : K) + I(M : C|K) ≥ y − x+ z.

However, since y ≥ x and z ≥ x (from (1)), we get H(K) ≥ H(M).
Given a message M of m bits, an optimal encoding algorithm could first compress the message to H(M) bits
and then use a secret and completely random binary key of length H(M) to encode it. Given a message bit
Mi and a secret code bit Ki, the ciphertext bit would be generated Ci = Mi⊕Ki using XOR. The decoding
would recreate the message bit Mi = Ci ⊕Ki and then decompress it.

Exercise 13.2 Secret Key Agreement

The Bell basis vectors are given by the Bell states

|Ψ1,2〉 :=
1√
2

(|00〉 ± |11〉), |Ψ3,4〉 :=
1√
2

(|01〉 ± |10〉). (2)

Furthermore, let us introduce an additional step in the algorithm right after sifting: Alice and Bob agree
on one of four equiprobable operations {1, X, iY, Z} that they perform on their corresponding qbit. After
performing, they forget which operation they have chosen.

a) Express the Pauli operators X ⊗X, iY ⊗ iY and Z ⊗ Z in the Bell basis.

This calculation is straight-forward. Let us apply these operators onto the basis vectors |Ψi〉 and write
the resulting vectors in terms of the |Ψi〉 and voilà, we have the operator in the Bell basis. For group
theory enthusiasts: the Bell states are irreducible representations of the permutation group, hence
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operators U⊗2 = U ⊗ U , U unitary, will not mix the symmetric subspace spanned by |Ψi〉, i = 1 . . . 3
with the antisymmetric subspace |Ψ4〉. Furthermore, the calculation shows that, in the Bell basis,

X ⊗X =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , iY ⊗ iY =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 and

Z ⊗ Z = (iY ·X)⊗ (iY ·X) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


are diagonal.

b) What is the most general shared state ρAB after these operations have been applied? Hint: The matrix
ρAB will have 3 degrees of freedom.

The most general matrix ρ̃AB is a positive hermitian matrix with trace 1:

ρ̃AB =


a e f g
e∗ b h i
f∗ h∗ c j
g∗ i∗ j∗ d

 .

Applying one of the operations and forgetting the outcome is equivalent to producing a mixture of the
different resulting states. The operation can thus be written as:

ρ̃AB 7→ ρAB =
1

4

(
ρ̃AB +X⊗2ρ̃ABX

⊗2 + Y ⊗2ρ̃ABY
⊗2 + Z⊗2ρ̃ABZ

⊗2
)

(3)

and we get

ρAB =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 . (4)

This matrix is real and positive if a, b, c, d ≥ 0 and the trace condition a+ b+ c+ d = 1 limits our degrees of
freedom to 3. From another perspective, the above operation symmetrizes our density matrix in the sense
that it now fulfills trBρAB = trAρAB = 1/2 as you can easily verify.

Let us denote the probability of detecting anti-correlation when measuring on the {|0〉, |1〉} or {|+〉, |−〉} basis
by ε+ and ε× respectively. Henceforth, we assume that ε+ = ε× = ε.

c) Find the projectors P+ and P× that describe anti-correlation measurements.

First, it is easy to see that

P+ = |01〉〈01|01 + |10〉〈10|10 = |Ψ3〉〈Ψ3|Ψ3 + |Ψ4〉〈Ψ4|Ψ4 (5)

in the Bell basis. If we measure in the {|+〉, |−〉} basis, we get

P× = |+−〉〈+−|+−+ |−+〉〈−+|−+= H⊗2P+H⊗2, (6)
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where H is the Hadamard matrix. One way to evaluate this is by expressing H⊗2 in the Bell basis.
This simple calculation results in

H⊗2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 . (7)

From this follows immediately that

P× = |Ψ2〉〈Ψ2|Ψ2 + |Ψ4〉〈Ψ4|Ψ4. (8)

d) For given ε, find the two additional constraints imposed on ρAB by

ε = tr(ρABP
+) = tr(ρABP

×). (9)

Given the results of c), this is trivial and we get the constraints

c+ d = ε, and b+ d = ε. (10)

We can now rewrite the density operator ρAB using only two parameters d and ε:

ρAB =


1 + d− 2ε 0 0 0

0 ε− d 0 0
0 0 ε− d 0
0 0 0 d

 . (11)

In the worst case, the adversary, Eve, holds a purification ρABE of ρAB. The secret key rate R is defined as
the number of secret bits that can be generated per shared qubit asymptotically. For our symmetric problem,
it is given by R = I(A : B)− I(A : E). A secret key can be generated if and only if R > 0.

e) Show that R > 0 can only be achieved if and only if S(A,B) < 1.

First, let us expand R = I(A : B) − I(A : E) = S(A) + S(B) − S(A,B) − S(A) − S(E) + S(A,E).
Since the state ρABE is pure, we get S(E) = S(A,B) and S(A,E) = S(B) (this follows from the
Schmidt decomposition). Furthermore, it can easily be verified that S(A) = S(B) = 1, i.e. if we trace
out one system in our diagonal ρAB , we will end up with a completely mixed state. Using these prop-
erties, we find that R = 2S(B)−2S(A,B) = 2

(
1−S(A,B)

)
, which is positive if and only if S(A,B) < 1.

f) For given ε, there is one degree of freedom left in ρAB. Maximize S(A,B) to get rid of it.

We want to maximize the function fε(d) given by the entropy S(A,B) (this entropy is essentially a
Shannon entropy, since the density matrix is diagonal):

fε(d) = −(1 + d− 2ε) log(1 + d− 2ε)− 2(ε− d) log(ε− d)− d log d. (12)

After some simplifications, you should get

∂fε
∂d

= − log
(ε− d)2

d(1 + d− 2ε)
, (13)
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which equals zero if and only if (ε − d)2 = d(1 + d − 2ε). Finally, we get d = ε2. Is this indeed a
maximum? The parameter d is bounded by 0 ≤ d ≤ ε by positivity constraints on ρAB . We now
compare fε(ε

2), fε(ε) and fε(0) to find the maximum. Using the binary entropy function H(ε), we
immediately find that

fε(ε
2) = 2H(ε), fε(ε) = H(ε) and (14)

fε(0) = −(1− 2ε) log(1− 2ε)− 2ε log ε. (15)

We now try to bound fε(0) ≤ 2H(ε) for ε ∈ [0, 1/2]. First, we substitute and simplify to get

(1− 2ε) log(1− 2ε) ≥ 2(1− ε) log(1− ε). (16)

Next, we note that the the inequality holds at ε = 0 and differentiate with regards to ε on both sides.
If the left-hand side increases faster than the right-hand side, the inequality is shown. We thus need
to show that

−2− 2 log(1− 2ε) ≥ −2− 2 log(1− ε). (17)

Hence, fε(0) ≤ 2H(ε) holds if log(1 − 2ε) ≤ log(1 − ε), which is obviously satisfied in the required
interval of ε. Thus, we have shown that d = ε2 maximizes the von Neumann entropy of ρAB .

g) Find an upper limit on ε, such that we can still generate a secret key. Hint: You will either have to
find ε numerically or give an approximation.

The error parameter ε must satisfy H(A,B) ≤ 1 or H(ε) ≤ 1/2. The binary entropy function certainly
satisfies this if

ε < 0.1.
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