Exercise 13.1 One-time Pad

Consider three random variables: a message M, a secret key K and a ciphertext C. We want to encode M as a ciphertext C using K with perfect secrecy, so that no one can guess the message from the cipher: $I(C: M)=0$.
After the transmission, we want to be able to decode the ciphertext: someone that knows the key and the cipher should be able to obtain the message perfectly, i.e. $H(M \mid C, K)=0$.
Show that this is only possible if the key contains at least as much randomness as the message, namely $H(K) \geq H(M)$. Give an optimal algorithm for encoding and decoding.

First note that

$$
\begin{aligned}
I(C: M)-I(C: M \mid K) & =I(M: K)-I(M: K \mid C) \\
& =I(K: C)-I(K: C \mid M)
\end{aligned}
$$

and that mutual information is non-negative. We introduce $x=I(C: M \mid K), y=I(M: K \mid C)$ and $z=I(K: C \mid M)$ and, using $I(C: M)=0$, we get

$$
\begin{equation*}
x-I(C ; M)=x=y-I(M ; K)=z-I(K ; C) \tag{1}
\end{equation*}
$$

Using the two conditions, we write

$$
\begin{aligned}
H(M) & =H(M \mid C, K)+I(C: M)+I(K: M \mid C)=y, \quad \text { and } \\
H(K) & =H(K \mid M, C)+I(M: K)+I(M: C \mid K) \geq y-x+z
\end{aligned}
$$

However, since $y \geq x$ and $z \geq x$ (from (1)), we get $H(K) \geq H(M)$.
Given a message M of m bits, an optimal encoding algorithm could first compress the message to $H(M)$ bits and then use a secret and completely random binary key of length $H(M)$ to encode it. Given a message bit M_{i} and a secret code bit K_{i}, the ciphertext bit would be generated $C_{i}=M_{i} \oplus K_{i}$ using XOR. The decoding would recreate the message bit $M_{i}=C_{i} \oplus K_{i}$ and then decompress it.

Exercise 13.2 Secret Key Agreement

The Bell basis vectors are given by the Bell states

$$
\begin{equation*}
\left|\Psi_{1,2}\right\rangle:=\frac{1}{\sqrt{2}}(|00\rangle \pm|11\rangle), \quad\left|\Psi_{3,4}\right\rangle:=\frac{1}{\sqrt{2}}(|01\rangle \pm|10\rangle) \tag{2}
\end{equation*}
$$

Furthermore, let us introduce an additional step in the algorithm right after sifting: Alice and Bob agree on one of four equiprobable operations $\{\mathbb{1}, X, i Y, Z\}$ that they perform on their corresponding qbit. After performing, they forget which operation they have chosen.
a) Express the Pauli operators $X \otimes X, i Y \otimes i Y$ and $Z \otimes Z$ in the Bell basis.

This calculation is straight-forward. Let us apply these operators onto the basis vectors $\left|\Psi_{i}\right\rangle$ and write the resulting vectors in terms of the $\left|\Psi_{i}\right\rangle$ and voilà, we have the operator in the Bell basis. For group theory enthusiasts: the Bell states are irreducible representations of the permutation group, hence
operators $U^{\otimes 2}=U \otimes U, U$ unitary, will not mix the symmetric subspace spanned by $\left|\Psi_{i}\right\rangle, i=1 \ldots 3$ with the antisymmetric subspace $\left|\Psi_{4}\right\rangle$. Furthermore, the calculation shows that, in the Bell basis,

$$
\begin{aligned}
& X \otimes X=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad i Y \otimes i Y=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } \\
& Z \otimes Z=(i Y \cdot X) \otimes(i Y \cdot X)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

are diagonal.
b) What is the most general shared state $\rho_{A B}$ after these operations have been applied? Hint: The matrix $\rho_{A B}$ will have 3 degrees of freedom.

The most general matrix $\tilde{\rho}_{A B}$ is a positive hermitian matrix with trace 1:

$$
\tilde{\rho}_{A B}=\left(\begin{array}{cccc}
a & e & f & g \\
e^{*} & b & h & i \\
f^{*} & h^{*} & c & j \\
g^{*} & i^{*} & j^{*} & d
\end{array}\right)
$$

Applying one of the operations and forgetting the outcome is equivalent to producing a mixture of the different resulting states. The operation can thus be written as:

$$
\begin{equation*}
\tilde{\rho}_{A B} \mapsto \rho_{A B}=\frac{1}{4}\left(\tilde{\rho}_{A B}+X^{\otimes 2} \tilde{\rho}_{A B} X^{\otimes 2}+Y^{\otimes 2} \tilde{\rho}_{A B} Y^{\otimes 2}+Z^{\otimes 2} \tilde{\rho}_{A B} Z^{\otimes 2}\right) \tag{3}
\end{equation*}
$$

and we get

$$
\rho_{A B}=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \tag{4}\\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right)
$$

This matrix is real and positive if $a, b, c, d \geq 0$ and the trace condition $a+b+c+d=1$ limits our degrees of freedom to 3 . From another perspective, the above operation symmetrizes our density matrix in the sense that it now fulfills $\operatorname{tr}_{B} \rho_{A B}=\operatorname{tr}_{A} \rho_{A B}=\mathbb{1} / 2$ as you can easily verify.

Let us denote the probability of detecting anti-correlation when measuring on the $\{|0\rangle,|1\rangle\}$ or $\{|+\rangle,|-\rangle\}$ basis by ε^{+}and ε^{\times}respectively. Henceforth, we assume that $\varepsilon^{+}=\varepsilon^{\times}=\varepsilon$.
c) Find the projectors P^{+}and P^{\times}that describe anti-correlation measurements.

First, it is easy to see that

$$
\begin{equation*}
P^{+}=|01\rangle\langle 01| 01+|10\rangle\langle 10| 10=\left|\Psi_{3}\right\rangle\left\langle\Psi_{3}\right| \Psi_{3}+\left|\Psi_{4}\right\rangle\left\langle\Psi_{4}\right| \Psi_{4} \tag{5}
\end{equation*}
$$

in the Bell basis. If we measure in the $\{|+\rangle,|-\rangle\}$ basis, we get

$$
\begin{equation*}
P^{\times}=|+-\rangle\langle+-|-+|-+\rangle\langle-+|+=H^{\otimes 2} P^{+} H^{\otimes 2} \tag{6}
\end{equation*}
$$

where H is the Hadamard matrix. One way to evaluate this is by expressing $H^{\otimes 2}$ in the Bell basis. This simple calculation results in

$$
H^{\otimes 2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{7}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

From this follows immediately that

$$
\begin{equation*}
P^{\times}=\left|\Psi_{2}\right\rangle\left\langle\Psi_{2}\right| \Psi_{2}+\left|\Psi_{4}\right\rangle\left\langle\Psi_{4}\right| \Psi_{4} \tag{8}
\end{equation*}
$$

d) For given ε, find the two additional constraints imposed on $\rho_{A B}$ by

$$
\begin{equation*}
\varepsilon=\operatorname{tr}\left(\rho_{A B} P^{+}\right)=\operatorname{tr}\left(\rho_{A B} P^{\times}\right) \tag{9}
\end{equation*}
$$

Given the results of c), this is trivial and we get the constraints

$$
\begin{equation*}
c+d=\varepsilon, \quad \text { and } \quad b+d=\varepsilon \tag{10}
\end{equation*}
$$

We can now rewrite the density operator $\rho_{A B}$ using only two parameters d and ε :

$$
\rho_{A B}=\left(\begin{array}{cccc}
1+d-2 \varepsilon & 0 & 0 & 0 \tag{11}\\
0 & \varepsilon-d & 0 & 0 \\
0 & 0 & \varepsilon-d & 0 \\
0 & 0 & 0 & d
\end{array}\right)
$$

In the worst case, the adversary, Eve, holds a purification $\rho_{A B E}$ of $\rho_{A B}$. The secret key rate R is defined as the number of secret bits that can be generated per shared qubit asymptotically. For our symmetric problem, it is given by $R=I(A: B)-I(A: E)$. A secret key can be generated if and only if $R>0$.
e) Show that $R>0$ can only be achieved if and only if $S(A, B)<1$.

First, let us expand $R=I(A: B)-I(A: E)=S(A)+S(B)-S(A, B)-S(A)-S(E)+S(A, E)$. Since the state $\rho_{A B E}$ is pure, we get $S(E)=S(A, B)$ and $S(A, E)=S(B)$ (this follows from the Schmidt decomposition). Furthermore, it can easily be verified that $S(A)=S(B)=1$, i.e. if we trace out one system in our diagonal $\rho_{A B}$, we will end up with a completely mixed state. Using these properties, we find that $R=2 S(B)-2 S(A, B)=2(1-S(A, B))$, which is positive if and only if $S(A, B)<1$.
f) For given ε, there is one degree of freedom left in $\rho_{A B}$. Maximize $S(A, B)$ to get rid of it.

We want to maximize the function $f_{\varepsilon}(d)$ given by the entropy $S(A, B)$ (this entropy is essentially a Shannon entropy, since the density matrix is diagonal):

$$
\begin{equation*}
f_{\varepsilon}(d)=-(1+d-2 \varepsilon) \log (1+d-2 \varepsilon)-2(\varepsilon-d) \log (\varepsilon-d)-d \log d \tag{12}
\end{equation*}
$$

After some simplifications, you should get

$$
\begin{equation*}
\frac{\partial f_{\varepsilon}}{\partial d}=-\log \frac{(\varepsilon-d)^{2}}{d(1+d-2 \varepsilon)} \tag{13}
\end{equation*}
$$

which equals zero if and only if $(\varepsilon-d)^{2}=d(1+d-2 \epsilon)$. Finally, we get $d=\varepsilon^{2}$. Is this indeed a maximum? The parameter d is bounded by $0 \leq d \leq \varepsilon$ by positivity constraints on $\rho_{A B}$. We now compare $f_{\varepsilon}\left(\varepsilon^{2}\right), f_{\varepsilon}(\varepsilon)$ and $f_{\varepsilon}(0)$ to find the maximum. Using the binary entropy function $H(\varepsilon)$, we immediately find that

$$
\begin{gather*}
f_{\varepsilon}\left(\varepsilon^{2}\right)=2 H(\varepsilon), \quad f_{\varepsilon}(\varepsilon)=H(\varepsilon) \quad \text { and } \tag{14}\\
f_{\varepsilon}(0)=-(1-2 \varepsilon) \log (1-2 \varepsilon)-2 \varepsilon \log \varepsilon \tag{15}
\end{gather*}
$$

We now try to bound $f_{\varepsilon}(0) \leq 2 H(\varepsilon)$ for $\varepsilon \in[0,1 / 2]$. First, we substitute and simplify to get

$$
\begin{equation*}
(1-2 \varepsilon) \log (1-2 \varepsilon) \geq 2(1-\varepsilon) \log (1-\varepsilon) \tag{16}
\end{equation*}
$$

Next, we note that the the inequality holds at $\varepsilon=0$ and differentiate with regards to ε on both sides. If the left-hand side increases faster than the right-hand side, the inequality is shown. We thus need to show that

$$
\begin{equation*}
-2-2 \log (1-2 \varepsilon) \geq-2-2 \log (1-\varepsilon) \tag{17}
\end{equation*}
$$

Hence, $f_{\varepsilon}(0) \leq 2 H(\varepsilon)$ holds if $\log (1-2 \varepsilon) \leq \log (1-\varepsilon)$, which is obviously satisfied in the required interval of ε. Thus, we have shown that $d=\epsilon^{2}$ maximizes the von Neumann entropy of $\rho_{A B}$.
g) Find an upper limit on ε, such that we can still generate a secret key. Hint: You will either have to find ε numerically or give an approximation.

The error parameter ε must satisfy $H(A, B) \leq 1$ or $H(\varepsilon) \leq 1 / 2$. The binary entropy function certainly satisfies this if

$$
\varepsilon<0.1
$$

