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Exercise 9.1 The Choi-Jamiolkowski Isomorphism

Consider the family of mappings between operators on two-dimensional Hilbert spaces

Eα : ρ 7→ (1− α)
12

2
+ α

(12

2
+XρZ + ZρX

)
, 0 ≤ α ≤ 1. (1)

a) Use the Bloch representation to determine for what range of α these mappings are positive. What
happens to the Bloch sphere?

The two-dimensional state space S(H2) is isomorphic to the unit sphere on R3:

ρ =
1

2

(
1 + z x− iy
x+ iy 1− z

)
, x2 + y2 + z2 ≤ 1.

We apply the mapping to this state and get

ρ′ =
1

2

(
1 + 2αx 2αz

2αz 1− 2αx

)
.

The mapping is trace-preserving, hence it is positive if and only if the determinant of ρ′ is positive for
all allowed values of x, y and z.

det ρ′ =
1

4
(1− 4α2x2 − 4α2z2) ≥ 1

4
− α2.

Hence, the mapping is positive for 0 ≤ α ≤ 1
2 .

b) Calculate the analogs of these mappings in state space by applying the mappings to the fully entangled
state as follows:

σα = (Eα ⊗ I)
[
|Ψ〉〈Ψ|

]
, |Ψ〉 =

1√
2

(|00〉+ |11〉). (2)

For what range of α is the mapping a CPM?

First, not that in the computational basis, we can write the fully entangled states as

|Ψ〉〈Ψ| = 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

The mapping Eα consists of a mapping to the identity and multiplications by the Pauli matrices X and
Z. The latter operations can be seen as multiplications of |Ψ〉〈Ψ| from left and right by the matrices

X ⊗ 12 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , Z ⊗ 12 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


1



respectively. Hence the state σα corresponding to Eα is given by

σα = (Eα ⊗ I)
[
|Ψ〉〈Ψ|

]
= 14 + α

(
(X ⊗ 12)|Ψ〉〈Ψ|(Z ⊗ 12) + (Z ⊗ 12)|Ψ〉〈Ψ|(X ⊗ 12)

)

=
1

4


1 2α 2α 0

2α 1 0 −2α
2α 0 1 −2α
0 −2α −2α 1

 .

The eigenvalues σα are given by

λ1α =
1

4
− α, λ2α = λ3α =

1

4
, λ4α =

1

4
+ α.

Therefore, the mapping Eα is a CPM for 0 ≤ α ≤ 1
4 .

c) Find an operator-sum representation of Eα for α = 1/4.

The operator-sum representation can be found via the isometry Uα that corresponds to the purification
of σα. To purify σα, let us first list its eigenvectors:

|ν1〉 =
1

2


−1
1
1
1

 , |ν2〉 =
1√
2


0
−1
1
0

 , |ν3〉 =
1√
2


1
0
0
1

 , |ν4〉 =
1

2


−1
−1
−1
1

 .

They are independent of α. Alternatively, using the Schmidt decomposition, we can write

|νi〉 =
1√
2

(
|0〉 ⊗ |θi0〉+ |1〉 ⊗ |θi1〉

)
as can easily be verified as all eigenvectors are completely mixed on the first subsystem. The reduced
vectors are given by

|θ10〉 =
1√
2

(
− |0〉+ |1〉

)
, |θ11〉 =

1√
2

(
|0〉+ |1〉

)
, |θ20〉 = −|1〉, |θ21〉 = |0〉

|θ30〉 = |0〉, |θ31〉 = |1〉, |θ40〉 =
1√
2

(
− |0〉 − |1〉

)
, |θ41〉 =

1√
2

(
− |0〉+ |1〉

)
The purification |Θα〉 of σα can now be written as

|Θα〉 =

4∑
i=1

√
λiα|νi〉 ⊗ |i〉R

=
1√
2

1∑
j=0

|j〉 ⊗
( 4∑
i=1

√
λiα|θij〉 ⊗ |i〉R

)
.

We introduced a reference system HR with basis {|i〉R}i, i ∈ {1, 2, 3, 4} to do the purification. This
defines an isometry Uα from our original two-dimensional Hilbert space to a 8-dimensional Hilbert
space including HR as follows:

Uα : ρ 7→ U ρU†, U =

1∑
j=0

(
4∑
i=1

√
λiα|θij〉 ⊗ |i〉R

)
〈j|.
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The original CPM Eα can be recovered by tracing out the reference system HR:

Eα(ρ) = trR
(
Uα(ρ)

)
.

Thus, we finally get a set of operators

Mk =
1√
λkα

(
12 ⊗ 〈k|R

)
U = |θk0 〉〈0|+ |θk1 〉〈1|.

Or, explicitly

M1 =
1√
2

(
−1 1
1 1

)
, M2 =

(
0 1
−1 0

)
, M3 =

(
1 0
0 1

)
, M4 =

1√
2

(
−1 −1
−1 1

)
.

such that

Eα : ρ 7→
4∑
k=1

λkαMk ρ (Mk)†.

Exercise 9.2 Uncertainty relations

In Section 6.2 in the script, we consider the measurements (cf. (6.24) and (6.25))

Γ̃x = W ∗(P̃x ⊗ id)W and (3)

Γz = W ∗(id⊗ Pz)W, (4)

with W , P̃x and Pz as defined in the script. Show that they can be written as (6.26) and (6.27), i.e.,

Γz =
1

2
(id + (−1)z cos 2θσz) (5)

Γ̃x =
1

2
(id + (−1)x sin 2θσx) . (6)

Starting with Γz, we find

Γz = W ∗(1⊗ Pz)W (7)

=
∑
z′z′′

|z′〉〈z′|z′′〉〈z′′|〈ϕz′ |z〉〈z|ϕz′′〉 (8)

=
∑
z′

|z′〉〈z′| |〈ϕz′ |z〉|2 (9)

Expressed as matrices in the |z〉 basis, the operators are

Γ0 =

(
cos2 θ 0

0 sin2 θ

)
and Γ1 =

(
sin2 θ 0

0 cos2 θ

)
. (10)

Clearly the two form a valid POVM. In terms of Pauli operators, the POVM elements are

Γz = 1
2 (1 + (−1)z cos 2θ σz) (11)

which highlights the fact that Γ is sort of a noisy version of a measurement in the σz basis. Indeed, if θ = 0,
then Γ is just a measurement in that basis. The identity contributions to the POVM elements serve to make
the two outcomes more equally-likely, i.e. they reduce the information the POVM collects about the σz basis.
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For Γ̃x we have

Γ̃x = (
∑
z1

|z1〉〈z1| ⊗ 〈ϕz1 |)( 1
2

∑
zz′

(−1)x(z+z
′)|z〉〈z′| ⊗ 1)(

∑
z2

|z2〉〈z2| ⊗ |ϕz2〉) (12)

= 1
2

∑
zz′

(−1)x(z+z
′)|z〉〈z′| 〈ϕz|ϕz′〉 (13)

Expressed as matrices in the |z〉 basis, we have

Γ̃x = 1
2

(
1 (−1)x sin 2θ

(−1)x sin 2θ 1

)
. (14)

Again this is a sort of noisy measurement, but now of the observable σx. In terms of Pauli operators, the
Γ̃x take the form

Γ̃x = 1
2 (1 + (−1)x sin 2θ σx). (15)

Exercise 9.3 “All-or-Nothing” Violation of Local Realism

Consider the three qubit state |GHZ〉 = 1√
2

(|000〉 − |111〉)123, the Greenberger-Horne-Zeilinger state.

a) Show that |GHZ〉 is a simultaneous eigenstate of X1Y2Y3, Y1X2Y3, and Y1Y2X3 with eigenvalue +1, where
X and Y are the corresponding Pauli operators.

Observe that the three operators commute, since X and Y anticommute. Since the state is invariant under
permutations of the three systems, we only need to check that it is an eigenstate of the first operator, since
the others are generated from it by permutation. Both X and Y flip bits in the standard basis, but Y adds
an extra −i if the input is |0〉 and i if |1〉. Thus XY Y |GHZ〉 = 1√

2
(−i)2|111〉 − (i2)|000〉 = |GHZ〉.

b) Use the results of part (a) to argue by Einstein locality that each qubit has well-defined values of X and
Y . For qubit j, denote these values by xj and yj . We say that these values are elements of reality. What
would local realism, i.e. the assumption of realistic values that are undisturbed by measurements on other
qubits, predict for the product of the outcomes of measurements of X on each qubit?

Measuring Y on any two systems determines the X value on the third, so absent any “spooky action at a
distance”, the X value should be well-defined. Similarly, measurements of X and Y on any two determine
the Y value of the third, so it should also be well-defined. For X measurements on each spin, the product
x1x2x3 = 1 since x1x2x3 = (x1y2y3)(y1x2y3)(y1y2x3) (if xj and yk all take the values ±1.)

c) What does quantum mechanics predict for the product of the outcomes of measurements of X on each
qubit?

Measuring X on each system and taking the product is the same as measuring X1X2X3. |GHZ〉 is clearly
an eigenstate of this operator with eigenvalue −1, so X1X2X3 = −1.
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