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Have a look at a nice and easy paper for bedtime reading: http://iopscience.iop.org/1464-4266/5/3/357
It is about photonical implementation of a simple POVM measurement.

Exercise 7.1 Generalized Measurement by Direct (Tensor) Product

Consider an apparatus whose purpose is to make an indirect measurement on a two-level system, A, by first
coupling it to a three-level system, B, and then making a projective measurement on the latter. B is initially
prepared in the state |0〉 and the two systems interact via the unitary UAB as follows:

|0〉A|0〉B → 1√
2

(|0〉A|1〉B + |0〉A|2〉B)

|1〉A|0〉B → 1√
6

(2|1〉A|0〉B + |0〉A|1〉B − |0〉A|2〉B)

1. Calculate the measurement operators acting on A corresponding to a measurement on B in the canon-
ical basis |0〉, |1〉, |2〉.

Name the output states |φ00〉AB and |φ01〉AB , respectively. Although the specification of U is not
complete, we have the pieces we need, and we can write UAB =

∑
jk |φjk〉〈jk| for some states |φ10〉

and |φ11〉. The measurement operators Ak are defined implicitly by

UAB |ψ〉A|0〉B =
∑
k

(Ak)A|ψ〉A|k〉B .

Thus Ak = B〈k|UAB |0〉B =
∑

j B〈k|φj0〉AB〈j|A, which is an operator on system A, even though it
might not look like it at first glance. We then find

A0 =
2√
6

(
0 0
0 1

)
, A1 =

1√
6

( √
3 1

0 0

)
, A2 =

1√
6

( √
3 −1

0 0

)
.

2. Calculate the corresponding POVM elements. What is their rank? Onto which states do they project?

The corresponding POVM elements are given by Ej = A†jAj :

E0 =
2

3

(
0 0
0 1

)
, E1 =

1

6

(
3
√

3√
3 1

)
, E2 =

1

6

(
3 −

√
3

−
√

3 1

)
.

They are each rank one (which can be verified by calculating the determinant). The POVM elements
project onto trine states |1〉, (

√
3|0〉 ± |1〉)/2.

3. Suppose A is in the state |ψ〉A = 1√
2
(|0〉A + |1〉A). What is the state after a measurement, averaging

over the measurement result?

The averaged post-measurement state is given by ρ′ =
∑

j AjρA
†
j . In this case we have ρ′ = diag(2/3, 1/3).

Exercise 7.2 Unambiguous State Discrimination

Suppose that Bob has a state ρ that can either be ρ1 and ρ2, but he does not know which one. Bob wants
to guess which state he has, and he wants to never guess wrong. He can achieve that, if he is allowed to not
make a guess at all based on result of his measurement.
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1. Bob’s measurement surely has outcomes E1 and E2 corresponding to ρ1 and ρ2, respectively. Assuming
the two states ρj are pure, ρj = |φj〉〈φj | for some |φj〉, what is the general form of Ej such that
Pr(Ej |ρk) = 0 for j 6= k?

Since the two signal states are pure, they span a two-dimensional subspace and without loss of generality
we can restrict the support of the POVM elements to this subspace—an effective qubit. Suppose Ej are
rank-one operators Ej = αk|ξj〉〈ξj | (if they aren’t, decompose them into a set of rank-one operators).
Then we want to fulfill 0 = Pr(Ej |ρk) = αk|〈ξj |φk〉|2, which can only work if |ξj〉 = |φ⊥k 〉. That is, |ξ0〉
is the state orthogonal to |φ1〉 and vice versa; the unambiguous measurement works by rejecting rather
than confirming one of the two hypotheses. Thus Ej = αj |φ⊥k 〉〈φ⊥k | for j 6= k and some 0 ≤ αk ≤ 1.

2. Can these two elements alone make up a POVM? Is there generally an inconclusive result E??

Since 〈φ1|φ2〉 6= 0 in general,
∑2

j=1Ej 6= 1, and therefore a third measurement element is needed. This
outcome tells Bob nothing about which signal was sent, so it is an inconclusive result E?.

3. Assuming ρ1 and ρ2 are sent with equal probability, what is the optimal unambiguous measurement,
i.e. the unambigous measurement with the smallest probability of an inconclusive result?

We know that a general unambiguous discrimination POVM has the form

E0 = α0|φ⊥1 〉〈φ⊥1 |, E1 = α1|φ⊥0 〉〈φ⊥0 |, E? = 1− E0 − E1.

The sum-to-unity constraint is enforced by the form of E? and E0/1 are positive by construction, so
the only outstanding constraint is that E? be positive. Symmetry between the signal states implies
that α0 = α1, leaving

1− α(|φ⊥0 〉〈φ⊥0 |+ |φ⊥1 〉〈φ⊥1 |) ≥ 0.

Thus we should choose the largest value of α consistent with this constraint. We can find a closed-form
expression in terms of Bloch-sphere quantities. Let |φj〉 have Bloch vector n̂j , meaning |φ⊥j 〉 has Bloch
vector −n̂j . Then the constraint becomes

1− 1
2α (1− n̂1 · ~σ + 1− n̂0 · ~σ) = (1− α)1 + α(n̂0 + n̂1) · ~σ ≥ 0.

We know the eigenvalues of a general expression in terms of the Pauli operators and identity from the
lecture on qubits, namely λ± = (1− α)± α|n̂0 + n̂1|. Thus, the largest possible α is

α =
1

1 + |n̂0 + n̂1|
.

When the |φj〉 are orthogonal, n̂0 + n̂1 = 0 and the unambiguous measurement goes over into the usual
projection measurement.

Exercise 7.3 Decompositions of Density Matrices

Consider a mixed state ρ with two different pure state decompositions

ρ =

d∑
k=1

λk|k〉〈k| =
n∑

`=1

p`|φ`〉〈φ`|,

the former being the eigendecomposition so that {|k〉} is an orthonormal basis.

1. Show that the probability vector ~λ majorizes the probability vector ~p, which means that there exists a
doubly stochastic matrix Tjk such that ~p = T~λ. The defining property of doubly stochastic, or bis-
tochastic, matrices is that

∑
k Tjk =

∑
j Tjk = 1.

Hint: Observe that for a unitary matrix Ujk, Tjk = |Ujk|2 is doubly stochastic.
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By the HJW theorem we have
√
p`|φ`〉 =

∑
k

√
λkUk`|k〉 for some unitary matrix Uk`. Taking the

norm of each expression results in

p` =
∑
k

λk|Uk`|2

since |k〉 is an orthonormal basis. Thus ~λ majorizes ~p. Note that we cannot turn this argument around

to say that ~p majorizes λ since starting from
√
λk|k〉 =

∑
`

√
p`U

†
k`|φ`〉 we cannot easily compute the

norm of the righthandside since the |φk〉 are not orthogonal.

2. The uniform probability vector ~u = (1/n, . . . , 1/n) is invariant under the action of an n × n doubly
stochastic matrix. Is there an ensemble decomposition of ρ such that p` = 1/n for all `?
Hint: Try to show that ~u is majorized by any other probability distribution.

~u is majorized by every other distribution ~p (of length less or equal to n) since we can use the doubly
stochastic matrix Tjk = 1/n for all j, k to produce ~u = T~p. Therefore, to find a decomposition
in which all the weights are identical, we need to find a unitary matrix whose entries all have the
same magnitude, namely 1/

√
n. One choice that exists in every dimension is the Fourier transform

Fjk = 1√
n
ωjk, where ω = exp(2πi/n). The vectors in the decomposition are therefore

|φ`〉 =
∑
k

√
λkω

k`|k〉.

Exercise 7.4 Broken Measurement

Alice and Bob share a state |Ψ〉AB, and Bob would like to perform a measurement described by projectors
Pj on his part of the system, but unfortunately his measurement apparatus is broken. He can still perform
arbitrary unitary operations, however. Meanwhile, Alice’s measurement apparatus is in good working order.
Show that there exist projectors P ′j and unitaries Uj and Vj so that

|Ψj〉 = (1⊗ Pj) |Ψ〉 = (Uj ⊗ Vj)
(
P ′j ⊗ 1

)
|Ψ〉.

(Note that the state is unnormalized, so that it implicitly encodes the probability of outcome j.) Thus Alice
can assist Bob by performing a related measurement herself, after which they can locally correct the state.
Hint: Work in the Schmidt basis of |Ψ〉.

Start with the Schmidt decomposition of |Ψ〉AB :

|Ψ〉AB =
∑
k

√
pk|αk〉|βk〉.

Bob’s measurement projectors Pj can be expanded in his Schmidt basis as Pj =
∑

k` c
j
k`|βk〉〈β`|. In order for

Alice’s measurement to replicate Bob’s, the probabilities of the various outcomes must be identical, which
is to say

〈Ψ|(Pj)B |Ψ〉AB = 〈Ψ|(P ′j)A|Ψ〉AB ⇒
∑
k

pk〈αk|P ′j |αk〉 =
∑
k

pk〈βk|Pj |βk〉.

Thus Alice should choose P ′j =
∑

k` c
j
k`|αk〉〈α`|. The post-measurement states when Alice or Bob measures

are given by

|Ψ′j〉 =
∑
k`

√
pkc

j
k`|α`〉|βk〉 and |Ψj〉 =

∑
k`

√
pkc

j
k`|αk〉|β`〉,

respectively. Neither is in Schmidt form, but note that they are related by a simple swap operation
|αj〉A|βk〉B ↔ |αk〉A|βj〉B , which is unitary; call itWAB so that |Ψ′j〉 = W |Ψj〉. Now let U ′j⊗V ′j be unitary op-

erators which transform |Ψj〉 to Schmidt form in the |αj〉|βk〉 basis. That is, (U ′j⊗V ′j )|Ψj〉 =
∑

k

√
pjk|αk〉|βk〉,
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and it follows that W (U ′j ⊗ V ′j )|Ψj〉 = (U ′j ⊗ V ′j )|Ψj〉. Therefore V ′j ⊗ U ′j takes |Ψ′j〉 to Schmidt form:

(V ′j ⊗ U ′j)|Ψ′j〉 = WW †(V ′j ⊗ U ′j)W |Ψj〉 = W (U ′j ⊗ V ′j )|Ψj〉 =
∑
k

√
pjk|αk〉|βk〉,

and thus

(U ′j ⊗ V ′j )|Ψj〉 = (V ′j ⊗ U ′j)|Ψ′j〉
⇒ (U ′j ⊗ V ′j )(1⊗ Pj)|Ψ〉 = (V ′j ⊗ U ′j)(P ′j ⊗ 1)|Ψ〉

⇒ (1⊗ Pj)|Ψ〉 = (U ′†j V
′
j ⊗ V

′†
j U

′
j)(P

′
j ⊗ 1)|Ψ〉.
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