Exercise 5.1 Bloch sphere

We will see that density operators of two-level systems (qubits) can always be expressed as

$$
\begin{equation*}
\rho=\frac{1}{2}(\mathbb{1}+\vec{r} \cdot \vec{\sigma}) \tag{1}
\end{equation*}
$$

where $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ and $\vec{r}=\left(r_{x}, r_{y}, r_{z}\right),|\vec{r}| \leq 1$ is the so-called Bloch vector, that gives us the position of a point in a unit ball. The surface of that ball is usually known as the Bloch sphere.

1. Using (1):
1) Find and draw in the ball the Bloch vectors of a fully mixed state and the pure states that form three bases, $\{|\uparrow\rangle,|\downarrow\rangle\},\{|+\rangle,|-\rangle\}$ and $\{|\circlearrowleft\rangle,|\circlearrowright\rangle\}$.
state density matrix Bloch vector in the figure

2) Find and diagonalise the states represented by Bloch vectors $\vec{r}_{1}=\left(\frac{1}{2}, 0,0\right)$ and $\vec{r}_{2}=$ $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$.
We have

$$
\begin{aligned}
\rho_{1} & =\frac{1}{2}\left[\mathbb{1}+\left(\frac{1}{2}, 0,0\right) \cdot\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)\right] \\
& =\frac{1}{2}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right] \\
& =\frac{1}{4}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \Rightarrow \quad \text { Eigenvalues: }\left\{\frac{1}{4}, \frac{3}{4}\right\},
\end{aligned}
$$

$$
\begin{aligned}
\rho_{2} & =\frac{1}{2}\left[\mathbb{1}+\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \cdot\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)\right] \\
& =\frac{1}{2}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right] \\
& =\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
\sqrt{2}+1 & 1 \\
1 & \sqrt{2}-1
\end{array}\right) \Rightarrow \text { Eigenvalues: }\{0,1\} .
\end{aligned}
$$

The first Bloch vector lies inside the ball $\left(\left|\vec{r}_{1}=\frac{1}{4}\right|\right)$, and the state that it represents is mixed. The Bloch vector of the second state is on the surface of the sphere, and that state is pure.
2. Show that the operator ρ defined in (1) is a valid density operator for any vector \vec{r} with $|\vec{r}| \leq 1$ by proving it fulfills the following properties:

1) Hermiticity: $\rho=\rho^{\dagger}$.

All Pauli matrices are Hermitian and the vector \vec{r} is real, so the result comes from direct application of (1).
2) Positivity: $\rho \geq 0$.

The general form of a state given by (1) is

$$
\rho=\frac{1}{2}\left(\begin{array}{cc}
1+r_{z} & r_{x}-i r_{y} \tag{2}\\
r_{x}+i r_{y} & 1-r_{z}
\end{array}\right) \Rightarrow \text { Eigenvalues: }\left\{\frac{1-|\vec{r}|}{2}, \frac{1+|\vec{r}|}{2}\right\} .
$$

Since $0 \leq|\vec{r}| \leq 1$, the eigenvalues are non negative.
3) Normalisation: $\operatorname{Tr}(\rho)=1$.

From (2) we have that

$$
\operatorname{Tr}(\rho)=\frac{1-|\vec{r}|}{2}+\frac{1+|\vec{r}|}{2}=1 .
$$

3. Now do the converse: show that any two-level density operator may be written as (1).

One can always expand an operator A in an orthonormal basis $\left\{e_{i}\right\}_{i}$ as

$$
A=\sum_{i}\left(A, e_{i}\right) e_{i},
$$

where the inner product (A, B) is defined as $\operatorname{Tr}\left(A^{*} B\right)$.
The three Pauli matrices and the identity form a basis for 2×2 matrices, \mathcal{B}. However, this basis is not normalized. A normalised basis would be

$$
\begin{equation*}
\mathcal{B}^{\prime}=\left\{\frac{\sigma_{x}}{\sqrt{2}}, \frac{\sigma_{y}}{\sqrt{2}}, \frac{\sigma_{z}}{\sqrt{2}}, \frac{\mathbb{1}}{\sqrt{2}}\right\} . \tag{3}
\end{equation*}
$$

We can expand any 2×2 matrix in this basis, and in particular any two-level density operator:

$$
\begin{align*}
\rho & =\operatorname{Tr}(\rho \mathbb{1}) \frac{\mathbb{1}}{2}+\sum_{i} \operatorname{Tr}\left(\rho \sigma_{i}\right) \frac{\sigma_{i}}{2} \tag{4}\\
& =\frac{\mathbb{1}}{2}+\frac{1}{2}\left(\operatorname{Tr}\left(\rho \sigma_{x}\right), \operatorname{Tr}\left(\rho \sigma_{y}\right), \operatorname{Tr}\left(\rho \sigma_{z}\right)\right) \cdot\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right) \tag{5}\\
& =\frac{\mathbb{1}}{2}\left(r_{x}, r_{y}, r_{z}\right) \cdot\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right) \tag{6}
\end{align*}
$$

Where we used the property of density operators $\operatorname{Tr}(\rho)=1$. To obtain the bound $|\vec{r}| \leq 1$ we use the fact that for any density operator $\operatorname{Tr}\left(\rho^{2}\right) \leq 1$ (because all eigenvalues $\lambda_{j} \leq 1$ and $\sum \lambda_{j}=1$) and get

$$
\begin{aligned}
1 & \geq \operatorname{Tr}\left(\rho^{2}\right) \\
& =\operatorname{Tr}\left(\left[\frac{\mathbb{1}}{2}+\sum_{i} r_{i} \frac{\sigma_{i}}{2}\right]\left[\frac{\mathbb{1}}{2}+\sum_{i} r_{i} \frac{\sigma_{i}}{2}\right]\right) \\
& =\frac{1}{4} \operatorname{Tr}\left(\left[1+\sum_{i} r_{i}{ }^{2}\right] \mathbb{1}\right) \quad \text { (because } \mathcal{B}^{\prime} \text { is an orthonormal basis) } \\
& =\frac{1}{2}\left(1+\sum_{i} r_{i}^{2}\right) \\
1 & \geq \sum_{i} r_{i}{ }^{2} .
\end{aligned}
$$

4. Check that the surface of the ball - the Bloch sphere - is formed by all the pure states. For pure states, $\operatorname{Tr}\left(\rho^{2}\right)=1$ and we can replace all " \geq " with " $=$ " above, obtaining $|\vec{r}|=1$.
5. Discuss the analog of the Bloch sphere in higher dimensions. What can be said? For instance, where are the pure states?
http://en.wikipedia.org/wiki/Bloch_sphere\#A_generalization_for_pure_states :)

Exercise 5.2 The Hadamard Gate

An important qubit transformation in quantum information theory is the Hadamard gate. In the basis of $\sigma_{\hat{z}}$, it takes the form

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{7}\\
1 & -1
\end{array}\right)
$$

That is to say, if $|0\rangle$ and $|1\rangle$ are the $\sigma_{\hat{z}}$ eigenstates, corresponding to eigenvalues +1 and -1 , respectively, then

$$
\begin{equation*}
H=\frac{1}{\sqrt{2}}(|0\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 0|-|1\rangle\langle 1|) \tag{8}
\end{equation*}
$$

1. Show that H is unitary.

A matrix U is unitary when $U^{\dagger} U=\mathbb{1}$. In fact, $H^{\dagger}=H$, so we just need to verify that $H^{2}=\mathbb{1}$, which is the case.
2. What are the eigenvalues and eigenvectors of H ?

Since $H^{2}=\mathbb{1}$, its eigenvalues must be ± 1. If both eigenvalues were equal, it would be proportional to the identity matrix. Thus, one eigenvalue is +1 and the other -1 . By direct calculation we can find that the (normalized) eigenvectors are

$$
\begin{equation*}
\left|\lambda_{ \pm}\right\rangle= \pm \frac{\sqrt{2 \pm \sqrt{2}}}{2}|0\rangle+\frac{1}{\sqrt{2(2 \pm \sqrt{2})}}|1\rangle \tag{9}
\end{equation*}
$$

3. What form does H take in the basis of $\sigma_{\hat{x}}$? $\sigma_{\hat{y}}$?

The eigenbasis of $\sigma_{\hat{x}}$ is formed by the two states $\left|\hat{x}_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)$. From the form of H given in (8), it is clear that we can express H as

$$
\begin{align*}
H & =\left|\hat{x}_{+}\right\rangle\langle 0|+\left|\hat{x}_{-}\right\rangle\langle 1| \quad \text { or } \tag{10}\\
H & =|0\rangle\left\langle\hat{x}_{+}\right|+|1\rangle\left\langle\hat{x}_{-}\right| \tag{11}
\end{align*}
$$

The latter form follows immediately from the first since $H^{\dagger}=H$. Finally, we can express the $\sigma_{\hat{z}}$ basis $|0 / 1\rangle$ in terms of the $\sigma_{\hat{x}}$ basis as $|0\rangle=\frac{1}{\sqrt{2}}\left(\left|\hat{x}_{+}\right\rangle+\left|\hat{x}_{-}\right\rangle\right)$and $|1\rangle=\frac{1}{\sqrt{2}}\left(\left|\hat{x}_{+}\right\rangle-\right.$ $\left.\left|\hat{x}_{-}\right\rangle\right)$. Thus, if we replace $|0\rangle$ and $|1\rangle$ by these expressions in the equation for H we find

$$
\begin{equation*}
H=|0\rangle\left\langle\hat{x}_{+}\right|+|1\rangle\left\langle\hat{x}_{-}\right|=\frac{1}{\sqrt{2}}\left(\left|\hat{x}_{+}\right\rangle\left\langle\hat{x}_{+}\right|+\left|\hat{x}_{-}\right\rangle\left\langle\hat{x}_{+}\right|+\left|\hat{x}_{+}\right\rangle\left\langle\hat{x}_{-}\right|-\left|\hat{x}_{-}\right\rangle\left\langle\hat{x}_{-}\right|\right) . \tag{12}
\end{equation*}
$$

Evidently, H has exactly the same representation in the $\sigma_{\hat{x}}$ basis! In retrospect, we should have anticipated this immediately once we noticed that H interchanges the $\sigma_{\hat{z}}$ and $\sigma_{\hat{x}}$ bases.

For $\sigma_{\hat{y}}$, we can proceed differently. What is the action of H on the $\sigma_{\hat{y}}$ eigenstates? These are $\left|\hat{y}_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm i|1\rangle)$. Thus,

$$
\begin{align*}
H\left|\hat{y}_{ \pm}\right\rangle & =\frac{1}{\sqrt{2}}(H|0\rangle \pm i H|1\rangle) \tag{13}\\
& =\frac{1}{2}(|0\rangle+|1\rangle \pm i|0\rangle \mp i|1\rangle) \tag{14}\\
& =\left(\frac{1 \pm i}{2}\right)|0\rangle+\left(\frac{1 \mp i}{2}\right)|1\rangle \tag{15}\\
& =\frac{1}{\sqrt{2}} e^{i \pm \frac{\pi}{4}}\left(|0\rangle+\left(\frac{1 \mp i}{1 \pm i}\right)|1\rangle\right) \tag{16}\\
& =\frac{1}{\sqrt{2}} e^{i \pm \frac{\pi}{4}}(|0\rangle \mp i|1\rangle) \tag{17}\\
& =e^{i \pm \frac{\pi}{4}}\left|\hat{y}_{\mp}\right\rangle \tag{18}
\end{align*}
$$

Therefore, the Hadamard operation just swaps the two states in the basis (note that if we used a different phase convention for defining the $\sigma_{\hat{y}}$ eigenstates, there would be extra phase factors in this equation). So, $H=\left(\begin{array}{cc}0 & e^{-i \frac{\pi}{4}} \\ e^{i \frac{\pi}{4}} & 0\end{array}\right)$ in this basis.
4. Give a geometric interpretation of the action of H in terms of the Bloch sphere.

All unitary operators on a qubit are rotations of the Bloch sphere by some angle about some axis. Since $H^{2}=\mathbb{1}$, it must be a π rotation. Because the \hat{y}-axis is interchanged under H, the axis must lie somewhere in the $\hat{x}-\hat{z}$ plane. Finally, since H interchanges the $\sigma_{\hat{x}}$ and $\sigma_{\hat{z}}$ bases, it must be a rotation about the $\hat{m}=\frac{1}{\sqrt{2}}(\hat{x}+\hat{z})$ axis.

