Exercise 3.1 Smooth min-entropy in the i.i.d. limit

Let $\left(X_{i}, Y_{i}\right)$ be a sequence of n i.i.d pairs of random variables, meaning that $P_{X_{1} Y_{1} \ldots X_{n} Y_{n}}=$ $P_{X Y}^{\times n}$. Also, let $\epsilon_{n}=\frac{\sigma^{2}}{n \delta^{2}}$ for some $\delta>0$, and σ^{2} be the variance of the conditional surprisal $h(X \mid Y)=-\log _{2} P_{X \mid Y}$. Use the weak law of large numbers to prove the asymptotic equipartition lemma:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} H_{\min }^{\epsilon_{n}}\left(X_{1} \ldots X_{n} \mid Y_{1} \ldots Y_{n}\right)_{P^{n}}=H(X \mid Y)_{P_{X Y}} . \\
& \lim _{n \rightarrow \infty} \frac{1}{n} H_{\max }^{\epsilon_{n}}\left(X_{1} \ldots X_{n} \mid Y_{1} \ldots Y_{n}\right)_{P^{n}}=H(X \mid Y)_{P_{X Y}} .
\end{aligned}
$$

In exercise sheet 1 we have shown that Chebyshev's inequality for i.i.d. variables given by

$$
P\left[\left(\frac{1}{n} \sum_{i} S_{i}-\mu\right)^{2}>\nu\right] \leq \frac{\sigma^{2}}{n \nu^{2}}
$$

Setting $S_{i}=h_{P}\left(x_{i} \mid y_{i}\right)=-\log P_{X \mid Y}\left(x_{i} \mid y_{i}\right)$ we get $\mu=H(X \mid Y)$ and thus

$$
P\left[\left(\frac{1}{n} \sum_{i} h_{P}\left(x_{i} \mid y_{i}\right)-H(X \mid Y)\right)^{2}<\nu\right] \geq 1-\frac{\sigma^{2}}{n \nu^{2}}
$$

for any ν. This knowledge allows us to restrict the set of vector pairs (\vec{x}, \vec{y}) to typical outcomes, namely we introduce a subset \mathcal{G}_{ν} of $\mathcal{X}^{\times n}$:

$$
\mathcal{G}_{\nu}=\left\{(\vec{x}, \vec{y}) \in \mathcal{X}^{\times n}:\left(\frac{1}{n} \sum_{i} h_{P}\left(x_{i} \mid y_{i}\right)-H(X \mid Y)\right)^{2}<\nu\right\} .
$$

The Chebyshev's inequality can now be restated simply as

$$
P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right]=P_{(\vec{X}, \vec{Y})}\left[(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu}\right] \geq 1-\frac{\sigma^{2}}{n \nu^{2}} .
$$

Furthermore, let \mathcal{G}_{ν}^{c} denote the complement of \mathcal{G}_{ν} in $\mathcal{X}^{\times n}$. As a next step we choose

$$
Q_{(\vec{X}, \vec{Y})}[(\vec{x}, \vec{y})]=\left\{\begin{array}{ll}
P_{(\vec{X}, \vec{Y})}[(\vec{x}, \vec{y})] / P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right] & \text { if }(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu} \\
0 & \text { if }(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu}^{c}
\end{array} .\right.
$$

The distribution $Q_{\vec{X} \mid \vec{Y}}$ is very similar to $P_{\vec{X} \mid \vec{Y}}$, with exception that it assumes 0 probability for all unlikely events (those in \mathcal{G}_{ν}^{c}), and renormalizes all the others. We can show that the distance between the two distributions is small, namely

$$
\begin{aligned}
\delta\left(P_{(\vec{X}, \vec{Y})}, Q_{(\vec{X}, \vec{Y})}\right) & =\frac{1}{2} \sum_{(\vec{x}, \vec{y})}\left|P_{(\vec{X}, \vec{Y})}[(\vec{x}, \vec{y})]-Q_{(\vec{X}, \vec{Y})}[(\vec{x}, \vec{y})]\right| \\
& =\frac{1}{2} \sum_{(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu}^{c}} P_{(\vec{X}, \vec{Y})}[(\vec{x}, \vec{y})]+\frac{1}{2} \sum_{(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu}} P_{(\vec{X}, \vec{Y})}[(\vec{x}, \vec{y})]\left(\frac{1}{P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right]}-1\right) \\
& =\frac{1}{2}\left(1-P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right]\right)+P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right]\left(\frac{1}{P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right]}-1\right) \\
& =1-P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right]=\frac{\sigma^{2}}{n \nu^{2}}
\end{aligned}
$$

In particular, we can now evaluate the "smooth" min-entropy for any fixed $\epsilon>0$ and $\nu>0$:

$$
\begin{align*}
\frac{1}{n} H_{\min }^{\epsilon_{n}}(\vec{X} \mid \vec{Y}) & \geq \frac{1}{n} H_{\min }(\vec{X} \mid \vec{Y})_{Q} \tag{1}\\
& =\min _{(\vec{x}, \vec{y}) \in \mathcal{X} \times n} \frac{1}{n} h_{Q}(\vec{x} \mid \vec{y}) \\
& =-\frac{1}{n} \log \max _{(\vec{x}, \vec{y}) \in \mathcal{X} \times n} Q_{\vec{X} \mid \vec{Y}}(\vec{x} \mid \vec{y}) \\
& =-\frac{1}{n} \log \max _{(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu}} Q_{\vec{X} \mid \vec{Y}}(\vec{x} \mid \vec{y}) \\
& =-\frac{1}{n} \log \max _{(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu}} P_{\vec{X} \mid \vec{Y}}(\vec{x} \mid \vec{y})-\frac{1}{n} \log P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right] \\
& =\min _{(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu}} \frac{1}{n} \sum_{i} h_{P}\left(x_{i} \mid y_{i}\right) \\
& \geq H(X \mid Y)-\sqrt{\nu}
\end{align*}
$$

The first inequality is a consequence of the fact that our $Q_{\vec{X} \mid \vec{Y}}$ is not necessarily optimal (as a matter of fact, it could be shown that it actually is). We have ignored the term $\frac{1}{n} \log P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right]$, because it is very small, since $P_{(\vec{X}, \vec{Y})}\left[\mathcal{G}_{\nu}\right] \approx 1$. Now, when we apply the $n \rightarrow \infty$ limit, we need to choose ν wisely, so that both $\sqrt{\nu} \rightarrow 0$ and $\epsilon=\frac{\sigma^{2}}{n \nu^{2}} \rightarrow 0$. This can be achieved, for example, by choosing $n u=\frac{\log n}{\sqrt{n}}$.

Now we will briefly outline how to calculate $\lim _{n \rightarrow \infty} \frac{1}{n} H_{\text {max }}^{\epsilon}(\vec{X} \mid \vec{Y})$
Consider $P_{(\vec{X}, \vec{Y}}\left[\mathcal{G}_{\nu}\right]=\sum_{(\vec{x}, \vec{y}) \in \mathcal{G}_{\nu}} P_{(\vec{X}, \vec{Y})}[(\vec{x}, \vec{y})]$. One can rearrange the definition of the typical set to show that

$$
P_{X_{i} \mid Y_{i}}\left(x_{i} \mid y_{i}\right) \geq 2^{-n[H(X \mid Y)+\sqrt{\nu}]}
$$

Let us define a set $\mathcal{X}_{y}=\left\{\vec{X}:(\vec{X}, \vec{Y}) \in \mathcal{G}_{\nu}\right\}$. Then

$$
1=\sum_{\vec{x}} Q_{\vec{X} \mid \vec{Y}}(\vec{x}) \geq \sum_{\vec{x}} P_{\vec{X} \mid \vec{Y}}(\vec{x}) \geq\left|\mathcal{X}_{y}\right| P_{X_{i} \mid Y_{i}}\left(x_{i} \mid y_{i}\right)
$$

Therefore, by solving the above inequality for $\left|\mathcal{X}_{y}\right|$ we find that

$$
\left.H_{\max }[\vec{X} \mid \vec{Y}]_{Q}=-\log \max _{y}\left|\mathcal{X}_{y}\right| \leq n(H \mid Y+\sqrt{\nu})\right)
$$

Finally,

$$
H_{\max }^{\epsilon}[\vec{X} \mid \vec{Y}]_{P} \leq H_{\max }\left(X^{n}\right)_{Q} \leq n(H(X \mid Y)+\sqrt{\nu}) .
$$

Taking the limits as with $H_{\min }$ gives the desired result

Exercise 3.2 Data Processing Inequality

Random variables X, Y, Z form a Markov chain $X \rightarrow Y \rightarrow Z$ if the conditional distribution of Z depends only on $Y: p(z \mid x, y)=p(z \mid y)$. The goal in this exercise is to prove the data processing inequality, $I(X: Y) \geq I(X: Z)$ for $X \rightarrow Y \rightarrow Z$.

1. First show the chain rule for mutual information: $I(X: Y Z)=I(X: Z)+I(X: Y \mid Z)$, which holds for arbitrary X, Y, Z. The conditional mutual information is defined as

$$
I(X: Y \mid Z)=\sum_{z} p(z) I(X: Y \mid Z=z)=\sum_{z} p(z) \sum_{x, y} p(x, y \mid z) \log \frac{p(x, y \mid z)}{p(x \mid z) p(y \mid z)} .
$$

First observe that $\frac{p(x, y \mid z)}{p(y \mid z)}=\frac{p(x, y, z)}{p(y, z)}=p(x \mid y, z)$, which means $I(X: Y \mid Z)=H(X \mid Z)-$ $H(X \mid Y Z)$. Then

$$
I(X: Y Z)=H(X)-H(X \mid Y Z)=H(X)+I(X: Y \mid Z)-H(X \mid Z)=I(X: Z)+I(X: Y \mid Z)
$$

2. Next show that in a Markov chain $X \rightarrow Y \rightarrow Z, X$ and Z are conditionally independent given Y; that is, $p(x, z \mid y)=p(x \mid y) p(z \mid y)$.

$$
p(x, z \mid y)=\frac{p(x, y, z)}{p(y)}=\frac{p(x, y) p(z \mid x, y)}{p(y)}=\frac{p(x \mid y) p(y) p(z \mid y)}{p(y)}=p(x \mid y) p(z \mid y) .
$$

3. By expanding the mutual information $I(X: Y Z)$ in two different ways, prove the data processing in equality.
There are only two ways to expand this expression:

$$
I(X: Y Z)=I(X: Z)+I(X: Y \mid Z)=I(X: Y)+I(X: Z \mid Y)
$$

Since X and Z are conditionally independent given $Y, I(X: Z \mid Y)=0$. Meanwhile, $I(X: Y \mid Z) \geq 0$, since it is a mixture (over Z) of positive quantities $I(X: Y \mid Z=z)$. Therefore $I(X: Y) \geq I(X: Z)$.

Exercise 3.3 Fano's Inequality

Given random variables X and Y, how well can we predict X given Y ? Fano's inequality bounds the probability of error in terms of the conditional entropy $H(X \mid Y)$. The goal of this exercise is to prove the inequality

$$
P_{\text {error }} \geq \frac{H(X \mid Y)-1}{\log |X|} .
$$

1. Representing the guess of X by the random variable \widehat{X}, which is some function, possibly random, of Y, show that $H(X \mid \widehat{X}) \geq H(X \mid Y)$.
The random variables X, Y, and \widehat{X} form a Markov chain, so we can use the data processing inequality. It leads directly to $H(X \mid \widehat{X}) \geq H(X \mid Y)$.
2. Consider the indicator random variable E which is 1 if $\widehat{X} \neq X$ and zero otherwise. Using the chain rule we can express the conditional entropy $H(E, X \mid \widehat{X})$ in two ways:

$$
\begin{equation*}
H(E, X \mid \widehat{X})=H(E \mid X, \widehat{X})+H(X \mid \widehat{X})=H(X \mid E, \widehat{X})+H(E \mid \widehat{X}) \tag{2}
\end{equation*}
$$

Calculate each of these four expressions and complete the proof of the Fano inequality. Hint: For $H(E \mid \widehat{X})$ use the fact that conditioning reduces entropy: $H(E \mid \widehat{X}) \leq H(E)$. For $H(X \mid E, \widehat{X})$ consider the cases $E=0,1$ individually.
$H(E \mid X, \widehat{X})=0$ since E is determined from X and $\widehat{X} . H(E \mid \widehat{X}) \leq H(E)=h_{2}\left(P_{\text {error }}\right)$ since conditioning reduces entropy.

$$
\begin{aligned}
H(X \mid E, \widehat{X}) & =H(X \mid E=0, \widehat{X}) p(E=0)+H(X \mid E=1, \widehat{X}) p(E=1) \\
& =0\left(1-P_{\text {error }}\right)+H(X \mid E=1, \widehat{X}) P_{\text {error }} \leq P_{\text {error }} \log |X|
\end{aligned}
$$

Putting this together we have

$$
H(X \mid Y) \leq H(X \mid \widehat{X}) \leq h_{2}\left(P_{\text {error }}\right)+P_{\text {error }} \log |X| \leq 1+P_{\text {error }} \log |X|
$$

where the last inequality follows since $h_{2}(x) \leq 1$. Rearranging terms gives the Fano inequality.

