Exercise 3.1 Smooth min-entropy in the i.i.d. limit

Let (X_i, Y_i) be a sequence of n i.i.d pairs of random variables, meaning that $P_{X_1Y_1...X_nY_n} = P_{XY}^{\times n}$. Also, let $\epsilon_n = \frac{\sigma^2}{n\delta^2}$ for some $\delta > 0$, and σ^2 be the variance of the conditional surprisal $h(X|Y) = -\log_2 P_{X|Y}$. Use the weak law of large numbers to prove the asymptotic equipartition lemma:

$$\begin{split} &\lim_{n\to\infty} \frac{1}{n} H_{\min}^{\epsilon_n}(X_1...X_n|Y_1...Y_n)_{P^n} = H(X|Y)_{P_{XY}}.\\ &\lim_{n\to\infty} \frac{1}{n} H_{\max}^{\epsilon_n}(X_1...X_n|Y_1...Y_n)_{P^n} = H(X|Y)_{P_{XY}}. \end{split}$$

In exercise sheet 1 we have shown that Chebyshev's inequality for i.i.d. variables given by

$$P\left[\left(\frac{1}{n}\sum_{i}S_{i}-\mu\right)^{2}>\nu\right]\leq\frac{\sigma^{2}}{n\nu^{2}}$$

Setting $S_i = h_P(x_i|y_i) = -\log P_{X|Y}(x_i|y_i)$ we get $\mu = H(X|Y)$ and thus

$$P\left[\left(\frac{1}{n}\sum_{i}h_{P}(x_{i}|y_{i})-H(X|Y)\right)^{2}<\nu\right]\geq1-\frac{\sigma^{2}}{n\nu^{2}}$$

for any ν . This knowledge allows us to restrict the set of vector pairs (\vec{x}, \vec{y}) to typical outcomes, namely we introduce a subset \mathcal{G}_{ν} of $\mathcal{X}^{\times n}$:

$$\mathcal{G}_{\nu} = \left\{ (\vec{x}, \vec{y}) \in \mathcal{X}^{\times n} : \left(\frac{1}{n} \sum_{i} h_P(x_i | y_i) - H(X | Y) \right)^2 < \nu \right\}.$$

The Chebyshev's inequality can now be restated simply as

$$P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}] = P_{(\vec{X},\vec{Y})}[(\vec{x},\vec{y}) \in \mathcal{G}_{\nu}] \ge 1 - \frac{\sigma^2}{n\nu^2}$$

Furthermore, let \mathcal{G}_{ν}^{c} denote the complement of \mathcal{G}_{ν} in $\mathcal{X}^{\times n}$. As a next step we choose

$$Q_{(\vec{X},\vec{Y})}[(\vec{x},\vec{y})] = \begin{cases} P_{(\vec{X},\vec{Y})}[(\vec{x},\vec{y})]/P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}] & \text{if } (\vec{x},\vec{y}) \in \mathcal{G}_{\nu} \\ 0 & \text{if } (\vec{x},\vec{y}) \in \mathcal{G}_{\nu}^{c} \end{cases}.$$

The distribution $Q_{\vec{X}|\vec{Y}}$ is very similar to $P_{\vec{X}|\vec{Y}}$, with exception that it assumes 0 probability for all unlikely events (those in \mathcal{G}^c_{ν}), and renormalizes all the others. We can show that the distance between the two distributions is small, namely

$$\begin{split} \delta(P_{(\vec{X},\vec{Y})},Q_{(\vec{X},\vec{Y})}) &= \frac{1}{2} \sum_{(\vec{x},\vec{y})} \left| P_{(\vec{X},\vec{Y})}[(\vec{x},\vec{y})] - Q_{(\vec{X},\vec{Y})}[(\vec{x},\vec{y})] \right| \\ &= \frac{1}{2} \sum_{(\vec{x},\vec{y}) \in \mathcal{G}_{\nu}^{c}} P_{(\vec{X},\vec{Y})}[(\vec{x},\vec{y})] + \frac{1}{2} \sum_{(\vec{x},\vec{y}) \in \mathcal{G}_{\nu}} P_{(\vec{X},\vec{Y})}[(\vec{x},\vec{y})] \left(\frac{1}{P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}]} - 1 \right) \\ &= \frac{1}{2} (1 - P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}]) + P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}] \left(\frac{1}{P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}]} - 1 \right) \\ &= 1 - P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}] = \frac{\sigma^{2}}{n\nu^{2}} \end{split}$$

In particular, we can now evaluate the "smooth" min-entropy for any fixed $\epsilon > 0$ and $\nu > 0$:

$$\frac{1}{n}H_{\min}^{\epsilon_{n}}(\vec{X}|\vec{Y}) \geq \frac{1}{n}H_{\min}(\vec{X}|\vec{Y})_{Q} \tag{1}$$

$$= \min_{(\vec{x},\vec{y})\in\mathcal{X}^{\times n}}\frac{1}{n}h_{Q}(\vec{x}|\vec{y})$$

$$= -\frac{1}{n}\log\max_{(\vec{x},\vec{y})\in\mathcal{X}^{\times n}}Q_{\vec{X}|\vec{Y}}(\vec{x}|\vec{y})$$

$$= -\frac{1}{n}\log\max_{(\vec{x},\vec{y})\in\mathcal{G}_{\nu}}Q_{\vec{X}|\vec{Y}}(\vec{x}|\vec{y})$$

$$= -\frac{1}{n}\log\max_{(\vec{x},\vec{y})\in\mathcal{G}_{\nu}}P_{\vec{X}|\vec{Y}}(\vec{x}|\vec{y}) - \frac{1}{n}\log P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}]$$

$$= \min_{(\vec{x},\vec{y})\in\mathcal{G}_{\nu}}\frac{1}{n}\sum_{i}h_{P}(x_{i}|y_{i})$$

$$\geq H(X|Y) - \sqrt{\nu}$$

The first inequality is a consequence of the fact that our $Q_{\vec{X}|\vec{Y}}$ is not necessarily optimal (as a matter of fact, it could be shown that it actually is). We have ignored the term $\frac{1}{n} \log P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}]$, because it is very small, since $P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}] \approx 1$. Now, when we apply the $n \to \infty$ limit, we need to choose ν wisely, so that both $\sqrt{\nu} \to 0$ and $\epsilon = \frac{\sigma^2}{n\nu^2} \to 0$. This can be achieved, for example, by choosing $nu = \frac{\log n}{\sqrt{n}}$.

Now we will briefly outline how to calculate $\lim_{n\to\infty}\frac{1}{n}H^\epsilon_{\max}(\vec{X}|\vec{Y})$

Consider $P_{(\vec{X},\vec{Y})}[\mathcal{G}_{\nu}] = \sum_{(\vec{x},\vec{y})\in\mathcal{G}_{\nu}} P_{(\vec{X},\vec{Y})}[(\vec{x},\vec{y})]$. One can rearrange the definition of the typical set to show that

$$P_{X_i|Y_i}(x_i|y_i) \ge 2^{-n[H(X|Y)+\sqrt{\nu}]},$$

Let us define a set $\mathcal{X}_y = \{\vec{X} : (\vec{X}, \vec{Y}) \in \mathcal{G}_\nu\}$. Then

$$1 = \sum_{\vec{x}} Q_{\vec{X}|\vec{Y}}(\vec{x}) \ge \sum_{\vec{x}} P_{\vec{X}|\vec{Y}}(\vec{x}) \ge |\mathcal{X}_y| P_{X_i|Y_i}(x_i|y_i)$$

Therefore, by solving the above inequality for $|\mathcal{X}_y|$ we find that

$$H_{\max}[\vec{X}|\vec{Y}]_Q = -\log\max_y |\mathcal{X}_y| \le n(H|Y + \sqrt{\nu}))$$

Finally,

$$H_{\max}^{\epsilon}[\vec{X}|\vec{Y}]_P \le H_{\max}(X^n)_Q \le n(H(X|Y) + \sqrt{\nu}).$$

Taking the limits as with H_{\min} gives the desired result

Exercise 3.2 Data Processing Inequality

Random variables X, Y, Z form a Markov chain $X \to Y \to Z$ if the conditional distribution of Z depends only on Y: p(z|x,y) = p(z|y). The goal in this exercise is to prove the data processing inequality, $I(X:Y) \ge I(X:Z)$ for $X \to Y \to Z$.

1. First show the chain rule for mutual information: I(X : YZ) = I(X : Z) + I(X : Y|Z), which holds for arbitrary X,Y,Z. The conditional mutual information is defined as

$$I(X:Y|Z) = \sum_{z} p(z)I(X:Y|Z=z) = \sum_{z} p(z)\sum_{x,y} p(x,y|z)\log\frac{p(x,y|z)}{p(x|z)p(y|z)}$$

First observe that $\frac{p(x,y|z)}{p(y|z)} = \frac{p(x,y,z)}{p(y,z)} = p(x|y,z)$, which means I(X:Y|Z) = H(X|Z) - H(X|YZ). Then

$$I(X:YZ) = H(X) - H(X|YZ) = H(X) + I(X:Y|Z) - H(X|Z) = I(X:Z) + I(X:Y|Z).$$

2. Next show that in a Markov chain $X \to Y \to Z$, X and Z are conditionally independent given Y; that is, p(x, z|y) = p(x|y)p(z|y).

$$p(x, z|y) = \frac{p(x, y, z)}{p(y)} = \frac{p(x, y)p(z|x, y)}{p(y)} = \frac{p(x|y)p(y)p(z|y)}{p(y)} = p(x|y)p(z|y).$$

3. By expanding the mutual information I(X : YZ) in two different ways, prove the data processing in equality.

There are only two ways to expand this expression:

$$I(X:YZ) = I(X:Z) + I(X:Y|Z) = I(X:Y) + I(X:Z|Y).$$

Since X and Z are conditionally independent given Y, I(X:Z|Y) = 0. Meanwhile, $I(X:Y|Z) \ge 0$, since it is a mixture (over Z) of positive quantities I(X:Y|Z = z). Therefore $I(X:Y) \ge I(X:Z)$.

Exercise 3.3 Fano's Inequality

Given random variables X and Y, how well can we predict X given Y? Fano's inequality bounds the probability of error in terms of the conditional entropy H(X|Y). The goal of this exercise is to prove the inequality

$$P_{\text{error}} \ge \frac{H(X|Y) - 1}{\log|X|}.$$

1. Representing the guess of X by the random variable \widehat{X} , which is some function, possibly random, of Y, show that $H(X|\widehat{X}) \ge H(X|Y)$.

The random variables X, Y, and \widehat{X} form a Markov chain, so we can use the data processing inequality. It leads directly to $H(X|\widehat{X}) \ge H(X|Y)$.

2. Consider the indicator random variable E which is 1 if $\hat{X} \neq X$ and zero otherwise. Using the chain rule we can express the conditional entropy $H(E, X | \hat{X})$ in two ways:

$$H(E, X|\widehat{X}) = H(E|X, \widehat{X}) + H(X|\widehat{X}) = H(X|E, \widehat{X}) + H(E|\widehat{X})$$

$$\tag{2}$$

Calculate each of these four expressions and complete the proof of the Fano inequality. Hint: For $H(E|\hat{X})$ use the fact that conditioning reduces entropy: $H(E|\hat{X}) \leq H(E)$. For $H(X|E, \hat{X})$ consider the cases E = 0, 1 individually.

 $H(E|X, \hat{X}) = 0$ since E is determined from X and \hat{X} . $H(E|\hat{X}) \leq H(E) = h_2(P_{\text{error}})$ since conditioning reduces entropy.

$$H(X|E, \hat{X}) = H(X|E = 0, \hat{X})p(E = 0) + H(X|E = 1, \hat{X})p(E = 1)$$

= 0(1 - P_{error}) + H(X|E = 1, \hat{X})P_{error} \le P_{error} \log |X|

Putting this together we have

$$H(X|Y) \le H(X|\widehat{X}) \le h_2(P_{\text{error}}) + P_{\text{error}} \log |X| \le 1 + P_{\text{error}} \log |X|,$$

where the last inequality follows since $h_2(x) \leq 1$. Rearranging terms gives the Fano inequality.