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Exercise 2.1 Information and Description Length

a) How much information is gained upon learning (i) the state of a flipped coin; (ii) the
states of two flipped coins; (iii) the outcome of the roll of a four-sided die?

Assuming the coin is fair, we learn one bit from one flipped coin, two bits from two coins,
and also two bits from the (fair) four-sided die. If the states are equally-likely, the entropy
is the log of the number of them.

b) How much information is gained when the odd ball and its weight are identified?

There are 24 possible states as any of the 12 balls could be either light or heavy. Hence
we learn log 24 bits.

c) How much information is gained on the first step if six balls are weighed against the other
six? How much is gained by first weighing four against another four, leaving the rest
aside?

Weighing six against six rules out half of the possibilities. Suppose we weigh 1-6 versus
7-12. If the 1-6 pan comes up lighter, then there are only 12 possibilities remaining: either
one of 1-6 is light or one of 7-12 is heavy. The opposite holds for the opposite result, so
we’ve shrunk the list of possible states from 24 to 12, an information gain of one bit.
In contrast, weighing two arbitrary sets of four balls gives more information. Suppose we
weigh 1-4 versus 5-8. If they balance, then one of 9-12 is the odd ball and is either light
or heavy, for a total of 8 possibilities. If 1-4 is lighter, then either one of 1-4 is light or
one of 5-8 is heavy, again 8 possibilities. The opposite states are possible if 1-4 is heavy.
Therefore, no matter the outcome the list of possibilities has shrunk from 24 elements to
8, a gain of log 3 bits.

d) For your prospective weighing strategy, draw a tree showing the possible outcomes of the
chosen weighing and what weighing is to be performed next. At each node, how much
information has been gained and how much remains to be gained?

The goal in designing a strategy is to maximize the information gain at every step. Since
there are 24 possible states and each weighing could in principle have three equally-likely
outcomes, it will take at least 3 weighings to determine which ball is odd and its weight
(32 < 24 < 33).
Here’s a method showing that it can indeed be accomplished in three weighings. First,
pick two sets of four at random and compare them. If they are of equal weight, the odd
ball is in the remaining four. Now pick three of these and weigh them against three balls
known to be normal. If both sets are of equal weight, the oddball is the remaining one,
and weighing it against a normal ball will determine if its heavy or light. If the sets
are not equal, we have learned whether the oddball is heavy or light and it can only be
one of the remaining three. Weighing one of them against the other determines which is
which. Going back to the case in which the two sets of four are unequal, we know that
the oddball is either light and one of the four light-weighing balls or heavy and one of the
heavy-weighing set. Now break the light set into two sets of two and then add a random
possibly heavy ball to each group. Weigh them. If they are of equal weight, the oddball
is one of the remaining two, and since we know whether each one could be light or heavy,
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one further measurement sufficies to determine the oddball. If the light set turns out to
be the two possibly light balls and one possibly heavy, then we know that it could not
have been the possibly heavy ball, nor could it have been either of the two possibly light
balls in the other set. But it could have been the two possibly light balls in the light set,
or the possibly heavy ball in the heavy set. Now there are three possibilities remaining,
and we only need to measure the two possibly light balls to determine which is which.

Exercise 2.2 Mutual Information

a) Compute the mutual information between your guess and the actual weather, and do the
same for your grandfather. Remember that all your grandfather knows is that it rains on
80% of the days. You know that as well and you also listen to the weather forecast and
know that it is right 80% of the time and is always correct when it predicts rain.

The mutual information is given by I(X : Y ) = H(X) − H(X|Y ) . Let us call your
grandfather G, you Y and the actual weather W . We may also assume you followed the
radio forecast (which we saw was an optimal strategy) and we will hold on to the notation
R̂, Ŝ for guesses (both yours and your grandfather’s). Then we have, for the grandfather

H(W ) = −P (R) logP (R)− P (S) logP (S)

= −0.8 log 0.8− 0.2 log 0.2

H(G) = −P (R̂) logP (R̂)− P (Ŝ) logP (Ŝ)

= −1. log 1.− 0. = 0

H(GW ) = −P (R̂R) logP (R̂R)− P (ŜR) logP (ŜR)− P (R̂S) logP (R̂S)− P (ŜS) logP (ŜS)

= −0.8 log 0.8− 0− 0− 0.2 log 0.2

H(W |G) = H(GW )−H(G)

= −0.8 log 0.8− 0.2 log 0.2

I(W : G) = H(W )−H(H|G)

= 0.

For your case we will calculate the conditional entropy directly,

H(W ) = −0.8 log 0.8− 0.2 log 0.2

H(W |Y ) = −P (R̂)
[
P (R|R̂) logP (R|R̂) + P (S|R̂) logP (S|R̂)

]
− P (Ŝ)

[
P (R|Ŝ) logP (R|Ŝ) + P (S|Ŝ) logP (S|Ŝ)

]
= −0.6[1 log 1 + 0]− 0.4[0.5 log 0.5 + 0.5 log 0.5]

= −0.4 log 0.5

I(W : Y ) = H(W )−H(H|Y )

= −0.8 log 0.8− 0.2 log 0.2 + 0.4 log 0.5

= 0.32.

b) What would your strategy be? And your grandfather’s? After N days, what is the expected
gain for each of you? What is the probability that he finishes with more money than you?

Here your optimal strategy and your grandfather’s optimal strategy are the strategies that
maximize the total amount of money you will each have after N days.
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Let us first compute your grandfather’s expected gain after N days. If your grandfather
bets all his money on rain every evening (since this event is most likely for him each day),
his expected amount of money is:

〈£G〉 = 0.8N2N = 1.6N .

As for you, how much you bet when the radio predicts a sunny day has no impact on your
expected gain (because you will guess correctly 50% of the time: PR|Ŝ = PS|Ŝ = 50%).

So you should choose to keep your money when the forecast is sun (so that you don’t lose
with probability 50%). Your expected amount of money is

〈£Y 〉 =

N∑
k=0

PR̂(k) 2k

=
N∑
k=0

(
N

k

)
0.6k 0.4N−k 2k

= 1.6N ,

where PR̂(k) is the probability that the radio predicts rain on exactly k of the N days.

The expected amount of money for both of you is the same!

If there is rain every day then k = N , and your grandfather will have 2N pounds. What is
the probability that you have less money than your grandfather in this case? You will have
to have a prediction of rain for each day. This is PN

R̂|R = 0.75N . Therefore the probability

that your grandfather makes more money than you when k = N is 1− (0.75)N .

If there is one or more days of sun (k 6= N), then your grandfather will have lost all his
money. You will never lose all your money (either you don’t bet when the forecast is
sunny, or you are 100% sure that when you bet all your money on rain when the forecast
is rain).

Therefore, your grandfather has more money than you with probability 1−0.8N (1−0.75N ).

In other words, if you play this game for many days, you’re extremely likely to have more
money than your grandfather.

If you chose to bet randomly when the radio predicts sun, then the above probability of
having more than your grandfather will decrease, because you could lose all your money
with this strategy.

Exercise 2.3 Channel capacity

a) The asymptotic channel capacity is given by C = maxPX
I(X : Y ). Calculate the asymp-

totic capacities of the first two channels depicted above.
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(c) Yet Another Channel

The capacity of the binary symmetric channel evaluates to

C = max
PX

I(X : Y ) = max
PX

H(Y )−H(Y |X)

= max
PX

H(Y ) +
∑
x,y

PX(x)PY |X=x(y) logPY |X=x(y)

= max
PX

H(Y )−
∑
x

PX(x) Hbin(p)

= max
PX

H(Y )− Hbin(p)

= 1−Hbin(p),

where Hbin(p) is the binary entropy, i.e. the entropy of the probability distribution (p, 1−
p),

Hbin(p) = p log
1

p
+ (1− p) log

1

1− p
.

To maximise H(Y ) we chose the uniform distribution on the input, P u
X = (12 ,

1
2) (see part

b).

Similarly, for the symmetric erasure channel, we have

C = max
PX

H(Y )−H(Y |X)

= max
PX

H(Y )−Hbin(p)

= 2
1− p

2
log

2

1− p
+ p log

1

p
−Hbin(p)

= 1− p.

b) Consider N possible probability distributions as input to a general channel,
{
P i
X

}
i
, with

the property that I(X : Y )P i = I(X : Y )P j , ∀i, j. Suppose you choose which distribution
to use for the input by checking a random variable, B, with possible values b = {1, . . . , N}.
Show that I(X : Y |B) ≤ I(X : Y ).

We have

I(X : Y |B) = H(Y |B)−H(Y |XB)

= H(Y |B)−H(Y |X) (∗)

≤ H(Y )−H(Y |X) (∗∗)

= I(X : Y ),
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where (∗) stands because B is just a label that tells us which probability distribution P i
X

we used, so knowing X is as good as knowing X and B, in the sense that H(Y |XB) =
H(Y |X), and (∗∗) comes from the data-processing inequality, H(Y |B) ≤ H(Y ) (which in
lay terms says that extra information cannot hurt).

How can you use that to find the probability distribution PX that maximises the mutual
information for symmetric channels? Hint: consider

{
P i
X

}
i

permutations of P 1
X .

For symmetric channels, the mutual information between input and output is invariant
under permutation of the inputs (that’s how they are defined). Look for instance at the
symmetric erasure channel. The input distribution P 1

X = (0.75, 0.25) yields the same
mutual information as P 2

X = (0.25, 0.75).

Not knowing which permutation of PX was used in the input is equivalent to take a
uniform mixture over all possible permutations of PX . Conveniently, such mixture gives
us the uniform distribution:

PX =


PX(x1)
PX(x2)
...
PX(xN )

 ,
{
P i
X

}
i=1,...,N !

permutations of PX ,

N !∑
i

1

N !
P i
X =

1

N !


(N − 1)! PX(x1) + (N − 1)! PX(x2) + · · ·+ (N − 1)! PX(xN )
(N − 1)! PX(x1) + (N − 1)! PX(x2) + · · ·+ (N − 1)! PX(xN )

...
(N − 1)! PX(x1) + (N − 1)! PX(x2) + · · ·+ (N − 1)! PX(xN )



=
1

N


∑

i PX(xi)∑
i PX(xi)

...∑
i PX(xi)

 =


1/N
1/N

...
1/N

 .

This means that for any input distribution PX the mutual information always increases
if instead you use the uniform distribution. Here, I(X : Y |B) is the mutual information
knowing you used PX (take B = 1), and I(X : Y ) is the mutual information for the uniform
distribution. Conclusion: for symmetric channels the mutual information is maximised if
one takes the uniform distribution as input.

c) Using part b), we choose the uniform distribution on X and calculate the capacity:

C = max
PX

I(X : Y ) = I(X : Y )Pu
X

= H(Y )−H(Y |X)

= −
∑
y

PY (y) logPY (y) +
∑
x,y

PXY (x, y) logPY |X(y)

= −
∑
y

(∑
x

PX(x)PY |X=x(y)

)
log

(∑
x

PX(x)PY |X=x(y)

)
+
∑
x,y

PX(x)PY |X=x(y) logPY |X=x(y)

= −4 · 1

4
log

(
1

4

)
+ 4 · 1

4
Hbin(p) = 2−Hbin(p).
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