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1Introduction
“Information is physical” claimed the late physicist Rolf Landauer,1 by which he meant that

Computation is inevitably done with real physical degrees of freedom, obeying the laws
of physics, and using parts available in our actual physical universe. How does that
restrict the process? The interface of physics and computation, viewed from a very fun-
damental level, has given rise not only to this question but also to a number of other
subjects...[1]

The field of quantum information theory is among these “other subjects”. It is the result of asking
what sorts of information processing tasks can and cannot be performed if the underlying infor-
mation carriers are governed by the laws of quantum mechanics as opposed to classical mechanics.
Using the spin of a single electron to store information, for instance, rather than the magnetization
of a small region of magnetic material.

Famously, it is possible for two separated parties to communicate securely using only insecure
classical and quantum transmission channels (plus a short key for authentication), using a proto-
col for quantum key distribution (QKD). Importantly, the security of the protocol rests on the
correctness of quantum mechanics, rather than any assumptions on the difficulty of particular com-
putational tasks—such as factoring large integers—as is usual in today’s cryptosystems. This is also
fortunate from a practical point of view because, just as famously, a quantum computer can find
prime factors very efficiently. On the other hand, as opposed to classical information, quantum
information cannot even be copied, nor can it be deleted!

The goal of this course is to provide a solid understanding of the foundations of quantum infor-
mation theory with which we can examine some of the counterintuitive phenomena in more detail.
In the next few lectures we will study the foundations more formally and completely, but right now
let’s just dive in and get a feel for the subject.

1.1 Bits versus qubits

Classical information, as you already know, usually comes in bits, random variables which can take
on one of two possible values. We could also consider “dits”, random variables taking on one of d
values, but this can always be thought of as some collection of bits. The point is that the random
variable takes a definite value.

In contrast, quantum information comes in qubits, which are normalized vectors in C2. Given
some basis |0〉 and |1〉, the qubit state, call it ψ, can be written |ψ〉= a|0〉+ b |1〉, with a, b ∈ C such
that |a|2+ |b |2 = 1. The qubit is generally not definitely in either state |0〉 or |1〉; if we make a mea-
surement whose two outcomes correspond to the system being in |0〉 and |1〉, then the probabilities
are

prob(0) = |〈0|ψ〉|2 = |a|2 prob(1) = |〈1|ψ〉|2 = |b |2 (1.1)

The state of n qubits is a vector in C2n
, a basis for which is given by states of the ofrm |0, . . . , 0〉=

|0〉⊗ · · · ⊗ |0〉, |0, . . . , 1〉, |0, . . . , 1, 0〉, etc. Then we write the quantum state of the entire collection as

|ψ〉=
∑

s∈{0,1}n
ψs |s〉, (1.2)

1Rolf Wilhelm Landauer, 1927-1999, German-American physicist.
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1. INTRODUCTION

where s are binary strings of length n and once again ψs ∈C with 〈ψ|ψ〉= 1=
∑

s |ψs |2.
Allowed transformations of a set of qubits come in the form of unitary operators, which just

transform one basis ofC2n
into another. Knowing this, we can already prove the no-cloning theorem!

1.2 No cloning

Suppose we have a cloning machine, which should perform the following transformation

|ψ〉|0〉 −→ |ψ〉|ψ〉, (1.3)

for any qubit state |ψ〉. According to the laws of quantum mechanics, the transformation should be
described by a unitary U . In particular, U should clone the standard basis states:

U |00〉= |00〉 and U |10〉= |11〉. (1.4)

But the action on a basis fixes the action on an arbitrary qubit state, due to the linearity of U . Thus,
for |ψ〉= a|0〉+ b |1〉 we find

U |ψ〉|0〉= aU |00〉+ b U |10〉= a|00〉+ b |11〉. (1.5)

But what we wanted was

|ψ〉|ψ〉= (a|0〉+ b |1〉) (a|0〉+ b |1〉) (1.6)

= a2|00〉+ ab |01〉+ ba|10〉+ b 2|11〉, (1.7)

which is not the same. Thus, U |ψ〉|0〉 6= |ψ〉|ψ〉 for arbitrary qubit states. Note that U does clone the
basis properly, but by the linearity of quantum mechanics, it can therefore not clone arbitrary states.

1.3 Measurement and disturbance

As mentioned before, a generic qubit is not definitely in one of the states |0〉 or |1〉. But what happens
after a measurement? Surely if we repeat the measurement, we should get the same result (provided
nothing much has happened in the meantime). Indeed this is the case in quantum mechanics. Start-
ing from |ψ〉 = a|0〉+ b |1〉 and making the |0〉/|1〉 measurement leaves the system in state |0〉 with
probability |a|2 or the state |1〉 with probability |b |2, so that a subsequent identical measurement
yields the same result as the first.

We can measure in other bases as well. For instance, consider the basis |±〉= 1p
2
(|0〉± |1〉). Now

the probabilities for the two outcomes are

prob(+) = |〈+|ψ〉|2 = 1
2 |a+ b |2 prob(−) = |〈−|ψ〉|2 = 1

2 |a− b |2. (1.8)

Thus, if |ψ〉 = |0〉, then p± =
1
2 . That is, the measurement outcome is completely random. And

after the measurement the state is either |+〉 or |−〉. In this way, measurement disturbs the system by
changing its state.

This phenomenon makes QKD possible. Very roughly, a potential eavesdropper attempting to
listen in on a quantum transmission by measuring the signals will unavoidably disturb the signals,
and this disturbance can be detected by the sender and receiver.

2



1.4. Quantum key distribution

1.4 Quantum key distribution

We can get a flavor of how this works by taking a quick look at the original BB84 protocol, formu-
lated by Charles Bennett and Gilles Brassard in 1984. The goal, as in any QKD protocol, is to create a
secret key between the two parties, which may be then be used to encrypt sensitive information using
classical encryption methods. A secret key is simply a random sequence of bits which are unknown
to anyone but the two parties.

Here’s how it works. One party (invariably named Alice) transmits quantum states to the other
(invariably named Bob), where the states are randomly chosen from the set {|0〉, |1〉, |+〉, |−〉}. Phys-
ically these could correspond to various polarization states of a single photon (horizontal, vertical,
+45◦, −45◦), or anything else whose quantum description is given by the states above. When Bob
receives each signal, he immediately measures it, randomly choosing either the “standard” |k〉 basis
(k = 0,1) or the “conjugate” |±〉 basis.

If the quantum states arrive at Bob’s end unchanged, then when he measures in the same basis
Alice used to prepare the state, he will certainly get the corresponding outcome. That is, if Alice
prepares a standard basis state and Bob makes a measurement in the standard basis, they will have the
same classical bit describing which basis element was transmitted/received. When Alice prepares |0〉,
Bob is certain to see |0〉, so they can create one bit of secret key (with value 0). On the other hand,
if Bob’s basis does not match Alice’s then Bob’s “which-basis-element” bit is totally uncorrelated
with Alice’s, and hence useless. When Alice sends |0〉 but Bob measures in the conjugate basis, his
outcome is completely random. Alice and Bob can separate the good cases from the bad ones by
simply announcing publicly which basis they used in each instance.

Due to the fragility of quantum states, any attempt by a would-be eavesdropper (invariably named
Eve) to spy on the quantum signals can be noticed by Alice and Bob. Suppose Eve intercepts the
signals, measures them in one basis or the other, and then resends the state corresponding to the
outcome she observed. This will cause errors in the bits created by Alice and Bob, which they can
observe by sacrificing a portion of the key and directly comparing it publicly.

Specifically, Eve’s action causes an error with probability 1/4. For concreteness, suppose Alice
sends |0〉. Half the time Eve measures in the standard basis and passes |0〉 to Bob without error. The
other half of the time she measures in the conjugate basis, which produces a random outcome. Each
of the two possible states |±〉 has a probability of 1/2 of generating the correct outcome |0〉 when
measured by Bob, so the overall error probability is 1/4.

Thus, if Alice and Bob compare a portion of the key and observe no errors, then they can be
relatively certain that the remainder of the key is secure against this “intercept-resend” attack: Eve
could not have gained any information about the key.

Although we haven’t proven that QKD can be secure against arbitrary attacks, this example illus-
trates the basis mechanism of security. The crucial point is that the fragility of quantum information
implies that the information gained by Eve is linked to the errors observed in the key.

I should hasten to add that although in this example Alice and Bob abort the protocol for any
nonzero error rate, it is possible to construct QKD protocols which can tolerate a finite amount of
error.

1.5 Quantum computation is not like classical computation

From a computer science perspective, we might now wonder why quantum computers could be
more powerful than classical computers, given the rough sketch of quantum information theory we
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1. INTRODUCTION

have seen so far. After all, quantum states are vectors, operations on them are unitary operators, and
measurements correspond to taking an inner product, all of which can be simulated on a classical
computer. Right! A quantum computer cannot compute anything that a classical computer cannot,
since we can always simulate the former with the latter. But what is really important are the necessary
resources, in particular how much space (memory) we are going to need and how much time it is
going to take.

A quantum computation, like a classical computation, is the calculation of a given function of
the (classical) input. In a quantum computer we feed in |x〉 for input x. For instance, the factoring
algorithm is a means to compute f (x) = (p1, p2, . . . ), the prime factors of input x. The goal is to
do this quickly, in an amount of time t which scales algebraically with the length of the input, i.e.
t ≈ poly(|x|), where |x| is the number of bits of x. Algorithms scaling exponentially in |x|, on the
other hand, quickly become too slow.

Algorithms are sequences of simple operations which yield the action of the desired function. For
instance, we can build up any function we want (assuming it takes binary strings to binary strings)
out of AND, OR, and NOT operations on just two bits at a time (or one for NOT). Indeed, NAND

or NOR gates alone suffice to compute any function. The runtime of the computation is then how
many steps we need to execute all of the required gates.

Quantum algorithms are largely the same, sequences of unitary operations acting on just one
and two qubits at a time. A quantum computer is therefore any device with which we can perform
suitable unitary gates to the initial state and then read out (measure) the final state to get the answer,
as in

|x〉
f
−→Uf |x〉= | f (x)〉 Uf =VnVn−1 · · ·V1, (1.9)

where the V j are single- and two-qubit operations. Actually, we only need something like

p f (x) = |〈 f (x)|Uf |x〉|
2 ≥ 2/3, (1.10)

so that the probability of getting the right answer is large. By repeating the computation a modest
number of times we can achieve whatever probability of error we like.

Where does the power of a quantum computer come from? I don’t think anyone has a very
precise answer to that question, but we can get an idea by thinking about how we might simulate it
classically and where that approach goes wrong. Since the algorithm is just equivalent to multiplica-
tion of unitary matrices, the simplest thing is just to do that ourselves. But wait! The matrices are
2n×2n dimensional for n qubits! 236 ≈ 70 Gb, so we can only simulate around 36 qubits with today’s
hardware. Still thinking in terms of matrices, after each step we have a vector giving the amplitude
to be in each of the various computational states. The trouble is, these amplitudes are complex num-
bers, and therefore the states interfere with each other when going from one step to the next. Thus,
we have to keep track of all of them (or, it is not clear how to get by without doing this).

To see this more concretely, suppose we want to calculate |〈y|Uf |x〉|2 for some value of y. Since
Uf =VnVn−1 · · ·V1, we can express this in terms of the matrix elements of the Vk :

|〈y|Uf |x〉|
2 =
�

�

�

∑

z1,...,zn−1

〈y|Vn |zn−1〉 〈zn−1|Vn−1|zn−2〉
︸ ︷︷ ︸

matrix element

· · · 〈z1|V1|x〉
�

�

�

2
. (1.11)

This is the product of matrices that we wanted to calculate earlier. Instead of doing that, we could try
to keep track of the amplitude associated with each computational path, i.e. sequence |x〉, |z1〉, . . . ,
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|y〉. This is just the path integral of quantum mechanics, adapted to the present scenario of dynamics
by discrete jumps represented by unitaries. To each path is associated an amplitude αk ,

αk = 〈y|Vn |zn−1〉 〈zn−1|Vn−1|zn−2〉
︸ ︷︷ ︸

matrix element

· · · 〈z1|V1|x〉, (1.12)

so that

|〈y|Uf |x〉|
2 =
�

�

�

∑

paths k

αk

�

�

�

2
. (1.13)

The idea would then be to estimate the expression by randomly sampling a modest number of paths.
But this does not work either, again due to interference—the overall magnitude can be quite small
even though each αk might not be. We need to know a sizable fraction of the αk to be able to predict
the transition probability. Alas, there are an exponential number of paths.

Observe that if the algorithm were such that after each step, most of the probability amplitude
were concentrated on one or a few of the states |z〉, then we could simulate the computation effi-
ciently. In the case of weight on just one state, this essentially is a classical computation, since we just
jump from x→ z1→ z2→ ·· · → y.

One often hears the claim that quantum computers get their power because n qubits can encode
or represent 2n numbers. That is true, in the sense that it takes 2n complex numbers to specify a
quantum state. But it also takes 2n numbers, now just reals, to specify the probability distribution of
n bits! If the initial distribution and all computational steps are deterministic, then the computation
takes just one path. But the bigger point is that even if it were probabilistic, we could still potentially
sample from the set of paths to get an idea of the transition probability. The possibility of interference
between paths precludes us from doing this in the quantum case.

1.6 Further reading

It is not the intention of this course to give a complete treatment of quantum information theory.
Instead, the goal is to focus on certain key concepts and to study them in more detail. For further
reading, I recommend the standard textbook by Nielsen and Chuang [2], as well as the more recent
offerings from Rieffel and Polak [3], Barnett [4], and especially Schumacher and Westmoreland [5].
An inspiration for many of these books and early lecture notes is the book by Peres [6]. Wilde [7]
presents in detail the main results pertaining to information processing tasks such as compression and
communication; in the classical setting, these are treated by Cover and Thomas [8]. Mackay [9] treats
information theory and many other interesting topics such as Bayesian inference and neural networks
from a physics point of view. Mermin [10] gives a concise introduction to quantum algorithms.
There are too many lecture notes for quantum information available online to list here; of particular
note are those by Preskill [url] as well as Watrous [url]. The argument about computational paths is
adapted from Aaronson [11] (see also [url]).
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2Probability Theory
A nice way to understand the formalism of quantum mechanics (but not the physics) is as a gener-
alization of classical probability theory. Moreover, classical information theory is formulated in the
language of probability theory, so quantum information theory will be as well. Therefore, we begin
by recalling some key notions of probability theory. This chapter is not meant as an introduction
to probability theory, however. Instead, its main purpose is to summarize some basic facts as well as
the notation we are going to use in this course.

2.1 What is probability?

The notion of probability is actually a rather delicate philosophical question, and it is not the topic of
this course to answer it. For the purpose of this course, it might make sense to take a Bayesian1 point
of view, meaning that probability distributions are generally interpreted as a state of knowledge. To
illustrate this approach, consider a game where a quizmaster hides a prize behind one of three doors
and the task of a candidate is to find the prize. Let X be the number of the door (1, 2, or 3) which
hides the prize. Obviously, as long as the candidate does not get any additional information, each
door is equally likely to hide the prize. Hence, the probability distribution P cand

X that the candidate
would assign to X is uniform,

P cand
X (1) = P cand

X (2) = P cand
X (3) = 1/3.

On the other hand, the quizmaster knows where he has hidden the prize, so he would assign a
deterministic value to X . For example, if the prize is behind door 1, the probability distribution
P mast the quizmaster would assign to X has the form

P mast
X (1) = 1 and P mast

X (2) = P mast
X (3) = 0.

The crucial thing to note here is that, although the distributions P cand
X and P mast

X are referring to the
same physical value X , they are different because they correspond to different states of knowledge.

We can extend this example. For instance, the quizmaster could open one of the doors, say 3,
to reveal that the prize is not behind it. This additional information changes the candidate’s state of
knowledge, resulting in yet another probability distribution P cand′

X associated with X ,2

P cand′
X (1) = P cand′

X (2) = 1/2 and P cand′
X (3) = 0.

When interpreting a probability distribution as a state of knowledge and, hence, as subjective quan-
tity, we must specify whose state of knowledge we are referring to. This is particularly relevant for
the analysis of information-theoretic settings, which usually involve more than one party. For exam-
ple, in a communication scenario a sender would like to transmit a message M to a receiver. Clearly,
before M is sent, the sender and the receiver have different knowledge about M and consequently
assign different probability distributions to M . In the following, when describing such situtations,
we will ascribe all distributions as states of knowledge of an outside observer.

1Thomas Bayes, c. 1701 – 1761, English mathematician and Presbyterian minister.
2The situation becomes more intriguing if the quizmaster opens a door after the candidate has already made a guess.

The problem of determining the probability distribution that the candidate assigns to X in this case is known as the Monty
Hall problem.
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2. PROBABILITY THEORY

2.2 Probability spaces and random variables

Both the concepts of probability and random variables are important in both physics and informa-
tion theory. Roughly speaking, one can think of a random variable as describing the value of some
physical degree of freedom of a classical system. Hence, in classical information theory, it is nature
to think of data as being represented by random variables.

In this section we define probability spaces and random variables. For completeness, we first
give the general mathematical formulation based on probability spaces, known as the Kolmogorov3

axioms. Later, we will restrict to discrete spaces and random variables (i.e., random variables that
only take countably many values). These are easier to handle than general random variables but still
sufficient for the information-theoretic considerations of this course.

2.2.1 Probability space

The basic notion in the Kolmogorov approach to probability theory is a probability space, which
models an experiment with random outcomes or, in our Bayesian interpretation, a physical system
with properties that are not fully known. It is a collection of three things:

1. a sample space Ω, which represents the set of all possible outcomes,

2. a set of events E , which are collections of possible outcomes, and

3. a probability measure P , which gives the probability of any event.

The set of events is required to be a σ -algebra, which means that (i) E 6= ;, i.e. E is not trivial, (ii) if
E is an event then so is its complement E c :=Ω\E , and (iii) if (Ei )i∈N is a countable family of events
then

⋃

i∈N Ei is an event. In particular, from these requirements one can show that Ω and ; are
events, called the certain event and the impossible event. The requirements of a σ -algebra reflect the
probabilistic setting. For any given even there ought to be an “opposite” event such that one or the
other is certain to occur, hence the requirement that complements exist. And for any two events one
should be able to find an event which corresponds to either one occurring, hence the requirement
that unions exist.

The probability measure P on (Ω,E ) is a function P : E → R+ that assigns to each event E ∈
E a nonnegative real number P[E], called the probability of E . It must satisfy the Kolmogorov
probability axioms

1. P[Ω] = 1 and

2. P
�
⋃

i∈N Ei

�

=
∑

i∈N P[Ei] for any countable family (Ei )i∈N of pairwise disjoint events.

The axioms are precisely what is needed to be compatible with the σ -algebra structure of events.
The second axiom directly echoes the union-property of events, and since E and E c are disjoint,
P[E] + P[E c] = P[Ω] = 1 so that indeed either E or E c is certain to occur, since the certain event
has probability one. Of course, the impossible event has probability zero, since it is the complement
of the certain event.

The above applies for quite general sample spaces, including those which are uncountably infinite
such as R. To properly deal with such cases one needs to be able to take limits of sequences of events,
hence the constant attention to countable collections of events and so forth. The pair (Ω,E ) is known

3Andrey Nikolaevich Kolmogorov, 1903 – 1987, Russian mathematician.
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2.2. Probability spaces and random variables

in this general context as a measureable space, and the uncountably infinite case is important in the
mathematical study of (Lebesgue4) integration. In this course we will be concerned with discrete
sample spaces Ω, for which the set of events E can be taken to be the power set E = 2Ω, the set of all
subsets of Ω.

2.2.2 Random variables

It may be slightly surprising, but in this formulation of probability theory, random variables are
best thought of as functions from Ω to the space of values taken by the random variable. The precise
definition is as follows. Suppose that (Ω,E , P ) is a probability space and let (X ,F ) be another
measurable space. A random variable X is a function from Ω toX ,

X : ω 7→X (ω), (2.1)

which is measurable with respect to the σ -algebras E andF . Measurable means that the preimage of
any F ∈ F is an event in E , i.e. X−1(F ) ∈ E . Therefore the events F inherit a probability measure
PX from the probability space, like so:

PX [F ] := P[X−1(F )] ∀F ∈F . (2.2)

The space (X ,F ) is often called the range of the random variable X .
A pair (X ,Y ) of random variables can be seen as a new random variable. More precisely, if X

and Y are random variables with range (X ,F ) and (Y ,G ), respectively, then (X ,Y ) is the random
variable with range (X ×Y ,F ×G ) defined by

(X ,Y ) : ω 7→X (ω)×Y (ω). (2.3)

Here,F ×G denotes the set {F ×G : F ∈F , G ∈G}, and it is easy to see thatF ×G is a σ -algebra
overX ×Y .

We will typically write PX Y to denote the joint probability measure P(X ,Y ) on (X ×Y ,F ×G )
induced by (X ,Y ). This convention can, of course, be extended to more than two random variables
in a straightforward way. For example, we will write PX1···Xn

for the probability measure induced by
an n-tuple of random variables (X1, . . . ,Xn).

2.2.3 Events from random variables

Events are often themselves defined in terms of random variables. For example, if the range of X is (a
subset of) the set of real numbers R then E := {ω ∈Ω : X (ω)> x0} is the event that X takes a value
larger than x0. To denote such events, we will usually drop ω, i.e., we simply write E = {X > x0}.
If the event is given as an argument to a function, we also omit the curly brackets. For instance, we
write P[X > x0] instead of P[{X > x0}] to denote the probability of the event {X > x0}.

In a context involving only finitely many random variables X1, . . . ,Xn , it is usually sufficient
to specify the joint probability measure PX1···Xn

, while the underlying probability space (Ω,E , P )
is ultimately irrelevant. In fact, as long as we are only interested in events defined in terms of the
random variables X1, . . . ,Xn , we can without loss of generality identify the sample space (Ω,E ) with
the range of the tuple (X1, . . . ,Xn) and define the probability measure P to be equal to PX1···Xn

.

4Henri Léon Lebesgue, 1875 – 1941, French mathematician.
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2.2.4 Conditional probability

Any event E ′ ∈ E with P (E ′) > 0 gives rise to a new probability measure P[·|E ′] on (Ω,E ), the
conditional probability, defined by

P[E |E ′] :=
P[E ∩ E ′]

P[E ′]
∀E ∈ E . (2.4)

The probability P[E |E ′] of E conditioned on E ′ can be interpreted as the probability that the event
E occurs if we already know that the event E ′ has occurred. The logic of the definition is that
restricting Ω to the elements in the event E ′ effectively gives a new sample space, whose events are all
of the form E ∩ E ′. The probability of any of the new events is its original probability, rescaled by
the probability of the new sample space. Analogously to (2.2), the conditional probability measure
also gives rise to a conditional probability measure of any random variable X , P[·|E ′], i.e.,

PX |E ′[F ] := P[X−1(F )|E ′] ∀F ∈F . (2.5)

Two events E and E ′ are said to be mutually independent when P[E ∩ E ′] = P[E] · P[E ′], which
implies P[E |E ′] = P[E].

In the Bayesian framework, the conditional probability describes the change in our state of
knowledge when we acquire additional information about a system that we describe with the prob-
ability space (Ω,E , P ), in particular when we learn that the event E is certain. With a view toward
our later formulation of quantum mechanics, we can think of the process of acquiring information
as a measurement of the system. If, prior to the measurement, our probability were P[·], then after
learning that E ′ is certain our probability becomes P[·|E ′].

2.3 A vector representation of finite discrete spaces

In the remainder of these lecture notes, we specialize to the case of finite discrete probability spaces
(Ω,E , P ). Now Ω is a discrete set, which we will assume to contain finitely many elements N =
|Ω|. Further, we take the σ -algebra of events to be the power set 2Ω, i.e. E := {E ⊆ Ω}, which
one can easily verify to indeed be a valid σ -algebra. Such spaces have a simple representation in
terms of real-valued vectors in a finite-dimensional space; this will prove useful later in understanding
the similarities and differences between classical probability theory and the formalism of quantum
mechanics.

2.3.1 Representing the probability space

Since Ω is finite, we may take the elementsω ∈Ω to be the integers 1, . . . ,N and associate to theωth
element the vector ~sω ∈ ZN

2 which has a single 1 in the ωth component and all other components
zero. Any event is a collection of elements from the sample space, which corresponds to the sum of
the associated sample space vectors. The vector ~e(E) ∈ZN

2 associated with the event E is defined by

~e(E) =
∑

ω∈E

~sω, (2.6)

i.e.~e(E) has a 1 in any component corresponding to anω contained in the event E . Thus, the possible
~e are all the vectors in ZN

2 , while the sample space corresponds to the usual basis of ZN
2 . Notice that

10
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the inner product between ~e(E) and ~sω indicates whether the ωth element of Ω is contained in E :
~e(E) ·~sω = 1 ifω ∈ E and 0 otherwise.

Since the probability is additive for families of pairwise disjoint events, and the sample space
elements are pairwise disjoint as events, by the second axiom we have

P (E) =
∑

ω∈E

P[{ω}] =
∑

ω∈Ω
~e(E) ·~sωP[{ω}] =~e(E) ·

 

∑

ω∈Ω
~sωP[{ω}]

!

. (2.7)

This suggests we define a vector ~p =
∑

ω∈Ω~sω P[{ω}] ∈RN
+ , which is just the list of probabilities of

the sample space elements. Taking E =Ω in the above, we see that the first axiom implies ‖~p‖1 = 1.
The nice feature of this representation is that from ~p the probability of any event can be found via
the inner product:

P[E] =~e(E) ·~p. (2.8)

2.3.2 Random variables and conditional probabilities

Real-valued random variables can also be represented as vectors in RN
+ , in order to represent the

expectation value. Let X (ω) = xω and define ~x =
∑

ω∈Ω xω~sω. Then the expected value of X is just
the average value under the probability distribution,

〈X 〉 :=
∑

ω∈Ω
P[{ω}]X (ω) (2.9)

= ~x ·~p. (2.10)

We can also succinctly represent the rule for conditional probability, (2.4), in this framework.
For some event E ′, let us call the vector representation of the conditional probability ~p ′. What is ~p ′

in terms of ~p? The denominator of (2.4) is simple enough: P[E ′] =~e(E ′) ·~p. For the numerator, we
need only consider the probabilities of the singleton events {ω}, since all other events are just unions
of these. Then, the event {ω} ∩ E ′ is just {ω} whenω ∈ E ′ and ; otherwise. Therefore we have

~p ′ =
1

~e(E ′) ·~p

∑

ω∈E ′

�

~sω ·~p
�

~sω (2.11)

=
1

~e(E ′) ·~p

∑

ω∈Ω

�

~sω ·~p
��

~e(E ′) ·~sω
�

~sω. (2.12)

The conditional probability vector is formed by discarding or projecting out the components of ~p
which are inconsistent with E ′, and then normalizing the result.

2.3.3 Measurement

Earlier we motivated the notion of conditional probability in the Bayesian framework as relevant
when making a measurement on a physical system. If the measurement reports that the event E ′

is certain, we accordingly update the probability distribution to the conditional probability distri-
bution. But this does not describe the whole measurement procedure, for we only considered one
measurement outcome E ′ and surely at least the event E ′c was also, in principle, possible.

We can think of a measurement as a partition ofΩ into a collection of disjoint events E1, E2, . . . , EM ,
where M is the number of outcomes of the measurement. The most intuitive measurement in this
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2. PROBABILITY THEORY

sense is just the collection of all singletons {ω}, bur really any partition will do. The measurement
then reports the kth outcome with probability P[Ek] = ~e(Ek ) · ~p and updates ~p to ~pk according to
(2.11). Notice that if we average the new probability vector over the measurement outcomes them-
selves, we end up with the original ~p:

M
∑

k=1

P (EK )~pk =
M
∑

k=1

~e(Ek ) ·~p
1

~e(Ek ) ·~p

∑

ω∈Ek

�

~sω ·~p
�

~sω (2.13)

=
∑

ω∈Ω

�

~sω ·~p
�

~sω = ~p. (2.14)

Averaging the updated distribution over the measurement outcome is like making a measurement and
then forgetting the outcome. So here we see that doing this has no effect: Forgetting the outcome is
like undoing the measurement.

2.3.4 Transformations of probabilities

Lastly, since we have represented the probability space in a (linear) vector space, we may ask what
sorts of linear transformations preserve the probability structure. That is, what matrices T take
probability vectors to probability vectors?

If we are to have ~p ′ = T ~p be an element of RN
+ for arbitrary input ~p, then T must have positive

entries. Moreover, ‖~p ′‖1 = 1 should also hold, meaning
∑

ω,ω′∈ΩTω′,ω pω = 1. Choosing ~p to be
the various~sω themselves, we find that T must satisfy

∑

ω′∈Ω
Tω′,ω = 1 ∀ω ∈Ω. (2.15)

Thus, T must be a positive matrix whose column-sums are all one; such matrices are called stochastic
matrices. If the row-sums are also all one, the matrix is doubly stochastic, and one can show that
T ~p = ~p for ~p having all entries equal to 1/N . Generally, we can think of Tω′,ω as a transition
probability, the probability to end up in ω′ when starting from ω; we will return to this later in
§2.5.

Among the doubly-stochastic matrices are the permutation matrices, which have a single 1 in each
row and column. Since the action is just to rearrange the elements of the sample space, they can
be undone (using the matrix representing the inverse permutation). That is, permutation matrices
describe reversible transformations.

2.4 Discrete random variables

In information theory we will need to work with many random variables over a probability space.
It will prove more convenient to use the random variables to refer to events, as in §2.2.3, rather than
constantly referring to the probability space itself. There is hardly any difference between these two
conventions if we consider only one random variable, but when working with many it is easier to
just refer to events by the values of the random variables rather than clutter up the notation. Thus,
given a collection of discrete random variables X1, X2, and so on, each taking on a finite number of
values, the sample space is justX1×X2× · · · and the σ -algebra of events is again the power set.

We will often refer to X as the alphabet of the random variable X . We also make use of the
probability mass function, PX (x), which gives the probability of the event X = x and satisfies the
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normalization condition
∑

x∈X PX (x) = 1. For a single random variable, the values of this function
are just the entries of ~p.

Certain probability distributions or probability mass functions are important enough to be given
their own names. We call PX flat if all non-zero probabilities are equal. By the normalization con-
dition, PX (x) =

1
|suppPX |

for all x ∈ X , where suppPX := {x ∈ X : PX (x) > 0} is the support of
the function PX . Furthermore, PX is uniform if it is flat and has no zero probabilities, whence
PX (x) =

1
|X | for all x ∈X .

2.4.1 Joint, marginal, and conditional distributions

When working with more than one random variable the concepts of joint, marginal, and conditional
distributions become important. The following definitions and statements apply to arbitrary n-
tuples of random variables, but we formulate them only for pairs (X ,Y ) in order to keep the notation
simple. In particular, it suffices to specify a bipartite probability distribution PX Y , whereX and Y
are the alphabets of X and Y , respectively. The extension to arbitrary n-tuples is straightforward.

Given PX Y , we call PX and PY the marginal distributions. It is easy to verify that

PY (y) =
∑

x∈X
PX Y (x, y) ∀y ∈Y , (2.16)

and likewise for PX . Furthermore, for any y ∈ Y with PY (y) > 0, the distribution PX |Y=y of X
conditioned on the event Y = y obeys

PX |Y=y (x) =
PX Y (x, y)

PY (y)
∀x ∈X . (2.17)

2.4.2 Independence and Markov chains

Two discrete random variables X and Y are said to be mutually independent if the events {X = x}
and {Y = y} are mutually independent for any (x, y) ∈X ×Y . Their joint distribution then satisfies
PX Y (x, y) = PX (x)PY (y).

Related is the notion of Markov chains.5 A sequence of random variables X1,X2, . . . is said to form
a Markov chain, denoted X1↔X2↔·· ·↔Xn , if for all i ∈ {1, . . . , n− 1}

PXi+1|X1=x1,...,Xi=xi
= PXi+1|Xi=xi

∀x1, . . . , xi . (2.18)

This expresses the fact that, given any fixed value of Xi , the random variable Xi+1 is completely
independent of all previous random variables X1, . . . ,Xi−1. Note that the arrows in the notation for
the Markov property go both ways; the reader is invited to verify that under (2.18) it also holds that
Xi−1 is independent of Xi+1, . . . ,Xn given a fixed value of Xi .

2.4.3 Functions of random variables and Jensen’s inequality

Let X be a random variable with alphabet X and let f be a function from X to Y . We denote by
Y = f (X ) the random variable defined by the concatenation f ◦X . Obviously, f (X ) has alphabetY

5Andrey Andreyevich Markov, 1856 – 1922, Russian mathematician.
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2. PROBABILITY THEORY

and, in the discrete case we consider here, the corresponding probability mass function PY is given
by

PY (y) =
∑

x∈ f −1({y})

PX (x). (2.19)

For a convex real function f on a convex setX , the expectation values of X and f (X ) are related
by Jensen’s inequality6

〈 f (X )〉 ≥ f (〈X 〉). (2.20)

The inequality is essentially a direct consequence of the definition of convexity (see Fig. 2.1).

Figure 2.1: Jensen’s inequality for a convex function

2.4.4 I.i.d. distributions and the law of large numbers

An n-tuple of random variables X1, . . . ,Xn with alphabetX is said to be independent and identically
distributed (i.i.d.) if their joint probability mass function has the form

PX1···Xn
= P×n

X := PX × · · ·× PX . (2.21)

The i.i.d. property thus characterizes situations where a certain process is repeated n times indepen-
dently. In the context of information theory, the i.i.d. property is often used to describe the statistics
of noise, e.g., in repeated uses of a communication channel (see §3.4).

The law of large numbers characterizes the “typical behavior” of real-valued i.i.d. random variables
X1, . . . ,Xn in the limit of large n. It usually comes in two versions, called the weak and the strong law
of large numbers. As the name suggests, the latter implies the first.

Let µ = 〈Xi 〉 be the expectation value of Xi (which, by the i.i.d. assumption, is the same for all
X1, . . . ,Xn), and let

Zn :=
1

n

n
∑

i=1

Xi (2.22)

6Johan Ludwig William Valdemar Jensen, 1859 – 1925, Danish mathematician and engineer.
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be the sample mean. Then, according to the weak law of large numbers, the probability that Zn is
ε-close to µ for any positive ε converges to one, i.e.,

lim
n→∞

P
�

|Zn −µ|< ε
�

= 1 ∀ε > 0. (2.23)

The weak law of large numbers will be sufficient for our purposes, and is proven in the exercises.
However, for completeness, we mention the strong law of large numbers which says that Zn converges
to µ with probability 1,

P
�

lim
n→∞

Zn =µ
�

= 1. (2.24)

2.5 Channels

A channel W is a probabilistic mapping that assigns to each value of an input alphabet X a value
of the output alphabet Y . In doing so, it transforms the random variable X to the random variable
Y =W (X ). Formally, a channel is any linear transformation of the type encountered in §2.3.4, i.e. a
map which preserves the probability structure, only now from the space (X , 2X , PX ) to some other
space (Y , 2Y , PY ), not back to the original space. It is specified by assigning a number W (y|x) to
each input-ouput pair (x, y) such that such that W (·|x) is a probability mass function for any x ∈X .
The distribution PY is then the marginal of the joint distribution

PX Y (x, y) = PX (x)W (y|x). (2.25)

Since W (y|x) is a properly-normalized distribution for each x, PX Y is indeed a valid distribution.
Looking at (2.17), we can see that W (y|x) is just the conditional probability PY |X=x (y). This

justifies the earlier statement in §2.3.4 that Tω′,ω is the transition probability from ω to ω′; this
was not well-defined previously because we lacked the joint input-output space in which to properly
formulate the conditional probability.

Moreover, channels can be seen as generalizations of functions. Indeed, if f is a function fromX
to Y , its description as a channel W is given by

W (y|x) = δy, f (x). (2.26)

Channels can be seen as abstractions of any (classical) physical device that takes an input X and
outputs Y . A typical example for such a device is, of course, a communication channel, e.g., an
optical fiber, where X is the input provided by a sender and where Y is the (possibly noisy) version
of X delivered to a receiver. A practically relevant question then is how much information one can
transmit reliably over such a channel, using an appropriate encoding.

Not only do channels carry information over space, they also carry information over time. Typ-
ical examples are memory devices, e.g., a hard drive or a CD (where one wants to model the errors
introduced between storage and reading out of data). Here, the question is how much redundancy
we need to introduce in the stored data in order to correct these errors.

The notion of channels is illustrated by the following two examples.

Example 2.5.1. The channel depicted in Fig. 2.2 maps the input 0 with equal probability to either
0 or 1; the input 1 is always mapped to 2. The channel has the property that its input is uniquely
determined by its output. As we shall see later, such a channel would allow the reliable transmission
of one classical bit of information.
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Figure 2.2: Example 1. A reliable channel

Figure 2.3: Example 2. An unreliable channel

Example 2.5.2. The channel shown in Fig. 2.3 maps each possible input with equal probability to
either 0 or 1. The output is thus completely independent of the input. Such a channel is obviously
not useful for transmitting information.

2.6 Measurement as a channel

The process of measurement, described in §2.3.3 can also be thought of as a channel, where the input
X is the system to be measured and the output Y is the output of the measurement. Consider again a
partition of the sample spaceX into a set of disjoint events, i.e. a collection of sets Ey , y = 1, . . . , |Y |
of values that X can take on, with all such sets pairwise disjoint and every possible value X = x an
element of some set in the collection. Then define the channel W by

W (y|x) =
¨

1 x ∈ Ey
0 else

, (2.27)

which may be succinctly written W (y|x) =~e(Ey ) ·~sx using the vector representation.
Now consider the joint distribution PX Y , given by (2.25). If ~p denotes the vector representative

of PX , the marginal PY is simply

PY (y) =
∑

x∈X
PX (x)W (y|x) (2.28)

=
∑

x∈X
(~e(Ey ) ·~sx )(~sx ·~p) (2.29)

=~e(Ey ) ·~p, (2.30)

16



2.7. Comparing probability distributions

the probability distribution of the measurement outcomes!Moreover, the conditional distribution of
X given Y is also easy to compute:

PX |Y=y(x) =
1

PY (y)
PX (x)W (y|x) (2.31)

=
1

~e(Ey ) ·~p
(~sx ·~p)(~e(Ey ) ·~sx ). (2.32)

Comparison with (2.12) reveals that PX |Y=y (x) is nothing more than the xth component of the new
probability vector ~p ′y .

Thus, the joint distribution induced by the channel (2.27) incorporates both the probabilities of
the outcomes of the measurement, as well as the distributions of the original system X conditional on
the measurement outcome. The fact that forgetting the outcome undoes the measurement is reflected
in the fact that the unconditional distribution of X , i.e. the marginal distribution not conditioned
on the value of Y , is simply the original PX .

The importance of this analysis is that if channels represent physical operations, then measurement
itself is a physical operation. We obviously expect this to be true, but the previous discussion of
measurements and channels did not rule out the possibility that measurement is somehow distinct
from the action of a channel.

2.7 Comparing probability distributions

Let P and Q be two probability mass functions on an alphabet X . The trace distance δ between P
and Q is defined by

δ(P,Q) :=
1

2

∑

x∈X
|P (x)−Q(x)|. (2.33)

In the literature, the trace distance is also called statistical distance, variational distance, or Kolmogorov
distance.7 It is easy to verify that δ is indeed a metric, that is, it is symmetric, nonnegative, zero if
and only if P =Q, and it satisfies the triangle inequality

δ(P,Q)≤ δ(P, R)+δ(R,Q). (2.34)

Furthermore, δ(P,Q)≤ 1 with equality if and only if P and Q have disjoint support. Because P and
Q are normalized, the trace distance can equivalently be written as

δ(P,Q) = 1−
∑

x∈X
min[P (x),Q(x)]. (2.35)

Another important property is that the trace distance can only decrease under the operation of
taking marginals.

Lemma 2.7.1. For any two probability mass functions PX Y and QX Y ,

δ(PX Y ,QX Y )≥ δ(PX ,QX ). (2.36)

7We use the term trace distance because, as we shall see, it is a special case of the trace distance for density operators.
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Proof. Applying the triangle inequality for the absolute value, we find

1

2

∑

x,y
|PX Y (x, y)−QX Y (x, y)| ≥

1

2

∑

x
|
∑

y
PX Y (x, y)−QX Y (x, y)| (2.37)

=
1

2

∑

x
|PX (x)−QX (x)|, (2.38)

where the second equality is (2.16). The assertion then follows from the definition of the trace
distance.

Finally, and perhaps most importantly, the trace distance gives a direct bound on how well two
distributions can be distinguished. The following lemma shows that the trace distance is itself the
biggest difference in probabilities that are possible for some event E under the two distributions:

Lemma 2.7.2. For PX and QX probability distributions onX ,

δ(PX ,QX ) = max
E⊆X
|PX [E]−QX [E]| , (2.39)

where the maximum is taken over all events E.

Proof. The proof is given in the exercises.

2.8 Further reading

For a nice introduction to the philosophy of probability theory, see [12].
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3Information Theory
3.1 Background: The problem of reliable communication & storage

3.1.1 What is information?

The field of information theory was established by Shannon1 with his publication “A Mathematical
Theory of Communication”. It opens by stating

The fundamental problem of communication is that of reproducing at one point, either
exactly or approximately, a message selected at another point.[13]

Communication in this sense encompasses the usual meaning of sending a message from one party
to another, but also storing a message to be able to read it later. The trouble is, of course, that the
means of communication are not inherently reliable or noiseless. Compact discs can be scratched,
radio signals can be distorted by the atmosphere on the way from sender to receiver, and so on.

Prior to Shannon’s paper, the main approach to improving the quality of communication was to
improve the quality of the channel itself. In other words, to engineer channels that more and more
closely approximate an ideal noiseless channel. Information theory, however, takes a “software”
approach, focusing on changing the way messages are transmitted over noisy channels so that they
can nevertheless be faithfully understood by the receiver.

An important step in this direction was the realization that, for the purposes of reliable commu-
nication, the “information” being transmitted has nothing to do with the meaning of the message.
Instead, as Hartley2 wrote in 1928,

Hence in estimating the capacity of the physical system to transmit information we
should ignore the question of interpretation...and base our result on the possibility of
the receiver’s distinguishing the result of selecting any one symbol from that of selecting
any other.[14]

The task of communication thus divorced from somehow reproducing the meaning of the message,
one can then consider manipulating messages in different ways to ensure that its identity can be
correctly inferred by the receiver. The method for doing so is to add redundancy to the transmission.
The simplest form is just repetition: by repeating a transmitted message three times, the receiver has
three attempts to determine the input. If two agree, then the receiver can be more confident in having
correctly determined the message than if the message were transmitted only once.

3.1.2 Quantifying information and uncertainty

Shannon’s breakthrough was to quantify the minimal amount of redundancy needed to ensure re-
liable communication. This can be seen as a measure of the information-carrying capacity of the
channel. Closely related is a measure of the information contained in the message, or conversely,
the uncertainty in the message. Shannon termed this uncertainty entropy on the advice of von Neu-
mann,3 who told him,

1Claude Elwood Shannon, 1916 – 2001, American mathematician and electrical engineer.
2Ralph Vinton Lyon Hartley, 1888 – 1970, American electrical engineer.
3John von Neumann, 1903 – 1957, Hungarian-American mathematician and polymath.
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3. INFORMATION THEORY

You should call it entropy, for two reasons. In the first place your uncertainty function
has been used in statistical mechanics under that name, so it already has a name. In the
second place, and more important, no one really knows what entropy really is, so in a
debate you will always have the advantage.[15]

Shannon’s concept of entropy of a random variable—his “uncertainty function”—is based on the
probability distribution of the random variable, and it is a measure of how uncertain we are of the
actual value. The flatter the probability distribution, the higher the entropy, and the more peaked,
the lower.

Shannon’s approach should be contrasted with another approach to quantifying entropy, known
as the algorithmic entropy or Kolmogorov complexity, which quantifies the uncertainty or randomness
of a particular value (of a random variable) as the length of the shortest computer program needed
to recreate the precise value. For example, a bitstring X = 00 · · ·0 consisting of n � 1 zeros has
small algorithmic entropy because it can be generated by a short program (the program that simply
outputs a sequence of zeros). The same is true if X consists of the first n digits of π, because there
is a short algorithm that computes π. In contrast, if X is a sequence of n bits chosen at random, its
algorithmic entropy will, with high probability, be roughly equal to n. This is because the shortest
program generating the exact sequence of bits X is, most likely, simply the program that has the
whole sequence already stored.

Despite the elegance of its definition, the algorithmic entropy has a fundamental disadvantage
when being used as a measure for uncertainty: It is not computable. This means that there cannot
exist a method (e.g. a computer program) that estimates the algorithmic complexity of a given string
X . This deficiency as well as its implications4 render the algorithmic complexity unsuitable as a
measure of entropy for most practical applications.

3.2 Entropy

3.2.1 Entropy of events

We will first take an axiomatic approach to motivate the definition of the Shannon entropy and
related quantities. First we will think of the entropy as a property of events E . More precisely, given
a probability space (Ω,E , P ), we consider a function H that assigns to each event E a real value H (E),

H : E → R∪{∞}
E 7→ H (E) .

(3.1)

The function H should then satisfy the following properties.

1. Independence of the representation: H (E) only depends on the probability P[E] of the event E .

2. Continuity: H is continuous in the probability measure P (relative to the topology induced by
the trace distance).

3. Additivity: H (E ∩ E ′) =H (E)+H (E ′) for two independent events E and E ′.

4. Normalization: H (E) = 1 for E with P[E] = 1
2 .

4An immediate implication is that there cannot exist a compression method that takes as input data X and outputs a
short algorithm that generates X .

20



3.2. Entropy

The axioms are natural if we think of H as a measure of uncertainty. Indeed, Axiom 3 reflects the
idea that our total uncertainty about two independent events is simply the sum of the uncertainty
about the individual events. We also note that the normalization imposed by Axiom 4 can be chosen
arbitrarily; the convention, however, is to assign entropy 1 to the event corresponding to the outcome
of a fair coin flip. The axioms uniquely define the function H :

Lemma 3.2.1. The function H satisfies the above axioms if and only if it has the form

H : E 7−→ − log2 P[E]. (3.2)

Proof. All the axioms are straightforwardly satisfied by H ; all that remains to show is uniqueness.
To do so, make the ansatz

H (E) = f (− log2 P[E]), (3.3)

where f is an arbitrary function from R+ ∪ {∞} to R∪ {∞}. Observe that, apart from taking the
first axiom into account, this choice can be made without loss of generality, as any possible function
of P[E] can be written in this form.

From the continuity axiom and continuity of the logarithm, it follows that f must be continu-
ous. Furthermore, the additivity axiom for events E and E ′ with respective probabilities p and p ′

gives

f (− log2 p)+ f (− log2 p ′) = f (− log2 p p ′). (3.4)

Setting a :=− log2 p and a′ :=− log2 p ′, this can be rewritten as

f (a)+ f (a′) = f (a+ a′). (3.5)

Together with the continuity axiom, we conclude that f is linear, i.e., f (x) = γ x for some γ ∈ R.
The normalization axiom then implies that γ = 1.

3.2.2 Entropy of random variables

We are now ready to define entropy measures for random variables. Analogously to the entropy
of an event E , which only depends on the probability P[E] of the event, the entropy of a random
variable X only depends on the probability mass function PX .

We start with the most standard measure in classical information theory, the Shannon entropy,
in the following denoted by H . Let X be a random variable with alphabet X and let h(x) be the
entropy of the event Ex := {X = x}, for any x ∈X , that is,

h(x) :=H (Ex ) =− log2 PX (x). (3.6)

This quantity is sometimes referred to as the surprisal. It is clearly positive for any x, since PX (x)≤ 1.
The Shannon entropy is then defined as the expected surprisal,

H (X ) := 〈h(X )〉=−
∑

x∈X
PX (x) log2 PX (x), (3.7)

with the proviso that 0 log2 0 is taken to be 0. If the probability measure P is unclear from the context,
we will include it in the notation as a subscript and write H (X )P .
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Similarly, the min-entropy, denoted Hmin, is defined as the minimum surprisal,

Hmin(X ) :=min
x∈X

h(x) =− log2 max
x∈X

PX (x). (3.8)

Another important entropy measure is the max-entropy, denoted Hmax, and defined by Hartley.
Despite the similarity of its name to the above measure, the definition does not rely on the entropy
of events, but rather on the cardinality of the support supp PX := {x ∈X : PX (x)> 0} of PX ,

Hmax(X ) := log2

�

�supp PX
�

�. (3.9)

It is easy to verify that the entropies defined above are related by

Hmin(X )≤H (X )≤Hmax(X ), (3.10)

with equality if the probability mass function PX is flat. Furthermore, they have various properties
in common. The following holds for H , Hmin, and Hmax; to keep the notation simple, however, we
only write H .

1. H is invariant under permutations of the elements, i.e., H (X ) = H (π(X )), for any permuta-
tion π.

2. H is nonnegative.

3. H is upper bounded by the logarithm of the alphabet size, i.e., H (X )≤ log2 |X |.

4. H equals zero if and only if exactly one of the entries of PX equals one, i.e., if |suppPX |= 1.

The first two clearly hold for all three entropy measures. We shall return to the latter two in §3.2.5.

3.2.3 Conditional entropy

Even more useful than the entropy is the conditional entropy, since in information theory we are
often interested in the uncertainty about X given the information represented by Y . Thus, we need
to generalize the entropy measures introduced above.

Analogously to (3.6) we define the conditional surprisal

h(x|y) :=− log2 PX |Y=y (x), (3.11)

for any x ∈ X and y ∈ Y . Then the Shannon entropy of X conditioned on Y is again defined as an
expectation value,

H (X |Y ) := 〈h(X |Y )〉=−
∑

x∈X
y∈Y

PX Y (x, y) log2 PX |Y=y (x). (3.12)

Note that it could equally-well be defined as the average of the conditional entropies: H (X |Y ) =
〈H (X |Y = y)〉PY

. For the definition of the min-entropy of X given Y , the expectation over Y is
replaced by a minimum,

Hmin(X |Y ) :=min
y∈Y

Hmin(X |Y = y) =min
x∈X
y∈Y

h(x|y) =− log2 max
x∈X
y∈Y

PX |Y=y (x). (3.13)
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While in the max-entropy of X given Y the expectation is replaced by a maximum,

Hmax(X |Y ) :=max
y∈Y

Hmax(X |Y = y) =max
y∈Y

log2 |suppPX |Y=y |. (3.14)

The conditional entropies H , Hmin, and Hmax satisfy the rules listed in Section 3.2.2. Moreover,
it is straightforward to verify that the Shannon entropy H satisfies the chain rule

H (X |Y Z) =H (X Y |Z)−H (Y |Z) . (3.15)

In particular, if we omit the random variable Z , we get

H (X |Y ) =H (X Y )−H (Y ), (3.16)

that is, the uncertainty of X given Y can be seen as the uncertainty about the pair (X ,Y ) minus the
uncertainty about Y . We note here that a slightly modified version of the chain rule also holds for
Hmin and Hmax, but we will not go further into this.

Furthermore, the conditional entropies can only decrease when conditioning on an additional
random variable Z , which is known as strong subadditivity or conditioning reduces entropy:

H (X |Y )≥H (X |Y Z). (3.17)

The proof is given in §3.2.5.

3.2.4 Mutual information

Let X and Y be two random variables. The (Shannon) mutual information between X and Y , denoted
I (X : Y ) is defined as the amount by which the Shannon entropy on X decreases when one learns Y ,

I (X : Y ) :=H (X )−H (X |Y ). (3.18)

More generally, given an additional random variable Z , the (Shannon) mutual information between X
and Y conditioned on Z , I (X : Y |Z), is defined by

I (X : Y |Z) :=H (X |Z)−H (X |Y Z). (3.19)

Notice that we could equally-well define the conditional mutual information by averaging over Z :
I (X : Y |Z) = 〈I (X : Y |Z = z)〉.

It is easy to see that the mutual information is symmetric under exchange of X and Y , i.e.,

I (X : Y |Z) = I (Y : X |Z). (3.20)

Furthermore, as we shall see in the following section, the mutual information cannot be negative. and
I (X : Y ) = 0 holds if and only if X and Y are mutually independent. More generally, I (X : Y |Z) = 0
if and only if X ↔ Z↔ Y is a Markov chain.
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3.2.5 Relative entropy and further properties of entropy

The entropies defined in the previous sections will turn out to have direct operational interpretations.
That is, they quantify the ultimate limits of information processing tasks such as data compression
or noisy channel coding. Here we introduce the relative entropy, mainly for its use in proving the
properties we have asserted above, though it also has operational interpretations as well.

Unlike the entropies above, the relative entropy is defined in terms of probability distributions.
For two distributions P and Q over the same alphabetX , the relative entropy is given by

D(P,Q) :=
∑

x
P (x) log2

P (x)

Q(x)
. (3.21)

The conditional and unconditional Shannon entropies as well as the mutual information can be
expressed in terms of the relative entropy, as follows. First let UX be the uniform distribution onX .
Then we have

1. H (X )P = log |X |−D(PX , UX ),

2. H (X |Y )P = log |X |−D(PX Y , UX × PY ),

3. I (X : Y )P =D(PX Y , PX × PY ).

Essentially all of the nontrivial entropic properties stated in previous sections follow from the Gibbs5

inequality:

Lemma 3.2.2 (Gibbs inequality). D(P,Q)≥ 0, with equality if and only if P =Q.

Proof. Note that log2 x ≤ (x − 1)/ ln2 for all x > 0, with equality if and only if x = 1. Applied to
Q(x)/P (x) we have

− log2
P (x)

Q(x)
= log2

Q(x)

P (x)
≤

1

ln2

�

Q(x)

P (x)
− 1

�

. (3.22)

Averaging over x using P (x) gives the result.

The Gibbs inequality immediately gives the statement that I (X : Y ) ≥ 0 with equality if and
only if PX Y = PX × Py , i.e. when X and Y are independent. Moreover, I (X : Y |Z) ≥ 0 follows
immediately by the alternative definition I (X : Y |Z) = 〈I (X : Y |Z = z)〉. In turn, the original
definition of conditional mutual information gives strong subadditivity of the conditional entropy.

Since conditioning reduces entropy, the entropy is concave in the probability distribution by the
alternative definition 〈H (X |Y = y)〉. That is, for P , Q, and R each distributions of a random variable
X , such that R(x) = λP (x)+(1−λ)Q(x) for some 0≤ λ≤ 1, then H (X )R ≥ λH (X )P+(1−λ)H (X )Q .
(Here we see the limits of the notation in which the entropy is a “function” of the random variable
and not the distribution, even though it actually depends on the latter, not the former.) To see that
the statement holds, take P to be the distribution PX |Y=0 and Q to be PX |Y=1 for a binary valued
random variable Y with distribution PY (0) = λ and PY (1) = 1−λ.

Finally, we establish latter two properties listed in §3.2.2. The third clearly holds for the max-
entropy; it holds for the min-entropy since the largest probability over an alphabet of size |X | can-
not be smaller than 1/|X | (otherwise the distribution would not be normalized). The Shannon

5Josiah Willard Gibbs, 1839 – 1903, American physicist.
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entropy is also bounded by the alphabet size by H (X )P = log |X | −D(PX , UX ) and the Gibbs in-
equality. Moreover, the only distribution for which H (X ) = log |X | is the uniform distribution
UX . Finally, the fourth property clearly holds for the min- and max-entropies. For the Shannon
entropy, consider any distribution as a convex combination of deterministic distributions, namely
PX (x) =

∑

x ′∈X PX (x
′)δx,x ′ and use the concavity of entropy.

3.2.6 Smooth min- and max- entropies

The dependency of the min- and max-entropy of a random variable on the underlying probability
mass functions is discontinuous. To see this, consider a random variable X with alphabet {1, . . . , 2`}
and probability mass function P εX given by

P εX (x) =
¨

1− ε x = 1
ε

2`−1
else , (3.23)

where ε ∈ [0,1]. It is easy to see that Hmax(X )P 0
X
= 0 while Hmax(X )PεX = ` for any ε > 0. However,

observe that the trace distance between the two distributions satisfies δ(P 0
X , P εX ) = ε. That is, an

arbitrarily small change in the distribution can change the entropy Hmax(X ) by an arbitrary amount:
The max-entropy is not continuous. In contrast, a small change of the underlying probability mass
function is often irrelevant in applications. This motivates the following definition of smooth min-
and max-entropies, which extends the above definition.

Let X and Y be random variables with joint probability mass function PX Y , and let ε ≥ 0. The
ε-smooth min-entropy of X conditioned on Y is defined as

H ε
min(X |Y ) := max

QX Y∈Bε(PX Y )
Hmin(X |Y )QX Y

, (3.24)

where the maximum ranges over the ε-ballBε(PX Y ) of probability mass functions QX Y satisfying
δ(PX Y ,QX Y )≤ ε. Similarly, the ε-smooth max-entropy of X conditioned on Y is defined as

H ε
max(X |Y ) := min

QX Y∈Bε(PX Y )
Hmax(X |Y )QX Y

. (3.25)

Note that the original definitions of Hmin and Hmax are recovered for ε= 0.

3.2.7 Asymptotic equipartition

We have already seen that the Shannon entropy always lies between the min- and the max-entropy
(see (3.10)). In the special case of n-tuples of i.i.d. random variables, the gap between H ε

min and H ε
max

approaches zero with increasing n, which means that all entropies become identical. This is expressed
by the following lemma,

Lemma 3.2.3. For any n ∈N, let (X1,Y1), . . . , (Xn ,Yn) be a sequence of i.i.d. pairs of random variables,

i.e. PX1Y1···XnYn
= P×n

X Y and define εn =
σ2

nδ2
n

for some δn = o( 1p
n
) and σ2 the variance of the conditional

surprisal h(x|y). Then

lim
n→∞

1

n
H εn

min
(X1 · · ·Xn |Y1 · · ·Yn) =H (X |Y )PX Y

, (3.26)

lim
n→∞

1

n
H εn

max(X1 · · ·Xn |Y1 · · ·Yn) =H (X |Y )PX Y
. (3.27)

25



3. INFORMATION THEORY

Proof. The lemma is a consequence of the law of large numbers, §2.4.4, applied to the random vari-
ables Zi := h(Xi |Yi ), for h(x|y) defined by (3.11). More details are given in the exercises.

This phenomenon is termed asymptotic equipartition; the convergence of the smooth entropies im-
plies that, in some sense, the i.i.d probability distribution is flat, except on a small portion of the
alphabet of size O(ε).

Note that, since the probability of independent events is additive, the Shannon entropy obeys
H (X×n |Y×n) = nH (X |Y ).

3.3 Data compression

3.3.1 Definition of the problem

Now let us put our entropy measures to use. Consider the task of data compression, mapping a
random variable X over alphabet X to a new random variable Y over a smaller alphabet Y , such
that the mapping can be undone. The task of data compression is also known as source coding, as we
may imagine X is produced by a source of information. Formally, we imagine a compression map
comp : X → Y and a decompression map dec : Y → X̂ , such that both maps are channels. The overall
mapping of random variables is

X −−→
comp

Y −→
dec

X̂ . (3.28)

We will further assume that Y = {0,1}` for some ` ∈ N so that we may count the number of bits
which are needed to store X reliably.

Here we must make an important distinction in how well the output X̂ matches the input X .
how the mapping is undone. Schemes in which decompression exactly reproduces the input are
called lossless. Examples include Huffman coding6 or arithmetic coding, which are both variable-length
schemes because while some inputs are made shorter, others become longer. Indeed, this must be the
case for lossless schemes, since a mapping which shortens all inputs cannot be perfectly reversible.
However, we will be interested in approximately lossless schemes in which the probability that the
output does not equal the input is allowed to be a (presumably small) parameter ε > 0.

We will judge the compression scheme to be successful if the average error probability is less than
ε; the average error probability is defined by

perr := 1−
∑

x∈X
PX X̂ (x, x). (3.29)

Then we are interested in the smallest ` such that the average error probability is less than ε:

`ε(X ) :=min{` ∈N : ∃comp,dec : perr ≤ ε}. (3.30)

3.3.2 Direct source coding theorem

Shannon’s genius in determining the ultimate achievable limits to data compression (and channel
coding) was to study the properties of randomly-chosen compression maps. Often this is referred
to as “random coding” but that is slightly misleading, as there is nothing necessarily random about
the compression or decompression functions themselves. The basic idea is to consider averaging the

6David Albert Huffman, 1925 – 1999, American computer scientist.
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3.3. Data compression

average error over the choice of compression map. If this doubly-averaged quantity is small, then
there must exist at least one compression map for which the average error probability (3.29) is at
least as small.

Moreover, one can show that in fact most compression maps have bounded error probability,
by appealing to the Markov inequality. This was proven in the exercises and is stated here for later
convenience:

Lemma 3.3.1 (Markov inequality). Let X be a random variable taking positive values. Then

P[X ≥ ε]≤
〈X 〉
ε

. (3.31)

We shall also need the union bound, which states the intuitive fact that the probability of the
union of some events cannot be larger than the sum of the probabilities of the events:

Lemma 3.3.2 (Union bound). For any countable set of events E1, E2, . . . , we have

P[∪i Ei]≤
∑

i

P[Ei]. (3.32)

It can be easily proven by induction, but we omit the formal proof here.
Using Shannon’s random coding technique, we can prove the direct source coding theorem,

Theorem 3.3.3. For any random variable X and ε≥ 0,

`ε(X )≤Hmax(X )+ log
1

ε
+ 1. (3.33)

Proof. Following Shannon, consider a randomly-chosen, deterministic compression map which maps
X to {0,1}`, for some ` to be specified later. The decompressor maps y ∈ Y to the value x ∈ X
which has the largest posterior probability, i.e. argmaxx:comp(x)=y PX |Y=y (x). An error potentially oc-
curs if there is more than one compatible x for a given y. Even in this case there is a chance that the
decompressor will make a lucky guess, but we can bound the average error probability by assuming
that all such events lead to an error:

perr ≤
∑

x∈X
PX (x)P[∃x ′ 6= x : comp(x ′) = comp(x), x ′ ∈ suppPX ]. (3.34)

Notice that we need only consider x ′ which have nonzero probability, as these are the only candidates
for inclusion in the decompressor’s output (based on PX |Y=y ), no matter the value of Y . By the union
bound, Lemma 3.3.2, the latter factor is bounded as follows

P[∃x ′ 6= x : comp(x ′) = comp(x), x ′ ∈ suppPX ]≤
∑

x ′ 6=x,x ′∈suppPX

P[comp(x ′) = comp(x)]. (3.35)

Now we average over the random choice of compression map, and denote the resulting averaged
average error probability by 〈perr〉comp. Since the probability of two inputs being mapped to the same
output (the collision probability) under a randomly-chosen function is just 1 divided by the size of the
output alphabet, we find

〈perr〉comp ≤
∑

x∈X
PX (x)

∑

x ′ 6=x,x ′∈suppPX

1

2`
(3.36)

≤ 2Hmax(X )P−l . (3.37)
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Therefore, choosing ` = dHmax(X )P + log 1
εe ensures that 〈perr〉comp ≤ ε. Since the average over all

maps leads to a small probability of error, there must be at least one mapping for which perr ≤ ε.
Finally, using dxe ≤ x + 1 completes the proof.

Next, we make use of the smoothed max-entropy to derive a tighter bound. For any distribution
PX , suppose we apply an ε-error source coding scheme designed for the P ′X ∈ B

ε′(PX ) such that
Hmax(X )P ′ =H ε′

max(X )P . By the properties of the trace distance, the average error probability cannot
be larger than ε+ ε′. Thus, we have the following corollary.

Corollary 3.3.4. `ε+ε
′
(X )≤H ε′

max(X )P + log 1
ε + 1.

3.3.3 Comments on the source coding protocol

We have shown that there must exist one compression map with the desired properties. But actually,
by the Markov inequality, Lemma 3.3.1, no more than a fraction

p
ε of compression maps have an

error larger than
p
ε, so even a random choice will most likely work well.

Moreover, while the proof makes use of randomly-chosen compression mappings, a closer look
at the proof itself reveals that we only needed to randomly choose among a set of mappings such that
the collision probability takes the value needed for (3.36). We need not pick randomly from the set
of all mappings for this, indeed randomly choosing a linear map is actually enough. The technique
of picking randomly from a set of functions so as to have a desired collision probability is called
universal hashing.

The decompression technique we have used is called MAP decompression, which stands for max-
imum a posteriori, as we use the maximum posterior probability (as opposed to the maximum prior
probability, argmaxx∈X PX (x)). This is similar, but not identical to maximum likelihood decompres-
sion, where the decompressor chooses argmaxx:comp(x)=y PY=y|X=x .

Note that in the source coding scheme we have constructed, the compressor does not need to
know PX , just the entropy H ε

max(X ). However, the decompressor does need to know PX , since it
uses PX |Y=y . Protocols in which the distribution need not be explicitly known are called universal
or blind. Thus, our scheme may be termed universal at the compressor. This is important for the task
of source coding with side information at the decoder; that is, compression of a source X when the
decoder has access to some additional random variable Z which may be correlated with X .

3.3.4 Direct source coding theorem for i.i.d. sources

Now suppose that we wish to compress n instances of a random variable X , that is, the random
variable X×n , with distribution PX×n = PX1

× · · · × PXn
. In this case we are interested in the smallest

possible rate at which X×n can be compressed, as n tends to infinity, provided the error ε also tends
to zero. Let us call this optimal rate the compressibility of X . It is formally defined as

C (X ) = inf
�

lim
n→∞

1

n
`εn (X×n) : lim

n→∞
εn = 0

�

. (3.38)

Together with the smooth entropy corollary to the direct source coding theorem, Corollary 3.3.4,
a simple application of the asymptotic equipartition property, Lemma 3.2.3, immediately implies the
direct i.i.d. source coding theorem,

Corollary 3.3.5. For any random variable X , C (X )≤H (X ).
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3.3. Data compression

Proof. Let ε and ε′ in Corollary 3.3.4 both be equal to the error in the AEP, i.e.

ε= ε′ =
σ2

nδ2
n

with δn = o( 1p
n
) (3.39)

Clearly, limn→∞ ε= 0. Then we have

lim
n→∞

1

n
`2ε(X×n)≤ lim

n→∞

� 1

n
H ε

max(X
×n)−

1

n
log

1

ε
+

1

n

�

(3.40)

=H (X )− lim
n→∞

1

n
log

nδ2
n

σ2
=H (X ). (3.41)

The protocol constructed by this method is an instance of block compression, in that both the
compressor and decompressor act on blocks of n bits at a time. More practical, however, are means
of stream compression where the sequence of random variables is compressed one at a time. The afore-
mentioned schemes of Huffman coding and arithmetic coding are examples of stream compression
which can operate at (essentially) the rate given above, but we will not go into them here.

3.3.5 Converse source coding theorem for i.i.d. sources

Now let us demonstrate that the rate H (X ) is in fact optimal for the task of i.i.d. compression. For
this we make use of the Fano inequality7 which links the conditional entropy with the probability of
error.

Lemma 3.3.6 (Fano inequality). For any two random variables X and Y , let X̂ be a guess of X generated
from Y (by means of a channel). Then

P[X̂ 6=X ]≥
H (X |Y )− 1

log |X |
. (3.42)

Proof. The proof will be given in the exercises.

Now we can state the converse i.i.d. source coding theorem,

Theorem 3.3.7. For any random variable X , C (X )≥H (X ).

Proof. Suppose we have source coding schemes for each blocklength n with errors εn such that εn→
0 as n → ∞. By Fano’s inequality, the chain rule for the Shannon entropy, and the fact that the
compressor is a deterministic mapping, we have

εn n log |X |+ 1≥H (X×n |Y ) (3.43)
=H (X×nY )−H (Y ) (3.44)
=H (X×n)−H (Y ) (3.45)
= nH (X )−H (Y ). (3.46)

7Robert Mario Fano, born 1917, Italian-American computer scientist.
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Since H (Y )≤ log |Y |, we therefore obtain

1

n
log |Y | ≥H (X )− εn log |X |−

1

n
. (3.47)

Taking the limit n→∞ on both sides completes the proof.

This result is sometimes called the weak converse, since we have shown that compression at rates
below the compressibility must result in error rates εn which do not converge to zero. In fact, it is
possible to prove a strong converse, which asserts that compression at rates below the compressibility
imply εn→ 1. Thus, the compressibility is a sharp transition and no tradeoff between error rate and
compression rate is possible in the asymptotic limit.

3.4 Noisy channel coding

3.4.1 Definition of the problem

Consider the following scenario. A sender, traditionally called Alice, wants to send a message M to
a receiver, Bob. They are connected by a communication channel W that takes inputs X from Alice
and outputs Y on Bob’s side (see Section 2.5). The channel might be noisy, which means that Y can
differ from X . The challenge is to find an appropriate encoding scheme that allows Bob to retrieve
the correct message M , except with a small error probability ε. As we shall see, ε can always be made
arbitrarily small (at the cost of the amount of information that can be transmitted). But unlike the
case of data compression, it is generally impossible to reach ε= 0 exactly.

To describe the encoding and decoding process, we assume without loss of generality8 that the
message M is represented as an `-bit string, i.e., M takes values from the setM = {0,1}`. Alice then
applies an encoding function enc` : {0,1}`→X that maps M to a channel input X . On the other end
of the line, Bob applies a decoding function dec` : Y → {0,1}` to the channel output Y in order to
retrieve M̂ . Then the entire transmission process looks like

M −−−−−−−→
enc`

X −−−−−−−→
W Y −−−−−−−→

dec`
M̂ . (3.48)

The transmission is successful if M = M̂ . More generally, for any fixed encoding and decoding proce-
dures enc` and dec`, and for any message m ∈ {0,1}`, we can define

penc`,dec`
err (m) := P[dec` ◦W ◦ enc`(M ) 6=M |M = m] (3.49)

as the probability that the decoded message M̂ := dec` ◦W ◦ enc`(M ) generated by the process (3.48)
does not coincide with M .

In the following, we analyze the maximum number of message bits ` that can be transmitted in
one use of the channel W if we tolerate a maximum error probability ε,

`ε(W ) :=max{` ∈N : ∃enc`,dec` : max
m∈M

penc`,dec`
err (m)≤ ε} . (3.50)

8Note that all our statements will be independent of the actual representation of M . The only quantity that matters is
the alphabet size of M , i.e., the total number of possible values.
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3.4. Noisy channel coding

3.4.2 Direct channel coding theorem

The direct channel coding theorem provides a lower bound on the quantity `ε(W ). It is easy to see
from the formula below that reducing the maximum tolerated error probability by a factor of 2
comes at the cost of reducing the number of bits that can be transmitted reliably by 1. It can also be
shown that the bound is almost tight (up to terms log2

1
ε ).

Theorem 3.4.1. For any channel W and any ε≥ 0,

`ε(W )≥max
PX

�

Hmin(X )−Hmax(X |Y )
�

− log2
1

ε
− 3, (3.51)

where the entropies on the right hand side are evaluated for the random variables X and Y jointly dis-
tributed according to PX Y (x, y) = PX (x)W (y|x), as in (2.25).

The proof idea is illustrated in Fig. 3.1.

codewords

M M

encl decl
p

y

X Y

m m

supp
�
PX|Y=y



Figure 3.1: The figure illustrates the proof idea of the channel coding theorem. The range of the
encoding function enc` is called the code and their elements are the codewords.

Proof. The argument is based on a randomized construction of the encoding function and proceeds in
two steps. Let PX be the distribution that maximizes the right hand side of the claim of the theorem
and let ` be

`= bHmin(X )−Hmax(X |Y )− log2
2

ε
c. (3.52)

In the first step, we consider an encoding function enc` chosen at random by assigning to each
m ∈ {0,1}` a value enc`(m) := X where X is chosen according to PX . We then show that for MAP
decoding dec` that maps y ∈ Y to the value m′ ∈ {0,1}` for which enc`(m

′) = argmaxx∈X PX |Y=y ,
the error probability for a message M chosen uniformly at random satisfies




penc`,dec`
err (M )

�

= P[dec` ◦W ◦ enc`(M ) 6=M ]≤
ε

2
. (3.53)

In the second step, we use this bound to show that there exist enc′
`−1

and dec′
`−1

such that

p
enc′

`−1
,dec′

`−1
err (m)≤ ε ∀m ∈ {0,1}`−1. (3.54)
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From (3.53) and (3.54) we then have

`ε(W )≥ `− 1 (3.55)
= bHmin(X )−Hmax(X |Y )− log2(2/ε)c− 1 (3.56)
≥Hmin(X )−Hmax(X |Y )− log2(1/ε)− 3. (3.57)

To prove (3.53), let enc` and M be chosen at random as described, let Y :=W ◦ enc`(M ) be the
channel output, and let M ′ := dec`(Y ) be the decoded message. We then consider any pair (m, y)
such that PM Y (m, y) > 0. It is easy to see that, conditioned on the event that (M ,Y ) = (m, y), the
decoding function dec` described above can only fail, i.e. produce an M ′ 6=M , if there exists m′ 6= m
such that enc`(m

′) ∈ suppPX |Y=y . Hence, the probability that the decoding fails is bounded by

P[M 6=M ′|M = m,Y = y]≤ P[∃m′ 6= m : enc`(m
′) ∈ suppPX |Y=y]. (3.58)

Furthermore, by the union bound in Lemma 3.3.2, we have

P[∃m′ 6= m : enc`(m
′) ∈ suppPX |Y=y]≤

∑

m′ 6=m

P[enc`(m
′) ∈ suppPX |Y=y]. (3.59)

Because, by construction, enc`(m
′) is a value chosen at random according to the distribution PX , the

probability in the sum on the right hand side of the inequality is given by

P[enc`(m
′) ∈ suppPX |Y=y] =

∑

x∈suppPX |Y=y

PX (x) (3.60)

≤ |suppPX |Y=y |max
x

PX (x) (3.61)

≤ 2−(Hmin(X )−Hmax(X |Y )), (3.62)

where the last inequality follows from the definitions of Hmin and Hmax. Combining this with the
above and observing that there are only 2`− 1 values m′ 6= m, we find

P[M 6=M ′|M = m,Y = y]≤ 2`−(Hmin(X )−Hmax(X |Y )) ≤
ε

2
. (3.63)

Because this holds for any m and y, we have

P[M 6=M ′]≤max
m,y

P[M 6=M ′|M = m,Y = y]≤
ε

2
. (3.64)

This immediately implies that (3.53) holds on average over all choices of enc`. But this also implies
that there exists at least one specific choice for enc` such that (3.53) holds.

It remains to show inequality (3.54). For this, we divide the set of messages {0,1}` into two
equally large setsM andM at the median, i.e. such that penc`,dec`

err (m)≤ penc`,dec`
err (m) for any m ∈M

and m ∈M . We then have

max
m∈M

penc`,dec`
err (m)≤ min

m∈M
penc`,dec`

err (m)≤ 2−(`−1)
∑

m∈M

penc`,dec`
err (m). (3.65)

Using (3.53), we conclude

max
m∈M

penc`,dec`
err (m)≤ 2

∑

m∈{0,1}`
2−` penc`,dec`

err (m) = 2



penc`,dec`
err (M )

�

≤ ε. (3.66)

Inequality (3.54) then follows by defining enc′
`−1

as the encoding function enc` restricted toM , and
adapting the decoding function accordingly.
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3.4. Noisy channel coding

As with data compression, we can tighten the bound by constructing the decoder not using the
actual joint distribution PX Y but a nearby distribution, from which one can derive bounds on the
smooth entropies. This leads to the following corollary, whose proof is included only for complete-
ness and is not examinable in this course.

Corollary 3.4.2. For any channel W and any ε,ε′ ≥ 0,

`ε+3ε′(W )≥max
PX

�

H ε′

min(X )−H ε′

max(X |Y )
�

− log2
1

ε
− 3, (3.67)

where the entropies on the right hand side are evaluated for PX Y .

Proof. Consider an arbitrary PX and the PX Y derived from it by the action of the channel. For
a smoothing parameter ε′ > 0, let P ′X Y be the distribution for which Hmax(X |Y )P ′ = H ε′

max(X )P .
The smoothed distribution differs from the original in that some events (x, y), which under PX Y
have small probability, now have zero probability under P ′X Y , so as to reduce the support of the
conditional distribution.

Next, by the properties of the trace distance, δ(PX , P ′X ) ≤ ε
′. Now consider smoothing P ′X

by 2ε′ to P ′′X so that Hmin(X )P ′′ = H 2ε′
min(X )P ′ , for reasons which will become clear shortly. This

will reduce the probability of events with large probability, redistributing the excess to events with
small probability. We can extend the smoothing to P ′X Y , simply by distributing the probability
reduction proportionally over all y for a given x. This will maintain the trace distance, so that
δ(P ′X Y , P ′′X Y )≤ 2ε′. And even more importantly, observe that the min-entropy smoothing step does
not adversely affect the previous max-entropy smoothing step. That is, Hmax(X )P ′′ ≤Hmax(X )P ′ .

From the definition of smooth min-entropy, Hmin(X )P ′′ = H 2ε′
min(X )P ′ ≥ H 3ε′

min(X )P , while the
above shows Hmax(X )P ′′ ≤ Hmax(X )P ′ = H ε′

max(X )P . Therefore, constructing the decoding function
using P ′′X |Y=y will only increase the error by at most 3ε′.

3.4.3 Comments on the channel coding protocol

Many of the same comments regarding the source coding protocol also apply to our channel coding
protocol. It is also universal at the encoder, also called universal with an informed decoder. It also
need not make use of the full set of random encoding maps. From the proof, it is sufficient that the
codewords be merely pairwise independent rather than completely independent, and as in the source
coding case, this allows us to narrow the set of encoders to linear mappings.

3.4.4 Direct channel coding theorem for i.i.d. channels

Realistic communication channels (e.g., an optical fiber) can usually be used repeatedly. Moreover,
such channels are often not inaccurately described by an i.i.d. noise model. In this case, the transmis-
sion of n subsequent signals over the physical channel corresponds to a single use of a channel of the
form W ×n =W × · · · ×W . The amount of information that can be transmitted from a sender to a
receiver using the physical channel n times is thus given by Theorem 3.4.1 or Corollary 3.4.2 applied
to W ×n .

In applications, the number n of channel uses is typically large. It is thus convenient to consider
the rate of communication, i.e. the number of bits per channel use which can be reliably transmitted,
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again in the limit n → ∞ such that ε → 0. The optimal rate is called the capacity C (W ) of the
channel, and is formally defined by

C (W ) = sup
�

lim
n→∞

1

n
`εn (W ×n) : lim

n→∞
εn = 0

�

. (3.68)

As with data compression, combination of the asymptotic equipartition property of Lemma 3.2.3
with the smooth entropy corollary to the direct noisy channel coding theorem, Corollary 3.4.2
directly implies the direct i.i.d. noisy channel coding theorem,

Theorem 3.4.3. For any channel W

C (W )≥max
PX

�

H (X )−H (X |Y )
�

=max
PX

I (X : Y ). (3.69)

where the entropies on the right hand side are evaluated for PX Y := PX W .

3.4.5 Converse channel coding theorem for i.i.d. channels

We conclude our treatment of channel coding with a proof that the bound given in Theorem 3.4.3 is
tight. The proof is similar to the converse for data compression, Theorem 3.3.7, with two additional
ingredients, the data processing processing inequality and single-letterization.

Lemma 3.4.4 (Data processing). Suppose X ↔ Y ↔ Z is a Markov chain. Then

I (X : Z)≤ I (X : Y ). (3.70)

Proof. The proof is given in the exercises.

Lemma 3.4.5 (Single-letterization). For any random variable X n on X ×n , let W be a channel and
define Y n =W ×n(X n). Then

I (X n : Y n)≤ nC (W ). (3.71)

Proof. Using the chain rule we obtain

I (X n : Y n) =H (Y n)−H (Y n |X n) =H (Y n)−
n
∑

i=1

H (Yi |Y1, . . . ,Yi−1X n). (3.72)

Since each channel use is independent of all others, Yi only depends on Xi , which is to say that it is in-
dependent of all other variables when conditioned on the value of Xi . Thus, H (Yi |Y1, . . . ,Yi−1X n) =
H (Yi |Xi ) and we have I (X n : Y n) = H (Y n)−

∑n
i=1 H (Yi |Xi ). Then, by subadditivity of entropy

(H (Y1Y2)≤H (Y1)+H (Y2)), we find

I (X n : Y n)≤
∑

i

H (Yi )−
n
∑

i=1

H (Yi |Xi ) =
n
∑

i=1

I (X : Y )≤ nC (W ). (3.73)

Now we can state the converse i.i.d. channel coding theorem,

Theorem 3.4.6. C (W )≤maxPX
I (X : Y ).
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Proof. Suppose we have coding schemes for each blocklength n and maximum error probability
εn , with εn → ∞. Further, consider the message M ∈ M to be a random variable with uniform
probability distribution. Clearly, the average error probability will also be less than εn . Then by the
chain rule and definition of mutual information we have

log |M |=H (M ) =H (M |M ′)+ I (M : M ′). (3.74)

We can apply the Fano inequality, Lemma 3.3.6, to the first term and data processing to the second;
as in (3.48), M ↔X n↔ Y n↔M ′ form a Markov chain, where X n is the random variable induced
from M by the encoder and Y n =W ×n(X n). We then have

log |M | ≤ 1+ P (M 6=M ′) log |M |+ I (X n : Y n). (3.75)

In view of the single-letterization lemma, we can then conclude

log |M | ≤ 1+ εn log |M |+ nC (W ). (3.76)

Dividing both sides by n and taking the limit n→∞ on both sides completes the proof.

As was the case with source coding, the above represents a weak converse, showing that trying
to communicate at rates exceeding the capacity will incur some error. Again one can show a strong
converse stating that the error would in that case actually converge to 1.

3.5 Further reading

Mackay [9] has an excellent discussion of arithmetic coding. For more on universal hashing and
pairwise independence, see [16].
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4The Formalism of Quantum Mechanics
4.1 The postulates of quantum mechanics

Despite more than one century of research, numerous questions related to the foundations of quan-
tum mechanics are still unsolved (and highly disputed). For example, no fully satisfying explanation
for the fact that quantum mechanics has its particular mathematical structure has been found so far.
As a consequence, some of the aspects to be discussed in the following, e.g., the postulates of quantum
mechanics, might appear to lack a clear motivation.

In this section, we describe one of the standard approaches to quantum mechanics. It is based
on a number of postulates formulated by Dirac and von Neumann regarding the states of physical
systems as well as their evolution. (For more details, we refer to Section 2 of [2], where an equivalent
approach is described.) The postulates are as follows:

1. States:
The set of states of an isolated physical system is in one-to-one correspondence to the projective
space of a Hilbert spaceH . In particular, any physical state can be represented by a normalized
vector |φ〉 ∈H which is unique up to a phase factor. In the following, we will callH the state
space of the system.

2. Dynamics:
For any possible evolution of an isolated physical system with state spaceH and for any fixed
time interval [t0, t1] there exists a unitary U describing the mapping of states |φ〉 ∈H at time
t0 to the state

|φ′〉=U |φ〉 (4.1)

at time t1. The unitary U is unique up to a phase factor.

3. Observables:
Any physical property of a system that can be measured is an observable and all observables
are represented by self-adjoint linear operators acting on the state spaceH . Each eigenvalue x
of an observable O corresponds to a possible value of the observable. Since O is self-adjoint, it
takes the form O =

∑

x xPx , where Px is the projector onto the subspace with eigenvalue x.

4. Measurements:
The measurement of an observable O yields an eigenvalue x. If the system is in state |φ〉 ∈H ,
then the probability of observing outcome x is given by

PX (x) = tr(Px |φ〉〈φ|). (4.2)

The state |φ′x〉 of the system after the measurement, conditioned on the event that the outcome
is x, is just

|φ′x〉 :=

s

1

PX (x)
Px |φ〉. (4.3)
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4. THE FORMALISM OF QUANTUM MECHANICS

5. Composition:
For two physical systems with state spacesHA andHB , the state space of the product system
is isomorphic toHA⊗HB . Furthermore, if the individual systems are in states |φ〉 ∈HA and
|φ′〉 ∈HB , then the joint state is

|Ψ〉= |φ〉⊗ |φ′〉 ∈HA⊗HB . (4.4)

4.1.1 Comparison with classical probability theory

We can make an analogy between classical probability theory and the formalism of quantum me-
chanics, as follows

Quantum Classical
state vector |φ〉 ≈ ~p probability distrib.∗

observable O ≈ X random variable
projector Px ≈ E event

evolution operator U ≈ T transformation∗

probability rule tr[Px |φ〉〈φ|] ≈ ~e[E] ·~p
post-measurement state Px |φ〉/

p

PX (x) ≈ P~e[E]~p/~e[E] ·~p

This table highlights the fact that not only are there analogs in the quantum domain of objects in
classical probability theory, but that they interact with each other in similar ways. Most notably, the
probability rule is a “linear combination” of states and events in each case. The mathematical spaces
in which the objects live is quite different, but nonetheless linearity is at the heart of both.

A couple of caveats are in order, corresponding to the starred items. First, state vectors are
analogous to “sharp” probability distributions, which are those such that p j = δ j k for some k. This
is because we can always find a measurement associated with a state |φ〉 for which one outcome is
certain, namely the measurement associated with the orthogonal projectors Pφ = |φ〉〈φ| and P

φ
=

id− |φ〉〈φ|. Second, the unitary operators implementing time evolution are reversible, so they are
analogous to reversible transformations (permutations) of the classical sample space.

Despite the elegance of the above analogy, there is one glaring omission: the sample space. What
is the analog of the sample space in quantum theory? One could say that the |ψ〉 are the quantum
version of the~s j , since sharp distributions ~p are just the~s j . But then comes the famous measurement
problem: Why does the state (now a physical thing) evolve unitarily under “normal” dynamics but
differently for measurement? Is measurement not a dynamical process? The view of |ψ〉 as akin
to a probability distribution does not have this problem; even in classical probability theory the
probability changes upon measurement. After all, the measurement reveals something about they
underlying state of the system. But quantum-mechanically this approach leaves us in the awkward
position of having no sample space to refer probability to. What is it about a quantum system that
a measurement is supposed to reveal? If there is a useful sample space, why don’t we just formulate
quantum mechanics directly in these terms? As we’ll see when discussing the Bell1 inequalities, there
are essentially no good options for an underlying sample space in these terms. So what should we do?
Should we think of the state vector as a physical quantity, like~s j , or just as a nice way to encode the
probability of events, like ~p? As far as I know, there’s no satisfactory answer to this question, though
many are convinced by the various approaches to solve the riddle. One could also hope that the very

1John Stewart Bell, 1928 – 1990, Northern Irish physicist.
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question is the wrong one to be asking, but it is by no means clear what the right question would
be. Thus we are forced to live with the strange structure of quantum mechanics as we currently
understand it.

4.2 Bipartite states and entanglement

The analogy presented in the previous section also does not deal with the last postulate, dealing with
the structure of composite quantum systems. This structure is quite different than in the setting of
classical probability theory, in particular due to the existence of entangled states. As we shall see, in
one form or another entanglement is responsible for weirdness of quantum mechanics.

Consider an arbitrary state of a bipartite quantum system, i.e. a state |Ψ〉 on the spaceHA⊗HB .
Given orthonormal bases {|b j 〉} and {|b ′k〉} for these two spaces, any bipartite state can be expressed
as

|Ψ〉=
dA
∑

j=1

dB
∑

k=1

Ψ j k |b j 〉⊗ |b
′
k〉. (4.5)

Here dA (dB ) is the dimension ofHA (HB ). Thinking of the components Ψ j k as forming a dA× dB
matrix, we may use the singular-value decomposition to form the Schmidt decomposition of the state.
Let the singular value decomposition be Ψ j ,k = Uj ,`D`,`[V

∗]`,k . The entries of D`,` are all positive;
let their values be D`,` = λ`. At most there are dmin = min(dA, dB ) nonzero singular values, so we
may express |Ψ〉 as

|Ψ〉=
dA
∑

j=1

dB
∑

k=1

dmin
∑

`

Uj ,`λ`[V
∗]`,k |b j 〉⊗ |b

′
k〉 (4.6)

=
dmin
∑

`

λ`







dA
∑

j=1

Uj ,`|b j 〉






⊗







dB
∑

k=1

V ∗k ,`|b
′
k〉






(4.7)

=
dmin
∑

`

λ`|ξ`〉⊗ |η`〉, (4.8)

where we have implicitly defined the states |ξ`〉 and |η`〉 in the last step. Since U and V are unitary,
these two sets are each orthonormal bases. Thus, for any given bipartite state it is possible to find
an orthonormal basis for each subsystem such that the coefficients of the global state are diagonal in
this basis. Moreover, since the singular values are positive and the state is assumed to be normalized,
the set {λ2

`
} forms a probability distribution.

If there is only one nonzero Schmidt coefficient λ`, the state is a product state |Ψ〉= |ξ 〉⊗ |η〉. On
the other hand, if there is more than one nonzero Schmidt coefficient, the state is said to be entangled;
if λ` = 1/

Æ

dm , the state is said to be maximally entangled.
The possibility of entanglement is due to the linear structure of the state space, and is responsible

for the no-cloning argument we saw in the Introduction. Attempting to clone a general qubit state
|ψ〉= a|0〉+ b |1〉 results in the entangled state a|0〉⊗ |0〉+ b |1〉⊗ |1〉.
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4. THE FORMALISM OF QUANTUM MECHANICS

4.3 Superdense coding and teleportation

There are two basic quantum information processing protocols involving entangled states of two
systems which have no classical analog: superdense coding and teleportation.

4.3.1 Superdense Coding

The canonical maximally entangled state of two qubits is

|Φ〉AB =
1
p

2
(|00〉+ |11〉)AB . (4.9)

Consider the action of one of the Pauli operators on system B , say σx :

|Φx〉AB =
�

idA⊗ (σx )B
�

|Φ〉AB =
1
p

2
(|01〉+ |10〉)AB . (4.10)

Clearly this state is orthogonal to |Φ〉. What about σz?

|Φz〉AB = (idA⊗ (σz )B ) |Φ〉AB =
1
p

2
(|00〉− |11〉)AB . (4.11)

Also orthogonal to |Φ〉, and to |Φx〉. And σy :

|Φy〉AB =
�

idA⊗ (−iσy )B
�

|Φ〉AB =
1
p

2
(|01〉− |10〉)AB , (4.12)

orthogonal to all others. We have constructed a basis for C2⊗C2 comprised of maximally entangled
states, all related by Pauli operators on system B alone. As a side note, these four states turn out to
be an interesting basis in terms of angular momentum. |Φy〉 is the singlet, the state of two spin- 1

2
systems having total angular momentum zero. The other states span the triplet space, having total
angular momentum 1. |Φx〉 is the eigenstate having Jz = 0, while |Φz〉 is the eigenstate with Jx = 0
and |Φ〉 Jy = 0. The latter two can be identified by direct calculation or by noticing that since σy
commutes with rotations about the y axis, it cannot change the value of Jy .

Now return to the setup of our two separated parties, Alice and Bob. Alice would like to send a
message to Bob, a message composed of two bits (sell stocks? buy gold?), but she has only got enough
postage for either one classical bit or one quantum bit. Clearly one classical bit is insufficient. But
quantum postage was even cheaper in the past, and Alice predicting that it would go up, sent a qubit
to Bob back when the rates were cheap.

How does that help her now? Suppose she originally prepared |Φ〉AB and then sent system A
using the cheap postage. Now she can apply one of the 3 Pauli operators, or do nothing, to B and
send this qubit to Bob. This creates one of the 4 entangled basis states |Φ j 〉AB , and Bob can read out
the message using the measurement P j = |Φ j 〉〈Φ j |

Notice that Alice managed to send 2 bits of information using just 1 qubit — when she sent the
first one she had not yet made up her mind about selling stocks and buying gold. That is why this
scheme is called superdense coding: one qubit is used to transfer 2 classical bits, though of course two
qubits are ultimately involved (Bob needs 4 orthogonal projectors to read out the message).
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4.3. Superdense coding and teleportation

4.3.2 Teleportation

Now imagine Alice and Bob are in the opposite situation: Instead of Alice wanting to send 2 classical
bits and having only a quantum channel (plus preshared entanglement), she wants to send a qubit, but
only has access to a classical channel. Can she somehow send the state to Bob using only a classical
channel?

If that is all the resources they share, the answer is no. Alice could try to measure the qubit in
some way, for instance to learn the values of the coefficients a and b in the expression |ψ〉= a|0〉+b |1〉
by building up statistics (since Pr(0) = |a|2 and never mind she also needs the relative phase between
a and b ), but she only has 1 copy of |ψ〉.

On the other hand, if Alice and Bob already share an entangled state, then it is possible to trans-
fer |ψ〉 to Bob, and it only requires 2 bits! The “2 bits” are reminiscent of the 4 entangled states
|Φ j 〉 (called Bell states) used in superdense coding, and they play the same role as measurement in
teleportation.

The protocol is very simple. Alice has a qubit prepared in |ψ〉A′ as well as half of a maximally
entangled state |Φ〉AB . She then measures her two systems in the Bell basis, producing a two-bit
outcome. What happens when the outcome corresponds to |Φ〉?

A′A〈Φ|ψ〉A′ |Φ〉AB =A′A〈Φ|
1
p

2
(a|000〉+ a|011〉+ b |100〉+ b |111〉)A′AB (4.13)

=
1

2
(〈00|+ 〈11|)A′A (a|000〉+ a|011〉+ b |100〉+ b |111〉)A′AB (4.14)

=
1

2
(a|0〉+ b |1〉)B (4.15)

=
1

2
|ψ〉B . (4.16)

The state has been transferred to Bob! The squared norm of the output tells us the probability, so the
chance that Alice obtains result |ψ〉 is 1

4 . And what about the other results?
To figure this out we can use a different method: write |ψ〉A′ |Φ〉AB in the |Φ j 〉A′A|k〉B basis.

|ψ〉A′ |Φ〉AB =
1
p

2
(a|000〉+ a|011〉+ b |100〉+ b |111〉)A′AB (4.17)

=
1

2

�

a
�

|Φ〉|0〉+ |Φz〉|0〉+ |Φx〉|1〉+ |Φy〉|1〉
�

+b
�

|Φx〉|0〉− |Φy〉|0〉+ |Φ〉|1〉− |Φz〉|1〉
��

(4.18)

=
1

2

�

|Φ〉 (a|0〉+ b |1〉)+ |Φx〉 (a|1〉+ b |0〉)

|Φy〉 (a|1〉− b |0〉)+ |Φz〉 (a|0〉+ b |1〉)
�

(4.19)

=
1

2

�

|Φ〉|ψ〉+ |Φx〉σx |ψ〉+ |Φy〉(−iσy )|ψ〉+ |Φz〉σz |ψ〉
�

. (4.20)

Notice how each term is of the form |Φ j 〉A′Aσ j |ψ〉B , meaning that if Alice measures A′A in the Bell
basis and communicates the result to Bob, he can apply the corresponding Pauli operator to obtain
the input state |ψ〉. Alice needs 2 bits to describe the outcome, and since each term has the same
weight, the probability of every outcome is 1

4 .
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4.4 Further Reading

The Schmidt decomposition was first presented in [17].
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5The Structure of Quantum States
The postulates of quantum mechanics presented in the previous chapter deal only with isolated sys-
tems. Moreover, they do not directly allow classical information to be included in the quantum
description. But such a description should be possible, according to the theme of the course.

In this chapter and the next e shall see that for parts of a larger system or when including classical
information, states are no longer rays, measurements are no longer projectors, and dynamics is no
longer given by unitary operators. In this chapter we are specifically concerned with the structure of
quantum states.

5.1 Density operators

5.1.1 Mixtures of states

Consider a quantum system HA whose state, a pure state, depends on a classical value (random
variable) Z and let |φz〉〈φz |A ∈S (HA) be the pure state of the system conditioned on the event Z =
z. Note that the states |φz〉 need not be orthogonal. Furthermore, consider an observer who does
not have access to Z , that is, from his point of view, Z can take different values distributed according
to a probability mass function PZ . This setup is described by the ensemble of states {PZ (z), |φ〉z}.

Assume now that the systemHA undergoes an evolution UA followed by a measurement OA =
∑

x xPx . Then, according to the postulates of quantum mechanics, the probability mass function of
the measurement outcomes x conditioned on the event Z = z is given by

PX |Z=z (x) = tr(Px UA|φz〉〈φz |AU ∗A). (5.1)

Hence, from the point of view of the observer who is unaware of the value Z , the probability mass
function of X is given by

PX (x) =
∑

z
PZ (z)PX |Z=z (x). (5.2)

By linearity, this can be rewritten as

PX (x) = tr(Px UAρAU ∗A). (5.3)

where we have implicitly defined the density operator

ρA=
∑

z
PZ (z)|φz〉〈φz |A. (5.4)

Observe that ρA has the following properties:

ρA≥ 0, (5.5)
trρA= 1. (5.6)

Operators satisfying these conditions are called density operators, and for a state spaceH , the set of
density operators is denoted by S (H ). By the spectral decomposition, we can always express ρ
in terms of eigenvalues and eigenvectors as ρ =

∑

k pk |bk〉〈bk |; the eigenvalues form a probability
distribution since the operator is normalized. States as we defined them originally are equivalent to
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5. THE STRUCTURE OF QUANTUM STATES

density operators of the form ρ= |φ〉〈φ| and are called pure states. Pure states have only one nonzero
eigenvalue and therefore satisfy trρ2 = 1. States with more than one nonzero eigenvalue are called
mixed states since they are mixtures (convex combinations) of their eigenvectors.

Alternatively, expression (5.3) can be obtained by applying the postulates of Section 4.1 directly
to the density operator ρA defined above. In particular, by replacing |φ〉〈φ|with the density operator
ρ in (4.2). In other words, from the point of view of an observer with no access to Z , the situation is
consistently characterized by ρA.

According to the theme of this course, the information contained in the classical random variable
Z should be manifested physically. It is an important feature of the framework we are developing that
Z can also be described in the density operator formalism. More precisely, the idea is to represent
the states of classical values Z by mutually orthogonal vectors on a Hilbert space. For example, the
density operator describing the above scenario would read

ρAZ =
∑

z
PZ (z)ρ

z
A⊗ |bz〉〈bz |, (5.7)

where {|bz〉}z is a family of orthonormal vectors onHZ . States of this form will be said to be classical
onHB with respect to {|bz〉}z and are called classical-quantum states, or CQ states.

In the previous chapter we defined entanglement of bipartite pure states, but mixed states can be
entangled, too. Entanglement in the pure state case was defined by any state which is not the tensor
product of states on the constituent systems. In general, product states take the form ρAB = θA⊗ϕB
and can be regarded as classical in the sense that there is a well-defined state for each constituent
system. This notion continues to hold for mixtures of product states, since then each system again
has a well-defined state conditional on the parameter of the mixture:

σ =
∑

k

pkρk ⊗ϕk . (5.8)

Any quantum state of the form (5.8) is called separable and any state which is not separable is said to
be entangled.

5.1.2 Reduced states

Another motivation for density operators comes from examining a subsystem of a larger composite
system in a pure quantum state. One striking feature of entangled states onHA⊗HB is that, to an
observer with no access to B , the state of A does not correspond to a fixed vector |φ〉 ∈ HA, but
rather a density operator. To see this more concretely, consider the measurement of an observable
OA on one part of a bipartite system in state |Ψ〉 ∈ HA⊗HB . The expectation value of OA is given
by

〈OA〉Ψ = tr[OA⊗ idB |Ψ〉〈Ψ|] (5.9)
= tr[OAtrB[|Ψ〉〈Ψ|]], (5.10)

where we have used the partial trace from §A.5. Thus we can define ρA= trB[|Ψ〉〈Ψ|], which pertains
only to system A which allows us to calculate all expectation values and probabilities. It is often called
the reduced state. The existence of reduced states is an important locality feature of quantum theory.
Since any action performed on B will not affect ρA, it is impossible to influence system A by local
action on B .
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5.1. Density operators

Using the Schmidt decomposition, we can write the above calculation out in terms of compo-
nents, like so:

〈OA〉Ψ = 〈Ψ|(OA⊗ idB )|Ψ〉 (5.11)

=
∑

j k

λ jλk〈ξ j | ⊗ 〈η j |(OA⊗ idB )|ξk〉⊗ |ηk〉 (5.12)

=
∑

j k

λ jλk〈ξ j |OA|ξk〉〈η j |ηk〉 (5.13)

=
∑

k

λ2
k〈ξk |OA|ξk〉 (5.14)

= tr[OA

∑

k

λ2
k |ξk〉〈ξk |]. (5.15)

Comparing with the above, we have found that ρA = trB[|Ψ〉〈Ψ|] =
∑

k λ
2
k
|ξk〉〈ξk |. This clearly

satisfies (5.5) and (5.6) and is therefore a density operator.

5.1.3 Purification of mixed states

The notion of a density operator was motivated by examining mixtures of pure quantum states.
In the previous section we have also seen that all reduced states of a composite system are density
operators. Can we connect these two viewpoints and regard any density operator ρ as the reduced
state ρA of a pure state |Ψ〉AB on a larger system? The answer is yes, and such a pure state |Ψ〉AB is
called a purification of ρ. Regarding a mixed state as part of a pure state in this way is done very often
in quantum information theory and is called “going to the church of the larger Hilbert space”.

Given an ensemble decomposition of a density operator ρ =
∑

z PZ (z)|φz〉〈φz | as in (5.4), it is
easy to construct a purification of ρ. Simply invent an additional system B and define

|Ψ〉AB =
n
∑

z=1

Æ

PZ (z) |φz〉A⊗ |bz〉B . (5.16)

This also works for CQ states, like ρAZ =
∑

z PZ (z)ρ
z
A⊗ |bz〉〈bz |Z in (5.7). Now invent two addi-

tional systems B and Z ′ and define

|Ψ〉ABZZ ′ =
∑

z

Æ

PZ (z) |ϕz〉AB ⊗ |bz〉Z ⊗ |bz〉Z ′ , (5.17)

where |ϕz〉AB is a purification of ρz
A.

We can also construct a purification in a “component-free” manner, by making use of the canon-
ical maximally-entangled state onHA⊗HB withHA'HB of dimension d ,

|Φ〉AB =
1
p

d

d
∑

k=1

|bk〉A⊗ |bk〉B . (5.18)

Call |Ω〉 the unnormalized version of this state, i.e.

|Ω〉AB =
d
∑

k=1

|bk〉A⊗ |bk〉B . (5.19)
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Observe that the partial trace of |Ω〉 is the identity: trB[|Ω〉〈Ω|] = idA. Then it is easy to verify that
the state

|Ψ〉AB = (
p
ρA⊗ idB )|Ω〉AB (5.20)

is a purification of ρ. Herepρ is the positive operator whose square is ρ; by the spectral decomposi-
tion, if ρ=

∑

k pk |bk〉〈bk | for some orthonormal basis {|bk〉}, then pρ=
∑

k
p

pk |bk〉〈bk |. Indeed,
any state of the form

|Ψ〉AB = (
p
ρAUA⊗VB )|Ω〉AB , (5.21)

for unitary U and V is also a purification of ρA.
The Schmidt decomposition of a purification |Ψ〉AB of ρAB is directly related to the eigendecom-

position of ρ itself: The Schmidt basis {|ξk〉} of system A is the eigenbasis of ρ. Indeed, we already
implicitly encountered this fact in (5.15). The partial trace of a state in Schmidt form immediately
gives an eigendecomposition, so the Schmidt basis vectors must be the eigenstates of the original
density operator.

Moreover, the Schmidt decomposition immediately implies that any two purifications of a state
ρ must be related by a unitary operation on the purifying system B . Suppose |Ψ〉AB and |Ψ′〉AB are
two purifications of ρA. In view of the relation to the eigendecomposition, the Schmidt forms of the
two states must be

|Ψ〉AB =
∑

k

p

pk |ξk〉⊗ |ηk〉 (5.22)

|Ψ′〉AB =
∑

k

p

pk |ξk〉⊗ |η
′
k〉. (5.23)

But both {|ηk〉} and {|η′k〉} are orthonormal bases, so they must be related by some unitary transfor-
mation U : U |ηk〉= |η′k〉. Therefore, we have shown that

Lemma 5.1.1 (Unitary relation of purifications). For any two purifications |Ψ〉AB and |Ψ′〉AB of a state
ρA, there exists a unitary UB such that |Ψ′〉AB = (idA⊗UB )|Ψ〉AB .

This statement might appear to be inconsistent with (5.21), but closer inspection of the state |Ω〉
reveals the useful fact that

UA⊗ idB |Ω〉AB = idA⊗U T
B |Ω〉, (5.24)

where U T is the transpose of U relative to the basis {|b j 〉} which is used to define |Ω〉. More specifi-
cally, U T =

∑

j k |b j 〉〈bk |〈bk |U |b j 〉. Thus, (5.21) could equally-well be written aspρA⊗ (V U T )B |Ω〉
which is consistent with Lemma 5.1.1.

The unitary freedom in choosing a purification of a density operator translates into a freedom in
the decomposition of the density operator into pure states. Equation (5.4) presents a generic decom-
position, but for concreteness consider the state ρA=

1
2 |b0〉〈b0|+

1
2 |b1〉〈b1|, which we may interpret

as describing the fact that A is prepared in one of the two basis states |b0〉 with equal probability.
However, the decomposition is not unique, as the same state could be written as

ρA=
1

2
|b̃0〉〈b̃0|+

1

2
|b̃1〉〈b̃1| (5.25)
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where |b̃0〉 := 1p
2
(|b0〉+ |b1〉) and |b̃1〉 := 1p

2
(|b0〉 − |b1〉). That is, the system could equally-well be

interpreted as being prepared either in state |b̃0〉 or |b̃1〉, each with probability 1
2 .

All possible pure state ensemble decompositions of a density operator are related in a unitary
way, via the purification. Suppose that

ρ=
∑

k

pk |φk〉〈φk |=
∑

j

q j |ψ j 〉〈ψ j | (5.26)

are two decompositions of ρ. From these, we can construct the purifications

|Ψ1〉AB =
∑

k

p

pk |φk〉A⊗ |b
′
k〉B and (5.27)

|Ψ2〉AB =
∑

j

p

q j |ψ j 〉A⊗ |b
′
j 〉B . (5.28)

As these are purifications of the same state, there must be a unitary U such that idA⊗UB |Ψ1〉AB =
|Ψ2〉AB . But then we have

p
qk |ψk〉=

∑

j

p

q j |ψ j 〉〈b
′
k |b j ′〉 (5.29)

= B〈b
′
k |Ψ2〉AB (5.30)

=
∑

j

Æ

p j |φ j 〉〈b
′
k |U |b

′
j 〉 (5.31)

=
∑

j

Uk j
Æ

p j |φ j 〉. (5.32)

Thus, we have shown

Lemma 5.1.2 (Unitary relation of ensemble decompositions). For a density operator ρ with ensemble
decompositions {pk , |φk〉} and {qk , |ψk〉}, there exists a unitary matrix U such that

p
qk |ψk〉=

∑

j

Uk j
Æ

p j |φ j 〉. (5.33)

5.1.4 Comparison of probability distributions and quantum states

Looking back at the analogy of quantum theory with classical probability theory, it becomes appar-
ent that density operators are the proper quantum version of probability distributions. This holds
for two reasons. First, just as ~p can be regarded as a convex combination of sharp distributions, so
too are density operators mixtures of pures states. Pure states are pure ans sharp distributions sharp,
because they cannot be expressed as a nontrivial convex combination of other states or distributions.
Secondly, neither for unsharp ~p nor for mixed ρ can find an event which is certain to occur.

Purifications do not exist in classical probability theory. That is, given a distribution ~pA, there
is no sharp joint distribution ~pAB over two random variables whose marginal is ~pA. Any sharp
distribution on ~pAB has components (~pAB ) j k = δ j j ′δkk ′ for some j ′ and k ′. The marginal is clearly
(~pA) j = δ j j ′ , which is itself sharp. Only in the formalism of quantum theory can the “distribution”
of the compound system be sharp, even though the marginal “distributions” are not.
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5.2 Distance measures between states

5.2.1 Trace distance

Given two quantum states ρ and σ , we might ask how well we can distinguish them from each other.
The answer to this question is given by the trace distance, which can be seen as a generalization of
the corresponding distance measure for classical probability mass functions as defined in §2.7.

Definition 5.2.1. The trace distance between two density operators ρ and σ on a Hilbert spaceH is
defined by

δ(ρ,σ) :=
1

2



ρ−σ




1. (5.34)

It is straightforward to verify that the trace distance is a metric on the space of density operators.
Furthermore, it is unitarily invariant, i.e., δ(UρU ∗, UσU ∗) = δ(ρ,σ), for any unitary U .

The above definition of trace distance between density operators is consistent with the corre-
sponding classical definition of §2.7. In particular, for two classical states ρ =

∑

z P (z)|ez〉〈ez | and
σ =

∑

z Q(z)|ez〉〈ez | defined by probability mass functions P and Q, we have

δ(ρ,σ) = δ(P,Q). (5.35)

More generally, the following lemma implies that for any (not necessarily classical) ρ and σ there
is always a measurement O that “conserves” the trace distance.

Lemma 5.2.2. Let ρ,σ ∈S (H ). Then

δ(ρ,σ) =max
O
δ(P,Q) (5.36)

where the maximum ranges over all observables O ∈ HermH and where P and Q are the probability
mass functions of the outcomes when applying the measurement described by O to ρ and σ , respectively.

Proof. Define∆ := ρ−σ and let∆=
∑

i αi |ei 〉〈ei | be a spectral decomposition. Furthermore, let R
and S be positive operators defined by

R=
∑

i :αi≥0

αi |ei 〉〈ei | (5.37)

S =−
∑

i :αi<0

αi |ei 〉〈ei |, (5.38)

that is,

∆= R− S (5.39)
|∆|= R+ S. (5.40)

Finally, let O =
∑

x xPx be a spectral decomposition of O, where each Px is a projector onto the
eigenspace corresponding to the eigenvalue x. Then

δ(P,Q) =
1

2

∑

x

�

�P (x)−Q(x)
�

�=
1

2

∑

x

�

�tr(Pxρ)− tr(Pxσ)
�

�=
1

2

∑

x

�

�tr(Px∆)
�

�. (5.41)
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Now, using (5.39) and (5.40),
�

�tr(Px∆)
�

�=
�

�tr(Px R)− tr(Px S)
�

�≤
�

�tr(Px R)
�

�+
�

�tr(Px S)
�

�= tr(Px |∆|), (5.42)

where the last equality holds because of (A.29). Inserting this into (5.41) and using
∑

x Px = id gives

δ(P,Q)≤
1

2

∑

x
tr
�

Px |∆|
�

=
1

2
tr
�

|∆|
�

=
1

2
‖∆‖1 = δ(ρ,σ). (5.43)

This proves that the maximum maxO δ(P,Q) on the right hand side of the assertion of the lemma
cannot be larger than δ(ρ,σ). To see that equality holds, it suffices to verify that the inequality
in (5.42) becomes an equality if for any x the projector Px either lies in the support of R or in the
support of S. Such a choice of the projectors is always possible because R and S have mutually
orthogonal support.

An implication of Lemma 5.2.2 is that the trace distance between two states ρ and σ is related
to the maximum distinguishing probability, the maximum probability by which a difference between
ρ and σ can be detected, just as in the case of probability distributions in Lemma 2.7.2. Another
consequence of Lemma 5.2.2 is that the trace distance cannot increase under the partial trace, as
stated by the following lemma.

Lemma 5.2.3. Let ρAB and σAB be bipartite density operators and let ρA := trB (ρAB ) and σA :=
trB (σAB ) be the reduced states on the first subsystem. Then

δ(ρA,σA)≤ δ(ρAB ,σAB ). (5.44)

Proof. Let P and Q be the probability mass functions of the outcomes when applying a measure-
ment OA to ρA and σA, respectively. Then, for an appropriately chosen OA, we have according to
Lemma 5.2.2

δ(ρA,σA) = δ(P,Q). (5.45)

Consider now the observable OAB on the joint system defined by OAB :=OA⊗ idB . It follows from
property (A.31) of the partial trace that, when applying the measurement described by OAB to the
joint states ρAB and σAB , we get the same probability mass functions P and Q. Now, using again
Lemma 5.2.2,

δ(ρAB ,σAB )≥ δ(P,Q). (5.46)

The assertion follows by combining (5.45) and (5.46).

5.2.2 Fidelity

The significance of the trace distance comes mainly from the fact that it is a bound on the probability
that a difference between two states can be seen. However, in certain situations, it is more convenient
to work with an alternative notion of distance called fidelity.

Definition 5.2.4. The fidelity between two density operators ρ and σ on a Hilbert spaceH is defined
by

F (ρ,σ) :=




p
ρ
p
σ




1, (5.47)

where ‖S‖1 := tr
�
p

S∗S
�

.
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To abbreviate notation, for two vectors φ,ψ ∈ H , we sometimes write F (φ,ψ) instead of
F (|φ〉〈φ|, |ψ〉〈ψ|), and, similarly, δ(φ,ψ) instead of δ(|φ〉〈φ|, |ψ〉〈ψ|).

The fidelity is particularly easy to compute if one of the operators, say σ , is pure. In fact, if
σ = |ψ〉〈ψ|, we have

F (ρ, |ψ〉〈ψ|) = ‖pρpσ‖1 = tr
�

Æp
σρ
p
σ
�

= tr
�

Æ

|ψ〉〈ψ|ρ|ψ〉〈ψ|
�

=
Æ

〈ψ|ρ|ψ〉. (5.48)

In particular, if ρ= |φ〉〈φ|, we find

F (φ,ψ) = |〈φ|ψ〉|. (5.49)

The fidelity between pure states thus simply corresponds to the (absolute value of the) scalar product
between the states.

The following statement from Uhlmann1 generalizes this statement to arbitrary states.

Theorem 5.2.5 (Uhlmann). Let ρA and σA be density operators on a Hilbert spaceHA. Then

F (ρA,σA) = max
φAB ,ψAB

F (φAB ,ψAB ). (5.50)

where the maximum ranges over all purifications φAB and ψAB of ρA and σA, respectively.

Proof. Using Lemma 5.1.1, for some choice of unitaries U and V we can write

F (φAB ,ψAB ) = |〈φ|ψ〉| (5.51)
= |〈Ω|pρA

p
σA⊗V ∗B UB |Ω〉| (5.52)

= |tr[pρpσU T (V ∗)T ]|. (5.53)

Thus, maxφAB ,ψAB
F (φAB ,ψAB ) amounts to maxU |tr[

p
ρ
p
σU ]|. By Lemma A.7.2 we then have

max
φAB ,ψAB

F (φAB ,ψAB ) =max
U
|tr[UpρA

p
σA]| (5.54)

= ‖pρA
p
σA‖1 (5.55)

= F (ρA,σA), (5.56)

completing the proof.

By Uhlmann’s theorem it is clear that the 0 ≤ F (ρ,σ) ≤ 1. It also immediately implies the
monotonicity of fidelity under partial trace,

Lemma 5.2.6. Let ρAB and σAB be bipartite states. Then

F (ρAB ,σAB )≤ F (ρA,σA). (5.57)

Proof. According to Uhlmann’s theorem, there exist purifications ρABC and σABC of ρAB and σAB
such that

F (ρAB ,σAB ) = F (ρABC ,σABC ). (5.58)

Trivially, ρABC and σABC are also purifications of ρA and σA, respectively. Hence, again by Uhlmann’s
theorem,

F (ρA,σA)≥ F (ρABC ,σABC ). (5.59)

Combining (5.58) and (5.59) concludes the proof.
1Armin Gotthard Uhlmann, born 1930, German theoretical physicist.
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5.2.3 Relation between trace distance and fidelity

The trace distance and the fidelity are related to each other. In fact, for pure states, represented by
normalized vectors φ and ψ, we have

δ(φ,ψ) =
Æ

1− F (φ,ψ)2. (5.60)

To see this, let φ⊥ be a normalized vector orthogonal to φ such that ψ = αφ+βφ⊥, for some
α,β ∈R+ such that α2+β2 = 1. (Because the phases of both φ,φ⊥,ψ are irrelevant, the coefficients
α and β can without loss of generality assumed to be real and positive.) The operators |φ〉〈φ| and
|ψ〉〈ψ| can then be written as matrices with respect to the basis {φ,φ⊥},

|φ〉〈φ|=
�

1 0
0 0

�

(5.61)

|ψ〉〈ψ|=
�

|α|2 αβ∗

α∗β |β|2
�

(5.62)

In particular, the trace distance takes the form

δ(φ,ψ) =
1

2



|φ〉〈φ| − |ψ〉〈ψ|




1 =
1

2









�

1− |α|2 −αβ∗
−α∗β −|β|2

�







1
. (5.63)

The eigenvalues of the matrix on the right hand side are α0 =β and α1 =−β. We thus find

δ(φ,ψ) =
1

2

�

|α0|+ |α1|
�

=β. (5.64)

Furthermore, by the definition of β, we have

β=
Æ

1− |〈φ|ψ〉|2. (5.65)

The assertion (5.60) then follows from (5.49).
Equality (5.60) together with Uhlmann’s theorem are sufficient to prove one direction of the

following lemma.

Lemma 5.2.7. Let ρ and σ be density operators. Then

1− F (ρ,σ)≤ δ(ρ,σ)≤
Æ

1− F (ρ,σ)2. (5.66)

Proof. We only prove the second inequality. For a proof of the first, see [2, §9.2.3].
Consider two density operators ρA and σA and let ρAB and σAB be purifications such that

F (ρA,σA) = F (ρAB ,σAB ) (5.67)

as in Uhlmann’s theorem. Combining this with equality (5.60) and Lemma 5.2.3, we find
Æ

1− F (ρA,σA)
2 =
Æ

1− F (ρAB ,σAB )
2 = δ(ρAB ,σAB )≥ δ(ρA,σA). (5.68)
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6Quantum Measurements and Operations
We have seen in the previous chapter that, as long as we are only interested in the observable quanti-
ties of subsystemHA of a larger state spaceHA⊗HB , it is sufficient to consider the corresponding
reduced state ρA. So far, however, we have restricted our attention to scenarios where the evolution
of this subsystem is isolated and the measurement process is not modelled as a physical operation.

In the following, we introduce tools that allow us to consistently describe the behavior of sub-
systems in the general case where there is interaction betweenHA andHB . The basic mathematical
objects to be introduced in this context are completely positive maps (CPMs) and positive operator val-
ued measures (POVMs).

6.1 Generalized measurements

6.1.1 The von Neumann picture of measurement

The description of measurement in the axioms is an awkward mixture of quantum and classical. The
central problem is that if “measurement” produces a (classical) outcome, should this information not
be manifested physically, presumably as a quantum system? So how can there be an “outcome” at all?
These are tricky conceptual problems that we will not attempt to answer in this course. However,
we should look at the (formal) measurement procedure a little more carefully to see how it fits with
the notions both of decompositions and purifications of mixed states. What we will end up with is
the von Neumann picture of measurement, introduced in [18].

We have said that measurements are described by a set of projection operators {Px}, one Px for
every outcome x. Given a state ρ, we saw in §5.1 that the xth outcome occurs with probability
px = tr[Pxρ]. But what about the post-measurement state? Since any density operator has a decom-
position into a convex combination of pure states, we can “lift” the structure of post-measurement
states from the case of pure to mixed inputs. Suppose ρ=

∑

z pz |φz〉〈φz | for some pure states |φz〉.
For each z, the measurement produces the state |ψx,z〉 = Px |φz〉/

Æ

〈φz |Px |φz〉 with probability
PX |Z=z = 〈φz |Px |φz〉. According to §5.1.1, the density operator describing the post-measurement
state must be the mixture of the |ψx,z〉 according to the distribution PZ |X=x . Therefore, we find

ρx =
∑

z
PZ |X=x (z)|ψx,z〉〈ψx,z | (6.1)

=
∑

z

PZ |X=x (z)

PX |Z=z (x)
Px |φz〉〈φz |Px (6.2)

=
∑

z

PZ (z)

PX (x)
Px |φz〉〈φz |Px (6.3)

=
1

PX (x)
PxρPx . (6.4)

The final expression is independent of the decomposition, as it ought to be if density operators are a
complete description of the quantum state, as we argued in the previous chapter.

The above calculation is only for one outcome x, but of course the measurement produces an en-
tire ensemble of states, ρx with probability PX (x). To an observer without access to the measurement
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result, the description of the state after the measurement is given by

ρ′ =
∑

x
PX (x)ρx =

∑

x
PxρPx . (6.5)

Note that ρ′ 6= ρ generally. In quantum mechanics, performing a measurement and forgetting the
result nonetheless changes the state of the system!

Let us assume for the moment that both the input state ρ = |φ〉〈φ| and the ρx are pure states
and consider the purification of average post-measurement state in (6.5). Does it have any physical
meaning? A purification is given by

|Ψ〉AB =
∑

x
Px |φ〉A⊗ |bx〉B . (6.6)

The interesting thing is that we can describe the transformation

|φ〉A⊗ |b0〉B 7→ |Ψ〉AB (6.7)

with an operator U =
∑

x (Px )A⊗ (Vx )B which is unitary. Here Vk is a unitary operator taking |b0〉
to |bx〉. For concreteness, we can set Vk =V k for V =

∑

j |b j⊕1〉〈b j |. Unitarity of U is then easy:

U U ∗ =
∑

x x ′
Px P ∗x ⊗VxV ∗x =

∑

x
Px ⊗VxV ∗x (6.8)

=
∑

x
Px ⊗ id= id⊗ id. (6.9)

We have arrived, in a somewhat nonstandard fashion, at von Neumann’s picture of measurement.
The idea is that measurement can be viewed as a fully coherent process (just involving unitary trans-
formations) which establishes a correlation between the system being measured (A) and a system
storing the measurement result (B). Actually, this procedure does more than correlate A and B , it
entangles them.

The measurement process is not quite finished though, since |Ψ〉AB describes a coherent superpo-
sition of all possible outcomes. To realize a particular outcome, we have to assume that B is somehow
itself measured in the {|bx〉} basis. So how does this really solve the measurement problem? In order
to measure B , we need to correlate it with C , and then we will need to measure C , requiring correla-
tion with D , and so on ad infinitum! All true, but this is the best we are going to be able to do with
a fully coherent description.

The unitary part of the measurement process produces the state in (6.6), and

|ξ 〉ABC =
∑

x
Px |φ〉A⊗ |bx〉B ⊗ |bx〉C (6.10)

if taken to the next step. In the former case, tracing out system B leaves the density operator
ρA =

∑

x Px |φ〉〈φ|Px , while in the latter case tracing out C leaves the correlated, but not entangled
(classical-quantum) state ρAB =

∑

x Px |φ〉〈φ|Px ⊗ |bx〉〈bx |.

6.1.2 Mixtures of measurements & POVMs

Measurements can themselves be “mixed” in the way we saw quantum states can be mixed in §5.1.1.
In fact, we already implicitly saw an example of this in the introduction, when discussing quantum
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key distribution in §1.4. Recall that Bob’s task was to measure either {P0 = |0〉〈0|, P1 = |1〉〈1|} or
{P± = |±〉〈±|} with equal probability. If we let X be the bit describing which measurement is made
and Y its outcome (+ counts as 0,− as 1), and Px,y the corresponding projector, then the probability
distribution when the state is ρ is given by

PX Y (x, y) =
1

2
tr[Px,yρ] = tr[Λx,yρ]. (6.11)

Here we have implicitly defined the operators Λx,y . Observe that these sum to id, just as we insisted
for any projective measurement, although they are no longer disjoint.

This example suggests that we should allow arbitrary operators {Λx}x∈X as long as they satisfy
two conditions:

1. Λx ≥ 0 for all x ∈X ,

2.
∑

x∈X Λx = id.

The two conditions ensure that the probability rule tr[Λxρ] really does yield probabilities.
Such a set is called, somewhat awkwardly, a positive operator-valued measure or POVM. The name

comes from more a more generic context in which the measurement outcomes are elements of an ar-
bitrary measure space, not a discrete set as we have implicitly chosen here. For instance, the outcome
of the measurement might be the position of a particle, which we would associate with elements
of R. Then, to each measurable set in the measure space corresponds a positive operator, with the
constraint that the operator corresponding to the whole space be the identity.

6.1.3 The Naimark extension

Generalized measurements—POVMs—are consistent with the original axioms in the same way that
density operators are: They are equivalent to usual projection measurements on a larger space, like
density operators are equivalent to pure states on a larger space. This construction is known as the
Naimark1 extension.

In fact, we have already met the Naimark extension in §6.1.1. One method of realizing a POVM
is the von Neumann approach. For a set of projectors we saw that UAB =

∑

x (Px )A⊗ (Vx )B is a
unitary operator taking |ψ〉A⊗|0〉B to |ψ′〉AB such that measuring B with (Px )B realizes measurement
of (Px )A on A. To extend this to an arbitrary POVM with elements Λx , define UAB implicitly by the
action

UAB |ψ〉A⊗ |0〉B =
∑

x

Æ

Λx |ψ〉A⊗ |bx〉B = |ψ
′〉AB . (6.12)

The probability of outcome x when measuring B with Px is

PX (x) = tr[ψ′AB idA⊗ (Px )B] = tr[ψΛx], (6.13)

as intended. But is UAB unitary? Its action is not fully specified, but note that as a map fromHA to
HA⊗HB it is an isometry, meaning it preserves the inner product. Letting |φ′〉AB =UAB |φ〉A⊗|0〉B ,

1Mark Aronovich Naimark, 1909-1978, Soviet mathematician.
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it follows that

〈φ′|ψ′〉=
∑

x,x ′
(〈φ|

Æ

Λx ′ ⊗〈bx ′ |)(
Æ

Λx |ψ〉⊗ |bx〉) (6.14)

=
∑

x
〈φ|Λx |ψ〉 (6.15)

= 〈φ|ψ〉. (6.16)

Partial isometries from one space H to another, bigger space H ′ can always be extended to be
unitaries fromH ′ to itself. HereH =HA⊗ |0〉B andH ′ =HA⊗HB .

The original formulation of the Naimark extension is the statement that any POVM can be
extended to a projection measurement in a larger space, where the projectors may be of arbitrary
rank, but the larger space need not come from the tensor product of the original space with an
ancilla (helper) system. In our presentation the projectors in the larger space all have rank equal
to the dimension of A, since they are of the form idA ⊗ |bx〉〈bx |. In the finite-dimensional case
we are studying it is actually possible to find a Naimark extension of any POVM to a projective
measurement consisting of rank-one elements, but we will not go into this here. For more details,
see [6, §9-6] or [19, §3.1.4].

6.1.4 Post-measurement states

A POVM does not uniquely specify the post-measurement state, as there is some ambiguity in how
the POVM is implemented, as follows. Given a POVM {Λ j }, suppose we find a set of operators
{M j k} such that

∑

k

M ∗j k M j k =Λ j . (6.17)

The M j k are sometimes called measurement operators (not to be confused with POVM elements Λ j ).
Now suppose that we apply the unitary operator VABC defined by

VABC |ψ〉A|b0〉B |b0〉C =
∑

j k

M j k |ψ〉A|b j 〉B |bk〉C , (6.18)

and then measure B with projectors P j = |b j 〉〈b j |. This gives the same probability distribution as the
original POVM:

BC 〈b0, b0|A〈ψ|V
∗

ABC (P j )BVABC |ψ〉A|b0, b0〉BC =
∑

k

〈ψ|M ∗j k M j k |ψ〉= 〈ψ|Λ j |ψ〉. (6.19)

However, the output of the two implementations is different:

|ψ〉 U−→ ρ j =

Æ

Λ j |ψ〉〈ψ|
Æ

Λ j

p j
, (6.20)

|ψ〉 V−→ ρ′j =

∑

k M j k |ψ〉〈ψ|M ∗j k

p j
. (6.21)

Unlike projection measurements, POVMs are not repeatable; that is, subsequent measurement
with the same POVM does not always yield the same answer since the measurement operators M j k
are not necessarily mutually orthogonal.
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6.2 Quantum operations

6.2.1 Completely positive maps (CPMs)

LetHA andHB be the Hilbert spaces describing certain (not necessarily disjoint) parts of a physical
system. The evolution of the system over a time interval [t0, t1] induces a mapping E from the set of
states S (HA) on subsystemHA at time t0 to the set of states S (HB ) on subsystemHB at time t1.
This and the following sections are devoted to the study of this mapping.

Obviously, not every function E from S (HA) to S (HB ) corresponds to a physically possible
evolution. In fact, based on the considerations in the previous sections, we have the following re-
quirement. If ρ is a mixture of two states ρ0 and ρ1, then we expect that E (ρ) is the mixture of E (ρ0)
and E (ρ1). In other words, a physical mapping E needs to conserve the convex structure of the set
of density operators, that is,

E
�

pρ0+(1− p)ρ1
�

= pE (ρ0)+ (1− p)E (ρ1), (6.22)

for any ρ0,ρ1 ∈S (HA) and any p ∈ [0,1]. If we do not require convexity in this manner, the trouble
is that the transformation of a any particular ensemble member depends on the other members, even
though only one element of the ensemble is actually realized. In other words, the dynamics of the
true state would depend on the nonexsistent states!

For our considerations, it will be convenient to embed the mappings from S (HA) to S (HB )
into the space of mappings from End(HA) to End(HB ). The convexity requirement (6.22) then turns
into the requirement that the mapping is linear. Since the mappings E are linear maps from operators
to operators, they are often called superoperators.

Two criteria for any mapping E to map density operators to density operators are immediate:

1. ρ′ = E (ρ)≥ 0 for ρ≥ 0, and

2. tr[E (ρ)] = 1 for tr[ρ] = 1.

Superoperators fulfilling the first condition are called positive and the second trace-preserving. An
simple example of a map satisfying both conditions is the identity map on End(H ), in the following
denoted I . A more interesting example is the transpose map T , defined by

T : S 7→ ST , (6.23)

where ST denotes the transpose with respect to some fixed basis {|bk〉}. Clearly,T is trace-preserving,
since the transpose does not affect the diagonal elements of a matrix. To see that T is positive, note

that 〈φ|ST |φ〉 = 〈φ|S̄∗φ〉 = 〈S̄φ|φ〉 = 〈φ|S̄φ〉 = 〈φ̄|S |φ̄〉 ≥ 0, from which we conclude ST ≥ 0.
Here |φ̄〉 denotes the vector formed from |φ〉 by taking the complex conjugate of a the components
of |φ〉 in the basis defining the transpose, {|bk〉}.

Somewhat surprisingly, positivity by itself is not compatible with the possibility of purifying any
mixed state. More concretely, positivity of two maps E andF does not necessarily imply positivity
of the tensor map E ⊗F defined by

(E ⊗F )(S ⊗T ) := E (S)⊗F (T ). (6.24)

A simple example is provided by the superoperatorIA⊗TB applied to |Φ〉〈Φ|AB , for |Φ〉AB the canon-
ical maximally-entangled state defined by (5.18). This state is a purification of the maximally-mixed
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state. The state resulting from the map is simply

ρ′AB =IA⊗TB (|Φ〉〈Φ|AB ) =
1

d

∑

j k

|k〉〈 j |A⊗ | j 〉〈k|B . (6.25)

Direct calculation reveals that dρ′AB is the swap operator, i.e. dρ′AB |ψ〉A|φ〉B = |φ〉A|ψ〉B . But any an-
tisymmetric combination of states, such as |ψ〉A|φ〉B−|φ〉A|ψ〉B , is an eigenstate of the swap operator
with eigenvalue −1; hence ρ′AB � 0.

In order to ensure compatibility with purification, we must demand that quantum operations be
completely positive: positive on ρ and all its purifications. This translates into the formal requirement
given as follows.

Definition 6.2.1. A linear map E ∈Hom(End(HA),End(HB )) is said to be completely positive if for
any Hilbert spaceHR, the map E ⊗IR is positive.

Clearly, IA is completely positive, and it is easy to see that the partial trace trA is as well.
We will use the abbreviation CPM to denote completely positive maps. Moreover, we denote by
TPCPM(HA,HB ) the set of trace-preserving completely positive maps from End(HA) to End(HB ).

We have already encountered an example of a CPTP map in §6.1. Performing a measurement
described by measurement operators {Mk} with

∑

k M ∗k Mk = id results in the ensemble {pk ,ρk}
with pk = tr[MkρM ∗k] and ρk = (MkρM ∗k )/pk . Averaging over the outputs, i.e. forgetting which
outcome occurred, leads to the average state

E (ρ) =
∑

k

MkρM ∗k . (6.26)

The map E must be a completely positive superoperator because, as we saw, it can be thought of as a
unitary operator UAB followed by tracing out system B , for UAB defined by

UAB |ψ〉A|0〉B =
∑

k

Mk |ψ〉A|k〉B . (6.27)

Both of these operations are CPTP maps, so E is, too.
In fact, all CPTP maps are of the form (6.26), often called the operator-sum representation. This

statement is known as the Kraus2 representation theorem, and we can easily prove it using the Choi3

isomorphism. Since the Kraus form implies the existence of a unitary as in (6.27), this leads to the
Stinespring4 dilation. Historically, the Stinespring dilation was established first (as a generalization of
the Naimark extension, it so happens), but we shall follow the route via the Choi isomorphism as it
is simpler for finite-dimensional vector spaces.

6.2.2 The Choi isomorphism

The Choi isomorphism is a mapping that relates superoperators to operators and CPMs to density
operators. Its importance results from the fact that it essentially reduces the study of CPMs to the
study of density operators. In other words, it allows us to translate mathematical statements that
hold for density operators to statements for CPMs and vice versa.

2Karl Kraus, 1938 – 1988, German physicist.
3Man-Duen Choi, Canadian mathematician.
4William Forrest Stinespring, American mathematician.
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Actually, we have already encountered the Choi isomorphism in (6.25); there ρ′AB is the Choi state
of the transpose map TA (though it is not a valid state, as we saw). In general, the Choi isomorphism
can be defined for any map EA→B which takes End(HA) to End(HB ). In the following definition
we make use of a “copy” of the state space HA, called HA′ , and freely switch between the two in
the subsequent discussion. Note that the Choi isomorphism depends on the choice of basis used to
define the state |Φ〉A′A of (5.18).

Definition 6.2.2. ForHA'HA′ , the Choi mapping (relative to the basis {|bi 〉}i ) is the linear function
C from Hom(End(HA),End(HB )) to End(HA⊗HB ) defined by

C : EA→B 7→ (IA⊗EA′→B )(|Φ〉〈Φ|AA′). (6.28)

Lemma 6.2.3. The Choi mapping C is an isomorphism. Its inverse C−1 takes any OAB to the map
EA→B = C−1(ρAB ) whose action is specified by

EA→B : SA 7→ d · trA

�

�

TA(SA)⊗ idB
�

OAB

�

, (6.29)

where TA is the transpose map.

Proof. It suffices to verify that the mapping C−1 defined in the lemma is indeed an inverse of C. We
first check that C ◦C−1 is the identity on End(HA⊗HB ). For an arbitrary OAB , using the definition
of |Φ〉AB , we find

C ◦C−1(OAB ) =
∑

j k

|b j 〉〈bk |A · trA′[|bk〉〈b j |A′ ⊗ idB OA′B] (6.30)

=
∑

j k

(|b j 〉A〈b j |A′ ⊗ idB )OA′B (|bk〉A′〈bk |A⊗ idB ) (6.31)

=
�
∑

j

|b j 〉A〈b j |A′ ⊗ idB

�

OA′B

�
∑

k

(|bk〉A′〈bk |A⊗ idB )
�

(6.32)

=OAB , (6.33)

which establishes the claim.
It remains to show that C is injective. For this, recall that ST

A ⊗ idB |Φ〉AA′ = idA⊗ SA′ |Φ〉AA′ for
arbitrary SA ∈ End(HA) and that trA′[|Φ〉〈Φ|AA′] = idA. For convenience, let us simply write ΦAA′

for |Φ〉〈Φ|AA′ . Then we have

EA→B (SA) = d · EA→B
�

SAtrA′(ΦAA′)
�

(6.34)

= d · trA′
�

EA→B ⊗IA′
�

SA⊗ idA′ΦAA′
�

�

(6.35)

= d · trA′
�

EA→B ⊗IA′
�

idA⊗ ST
A′
ΦAA′

�

�

(6.36)

= d · trA′
�

(idA⊗ ST
A′
)
�

EA→B ⊗IA′(ΦAA′)
�

�

. (6.37)

Now assume C(E ) = 0. Then, by definition, (IA′⊗EA→B )(ΦAA′) = 0. By virtue of the above equality,
this implies E (SA) = 0 for any SA and, hence, E = 0. Thus, C(E ) = 0 implies E = 0, meaning C is
injective.
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The original interest in the Choi isomorphism was to give a means of determining whether a
superoperator is completely positive. Since we have just shown that C is indeed an isomorphism, it
follows that EA→B is completely positive only if the associated Choi state is positive. We shall return
to the ‘if’ condition later.

In contemporary journal articles on quantum information theory it is common for the above iso-
morphism to be called the “Choi-Jamiołkowski5” isomorphism. However, this conflates two distinct
isomorphisms. The Jamiołkowski isomorphism J is defined by

J : EA→B 7→ (TA⊗EA′→B )(|Φ〉〈Φ|AA′). (6.38)

Despite the appearance of the transpose map, this isomorphism is actually basis independent, owing
to the fact that TA⊗IA′(ΦAA′) is the swap operator (up to normalization) no matter which basis is
used to define |Φ〉AA′ . In turn, this property follows from UA⊗U T

A′
|Φ〉AA′ = |Φ〉AA′ . The inverse J−1

takes any OAB to the map E = J−1(OAB ) whose action is specified by

E : SA 7→ d · trA

�

�

SA⊗ idB
�

OAB

�

. (6.39)

6.2.3 The Kraus representation

Now we are ready to establish the Kraus representation theorem.

Theorem 6.2.4 (Kraus representation). For any E ∈ TPCPM(HA,HB ) there exists a family {M`}` of
operators M` ∈Hom(HA,HB ) such that

E : SA 7→
∑

`

M`SAM ∗` (6.40)

and
∑

` M ∗
`

M` = idA. Conversely, any mapping E of the form (6.40) is contained in TPCPM(HA,HB ).

Proof. The converse follows from the discussion surrounding (6.27). (This will be the content of the
Stinespring dilation discussed below.) For the forward direction, let ρAB = C(EA→B ). Since ρAB ≥ 0,
it has eigendecomposition ρAB =

∑

`λ`|λ`〉〈λ`|AB . Now define the map

M` : |φ〉 7→
Æ

λ` A〈φ̄|λ`〉AB . (6.41)

The map is linear, since

M`

 

∑

k

φk |bk〉
!

=M`|φ〉 (6.42)

=
Æ

λ` A〈φ̄|λ`〉AB (6.43)

=
Æ

λ`
∑

k

φk A〈bk |λ`〉AB (6.44)

=
∑

k

φk M`|bk〉. (6.45)

5Andrzej Jamiołkowski, Polish physicist.
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Using the eigendecomposition of ρAB in (6.29) gives, for an arbitrary SA,

EA→B (SA) = trA[S
T
A ⊗ idB

∑

`

λ`|λ`〉〈λ`|AB] (6.46)

=
∑

`

λ`trA[
∑

j k

〈bk |S |b j 〉 |b j 〉〈bk |A⊗ idB |λ`〉〈λ`|AB] (6.47)

=
∑

`

λ`
∑

j k

〈bk |S |b j 〉 AB〈λ`|b j 〉A A〈bk |λ`〉AB (6.48)

=
∑

j k`

〈bk |S |b j 〉 M`|bk〉〈b j |M
∗
` (6.49)

=
∑

`

M`SAM ∗` (6.50)

Since EA→B is trace preserving,

tr[EA→B (ρ)] =
∑

`

tr[M`ρM ∗`] = tr[
∑

`

M ∗`M`ρ] (6.51)

holds for arbitrary ρ. This implies that
∑

` M ∗
`

M` = id, completing the proof.

There are two important corollaries to the Kraus representation theorem, both following from
the form of the Choi state. First, since ρAB = C(EA→B ) ∈ Hom(HA⊗HB ), it has at most dAdB
eigenvectors. Therefore, the map EA→B always has a Kraus representation with at most dAdB Kraus
operators M`. Secondly, in the construction of the Kraus operators we are free to use any decom-
position of the Choi state into pure states, not only the eigendecomposition. The result would be
another set of Kraus operators {M ′

`
}, generally having more elements. But, by the unitary relation of

all possible pure state decompositions from §5.1.3, a similar unitary relation holds among all possi-
ble sets of Kraus operators as well. In particular, if

Æ

λ′
`
|λ′
`
〉=
∑

m U`m

Æ

λm |λm〉 for U`m a unitary
matrix, then

q

λ′
`
〈φ̄|λ′`〉=

∑

m

Æ

λm U`m〈φ̄|λ`〉 (6.52)

and so M ′
`
=
∑

m U`m Mm .
A careful reading of the proof reveals that we really only used complete positivity to assert that

the Choi state is Hermitian, and therefore has a spectral decomposition. The positivity of the eigen-
values is not used in the proof. Since completely positive maps are also Hermiticity-preserving maps,
we could have used the Jamiołkowski isomorphism instead of the Choi isomorphism. This is slightly
more elegant mathematically, since the former does not depend on the basis choice. The construction
proceeds almost exactly as before, only now the Kraus operators are defined by

M`|φ〉=
p
η` AB〈η`|φ〉A, (6.53)

for |η`〉 and η` the eigenvectors and eigenvalues of J(EA→B ). Defined this way, the Kraus operators
are manifestly linear. The proof using the Choi isomorphism, however, lets us recycle the result on
ambiguity in the decomposition of density operators to infer the structure of sets of Kraus operators
corresponding to a fixed CPTP map.
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6.2.4 Stinespring dilation

The Stinespring dilation now follows immediately from the Kraus representation theorem.

Theorem 6.2.5 (Stinespring dilation). Let EA→B be a CPTP map from End(HA) to End(HB ). Then
there exists an isometry UA→BR ∈Hom(HA,HB ⊗HR) for some Hilbert spaceHR such that

EA→B : SA 7→ trR(UA→BRSAU ∗A→BR). (6.54)

The dimension ofHR can be taken to be at most dAdB .

Proof. One possible isometry UA→BR is defined by the action

UA→BR|ψ〉A|0〉R =
∑

k

Mk |ψ〉A|k〉R, (6.55)

just as in (6.27). That this is an isometry was already established in (6.14), but we repeat the calcula-
tion here for completeness:

〈φ′|ψ′〉=
∑

`,`′
(〈φ|M ∗` ⊗〈b`′ |)(M`|ψ〉⊗ |b`〉) (6.56)

=
∑

`

〈φ|M ∗`M`|ψ〉 (6.57)

= 〈φ|ψ〉. (6.58)

Since at most dAdB Kraus operators are needed, dim(HR) need not be larger than this value.

The Stinespring dilation shows that general quantum operations (CPTP maps) can be regarded as
unitary operations on a larger system: Any CPTP map EA→A can be dilated to an isometry UA→AR,
which can be extended to a unitary on AR. Thus, we have successfully altered the postulates to de-
scribe open systems, systems in contact with their surrounding environment, by essentially requiring
that the original postulates be satisfied when including the environmental degrees of freedom. We
have not been so explicit about this requirement in the preceding discussion, but it is implicit when-
ever we make use of the purification, as the purification gives the most general quantum description
of a system and its environment. Indeed, this is a marked departure from the situation classically,
since purification means that in the quantum case the description of the system itself contains the
description of the environment.

Using the Stinespring dilation and Kraus representation we can return to the issue of using the
Choi state to determine if a superoperator is completely positive, raised in §6.2.2. We have the
following

Lemma 6.2.6. A map EA→B is completely positive if and only if C(EA→B )≥ 0.

Proof. The necessity of the condition follows immediately from the definition of C, as already dis-
cussed. To establish sufficiency, suppose the Choi state is positive. Then E has a Kraus representation
and hence a Stinespring dilation UA→BR. Therefore, for anyHR′ we have

EA→B ⊗IR′(ρAR′) = trR[(UA→BR⊗ idR′)ρAR′(UA→BR⊗ idR′)
∗], (6.59)

which is completely positive since both unitary action are the partial trace are.
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With the Kraus representation theorem in hand, we can also refine the Choi isomorphism a little
bit, to an isomorphism between completely positive superoperators and states of a certain form.

Lemma 6.2.7. The Choi mapping C is an isomorphism between completely positive superoperators EA→B ∈
Hom(End(HA),End(HB )) and positive operators ρAB ∈ End(HA⊗HB ) with the additional property
trB[ρAB] =

1
d idA.

Proof. The Choi mapping always outputs a state of the given form. Conversely, given a state of that
form, the Kraus representation theorem ensures that the corresponding map C−1(ρAB ) is completely
positive.

6.3 Further Reading

The Choi isomorphism was introduced in [20], Stinespring’s dilation in [21], the Kraus form in [22].
The Jamiołkowski isomorphism, which might be more properly attributed to de Pillis, is found
in [23].
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7
The Decidedly Non-Classical Quantum World
In the preceding chapters we have seen that the formalism of quantum theory differs considerably
from classical theory. But how does this translate into physics? How does quantum theory differ
physically from classical theory? In this chapter we will examine three main differences: comple-
mentarity, uncertainty relations, and Bell inequalities.

7.1 Complementarity

Complementarity of the particle and wave nature of light in the double slit experiment is one of the
most well-known examples. Feynman1 starts off his treatment of quantum mechanics in his famous
lectures with a treatment of the double-slit experiment, stating

In this chapter we shall tackle immediately the basic element of the mysterious behavior
in its most strange form. We choose to examine a phenomenon which is impossible,
absolutely impossible, to explain in any classical way, and which has in it the heart of
quantum mechanics. In reality, it contains the only mystery. We cannot make the mys-
tery go away by “explaining” how it works. We will just tell you how it works. In telling
you how it works we will have told you about the basic peculiarities of all quantum
mechanics.[24]

7.1.1 Complementarity in the Mach-Zehnder interferometer

In our formalism, we can see that the mystery of the double-slit experiment is intimately related
to entanglement. Let’s simplify the physics and instead consider a Mach2-Zehnder3 interferometer
using polarizing beamsplitters (PBS), depicted in Figure 7.1.
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Figure 7.1: A Mach-Zehnder interferometer

1Richard Phillips Feynman, 1918 – 1988, American physicist.
2Ludwig Mach, 1868 – 1951, Austrian inventor; son of physicist Ernst Mach.
3Ludwig Louis Albert Zehnder, 1854 – 1949, Swiss physicist.
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Imagine a single photon entering the interferometer. Its polarization could be horizontal, verti-
cal, or any linear combination of these, and its quantum state space is given byHP =C2 with a basis
|0〉P for horizontal and |1〉P for vertical polarization. As it travels through the interferometer it can
propagate in two spatial modes, call them ‘top’ and ‘bottom’ in accord with Figure 7.1. These two
modes also form a two-dimensional state spaceHM with basis state |0〉M for the top and |1〉M for the
bottom modes.

The beamsplitters separate horizontal from vertical polarization, meaning we can take the action
of the polarizing beamsplitter to be

UPBS =
1
∑

z=0
|z〉〈z |P ⊗ |z〉M . (7.1)

This equation defines an isometry, not a unitary, since we are ignoring the spatial mode of the input
(i.e. we implicitly assume it is in |0〉M ). Also, we have ignored phases associated with transmission as
opposed to reflection from the beamsplitter.

Suppose the photon is initially polarized at +45◦, so that its quantum state is

|ψ0〉P = |+〉P =
1p
2
(|0〉P + |1〉P ) (7.2)

After the first beamsplitter the state becomes

|ψ1〉P M =
1p
2
(|0〉P |0〉M + |1〉P |1〉M ) . (7.3)

The path and polarization degrees of freedom have become (maximally) entangled.
The first PBS enables us to measure the polarization of the photon by measuring which arm of

the interferometer it is in. In other words, the isometry UPBS gives the von Neumann description of
a polarization measurement. However, due to the entanglement between the mode and polarization
degrees of freedom, the coherence of the polarization state has been lost. The horizontal and vertical
states no longer interfere to produce a definite state of polarization. Instead, the polarization state is
a mixture of these two states,

ρP = trM [|ψ1〉〈ψ1|P M ] =
1
2 (|0〉〈0|P + |1〉〈1|P ). (7.4)

Coherence, the possibility of interference between two states of a certain degree of freedom, is only
possible if all other degrees of freedom are completely uncorrelated.

But all is not lost in the interferometer, however, as the polarization coherence can be restored
simply by passing the photon through the second PBS. Since the output mode is not relevant, the
second beamsplitter is described by U ∗PBS. That is to say, in the setup the mode and polarization
degrees of freedom are completely correlated for every possible input, so we do not need to specify
what the second PBS does to vertical polarization propagating the top mode. The two beamsplitters
together produce the state

|ψ2〉P =U ∗PBSUPBS|ψ0〉P = |ψ0〉P , (7.5)

since U ∗PBSUPBS = id as UPBS is an isometry. This effect of “undoing” the measurement is known as
the quantum eraser, since the which-way information has been erased.

To make the connection with the usual presentation of the double-slit experiment, imagine that
we could check which arm the photon is in without destroying it, which is the usual sort of pho-
todetection measurement. For instance, the photon might pass through an optical cavity, altering
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the state of an atom present in the cavity. The state of the atom can then be measured to determine if
a photon passed through the cavity or not. Abstracting away the details, this indirect measurement
can be described by the isometry

Uarm =
∑

z
|z〉〈z |M ⊗ |ϕz〉A, (7.6)

where the |ϕz〉A are the two states of the ancilla produced in the measurement process.
Now the interferometer produces the state

|ψ′2〉PA=U ∗PBSUarmUPBS|ψ0〉=
1p
2

∑

z
|z〉P |ϕz〉

A. (7.7)

The first PBS is analogous to light being forced through the two slits in the double slit experiment,
while the second PBS mimics the result of their interference as the propagate. Measuring the output
in the ±45◦ polarization basis, corresponding to the states |±〉, is analogous to the screen or film.

When the ancilla states are identical, |ϕ0〉 = |ϕ1〉, then no information about the path has been
acquired. The coherence between the two paths (and therefore between the polarizations) is main-
tained, the paths interfere at the second PBS, and measurement of the output always corresponds to
|+〉. This is the wave nature of the photon. On the other hand, when the ancilla states are orthogo-
nal and we have learned which path the photon took, the paths can no longer interfere. This is the
particle nature of the photon. Coherence is lost and measurement after the second PBS just produces
a random outcome, since the state is ρ′P =

1
2 idP .

Of course, none of this would occur in a classical world, where light is either a wave or a particle.
For a wave, there is no meaning to which path it takes, since it can take both. For a particle, there
is no meaning to coherence between paths, since it takes one or the other. Moreover, the particle or
wave nature in question is not at the whims of the experimenter, as in the quantum case.

7.1.2 A quantitative statement of complementarity

We can quantify the complementarity of the wave and particle nature of the photon in the above
setup. The particle nature corresponds to which path the photon took, and we may quantify this by
how well we can predict a hypothetical measurement of the mode (or, equivalently, the polarization)
by measuring the states |ϕz〉A in the ancilla system. As we saw in the exercises, the probability of
correctly guessing the outcome of the hypothetical measurement is quantified by the trace distance.
Specifially, the guessing probability is given by pguess =

1
2 (1+δ(ϕ0,ϕ1)). This motivates the definition

of the distinguishability of the two paths by D = δ(ϕ0,ϕ1). Its value ranges from zero (complete
indistinguishability) to one (complete distinguishability).

On the other hand, interference at the output of the interferometer corresponds to the wave na-
ture. Specifically, if the measurement of the interferometer output in the basis |±〉 is more likely to
produce |+〉 than |−〉, this can be taken as an indication of the wave nature of the photon. Calling
the measurement result X , the above motivates the definition of the visibility as V = |PX (0)−PX (1)|.
Again, the value ranges from zero to one. The terminology comes from the visibility of fringe pat-
terns in the double slit experiment. Our definition corresponds to the difference between intensities
at the maxima and minima in that case.

With the above definitions, we can then show the following trade-off between the distinguisha-
bility and the visibility.

Theorem 7.1.1 (Englert [25]). For any pure state entering the interferometer above, D2+V 2 ≤ 1.
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Proof. First let us calculate the reduced state of the polarization degree of freedom. Assuming an
input state of the form |ψ〉P =

∑

z ψz |z〉P for ψz ∈ C such that |ψ0|2 + |ψ1|2 = 1, the total output
state is just

|ψ′〉P M =
∑

z
ψz |z〉P |ϕz〉A. (7.8)

The reduced state of P is then

ρP = trM [|ψ
′〉〈ψ′|P M ] =

∑

z z ′
ψzψ

∗
z ′
|z〉〈z ′|P tr[|ϕz〉〈ϕz ′ |] (7.9)

=
∑

z z ′
ψzψ

∗
z ′
〈ϕz ′ |ϕz〉|z〉〈z

′|P . (7.10)

Next we can compute the visibility as follows.

V = |tr[|+〉〈+|PρP ]− tr[|−〉〈−|PρP ]|= |tr[(σx )PρP ]| (7.11)

=
�

�

∑

z z ′
ψzψ

∗
z ′
〈ϕz ′ |ϕz〉tr[σx |z〉〈z

′|]
�

� (7.12)

=
�

�

∑

z z ′
ψzψ

∗
z ′
〈ϕz ′ |ϕz〉〈z

′|z + 1〉
�

� (7.13)

=
�

�

∑

z
ψzψ

∗
z+1〈ϕz+1|ϕz〉

�

� (7.14)

= |ψ0ψ
∗
1〈ϕ1|ϕ0〉+ψ1ψ

∗
0〈ϕ0|ϕ1〉| (7.15)

≤ |ψ0ψ
∗
1〈ϕ1|ϕ0〉|+ |ψ1ψ

∗
0〈ϕ0|ϕ1〉| (7.16)

= 2|ψ0ψ
∗
1| · |〈ϕ0|ϕ1〉| (7.17)

≤ |〈ϕ0|ϕ1〉|. (7.18)

The first inequality is the triangle inequality for complex numbers, while the second is the fact
that |ψ0ψ

∗
1| ≤

1
2 . This holds because we can express the two coefficients as ψ0 =

p
peθ0 and ψ0 =

p

1− peθ1 for 0≤ p ≤ 1 and two arbitrary angles θ0 and θ1. Thus |ψ0ψ
∗
1|= |

p
p
p

1− p| ≤ 1
2 .

Finally, since the two states in the distinguishability are pure, D =
Æ

1− |〈ϕ0|ϕ1〉|2, and therefore
|〈ϕ0|ϕ1〉|2 = 1−D2. Using the inequality for V completes the proof.

7.2 Uncertainty relations

Complementarity is intimately related to uncertainty relations in quantum mechanics. In fact, we
can see Theorem 7.1.1 as an uncertainty relation itself, though not of the familiar Heisenberg4 form
∆x∆p ≥ ħh

2 . There are actually two interesting interpretations.
In the first, the uncertainty in question pertains to the results of two possible polarization mea-

surements on the photon. One measurement is the actual measurement performed on the output,
of polarization at the ±45◦, corresponding to basis states |±〉. The second is a hypothetical measure-
ment, on the input, of horizontal versus vertical polarization.

A simple calculation shows that V = 2δ(PX , UX ), where UX is the uniform distribution. Let us
call the trace distance in this case qflat(X ) = δ(PX , UX ), the “flatness” of the distribution. If we call

4Werner Karl Heisenberg, 1901 – 1976, German physicist.
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Z the outcome of the hypothetical measurement, the distinguishability was defined by starting from
the probability pguess(Z |A) of correctly guessing the value of Z by making use (i.e. measuring) the
ancilla system. In particular, D = 2 pguess(Z |A)− 1. Inserting this into Theorem 7.1.1, we find

(2 pguess(Z |A)− 1)2+ 4qflat(X )
2 ≤ 1 (7.19)

⇒ pguess(Z |A)
2+ qflat(X )

2 ≤ pguess(Z |A). (7.20)

If we weaken the bound a bit by using pguess(Z |A)≤ 1, we end up with the following elegant form:

pguess(Z |A)
2+ qflat(X )

2 ≤ 1. (7.21)

Thus, if the probability of guessing the outcome of the hypothetical horizontal/vertical measure-
ment is very high, then the result of the ±45◦ measurement will be nearly uniform. On the other
hand, if the result of the latter measurement is not close to uniform, then the guessing probability
must be correspondingly low. This embodies a kind of information gain versus disturbance tradeoff:
the more information can be gained about the horizontal/vertical state of the input, the more the
±45◦ state is altered.

The second interpretation of Theorem 7.1.1 as an uncertainty principle comes from mapping
the two actual measurements made after the photon traverses the interferometer to two measure-
ments that could be made on the input state. As we have seen, the whole interferometric setup is
described by an isometry which maps the input degree of freedom P to P and A, and subsequently
measurements are made on P and A separately. But we can just as well reverse the procedure and
use the adjoint of the isometry to transform the measurements on the output spaces into measure-
ments on the input. Then Theorem 7.1.1 may be regarded as an uncertainty principle for these two
measurements.

Let us determine what these two measurements are, precisely. First, we need to name the mea-
surements on A and P . Both are projective measurements, and in the latter case the two projectors
are P̃x = |x̃〉〈x̃| for x = 0,1, where |x̃〉= 1p

2
(|0〉+(−1)x |1〉). To simplify the expression of the former

measurement, let us first assume that the states |ϕz〉 take the form

|ϕ0〉= cosθ|0〉+ sinθ|1〉 (7.22)
|ϕ1〉= sinθ|0〉+ cosθ|1〉. (7.23)

for some θ ∈R. This choice can be made without loss of generality, by picking the basis states of the
ancilla system appropriately. Again from the exercises, we know that the optimal measurement to
distinguish these two states is just Pz = |z〉〈z | for z = 0,1.

Now let W = U ∗PBSUarmUPBS. The measurements on the input space that we are interested in are
given by

Γ̃x =W ∗(P̃x ⊗ id)W (7.24)
Γz =W ∗(id⊗ Pz )W . (7.25)

Note that the original measurements commute with one another, since they act on different degrees
of freedom. But this will no longer be true after applying the adjoint of the isometry.

As will be shown in the exercises,

Γ̃x =
1
2

�

id+(−1)x sin2θσx
�

, (7.26)

Γz =
1
2 (id+(−1)z cos2θσz ) . (7.27)
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Both Γ and Γ̃ are “noisy” versions of measurements in the σz or σx bases. Indeed, if θ = 0, then Γ is
just a measurement in the σz basis, while Γ̃ is a trivial measurement with elements 1

2 id, and vice versa
for θ = π/4. The identity contributions to the POVM elements serve to make the two outcomes
more equally-likely, i.e. they reduce the information the POVM collects about the corresponding
basis.

Now let X ′ be the outcome of the Γ̃ measurement and Z ′ the outcome of the Γ measurement.
As before, we can define qflat(X

′) = δ(PX ′ , UX ′) from the visibility. The interpretation of the dis-
tinguishability is less straightforward, since there is no longer any side information. Nonetheless,
the guessing probability is still well-defined; now we must simply guess without access to any extra
information A. Then pguess(Z

′) =max{PZ ′(0), PZ ′(1)}. The above relation continues to hold, so that

qflat(X
′)2+ pguess(Z

′)2 ≤ 1. (7.28)

7.2.1 Joint measurement of noncommuting observables

We could also view the measurements of the interferometer output as one combined POVM and ask
what this corresponds to on the input system by applying W ∗. The result is in some sense a joint
measurement of the noncommuting observables σx and σz . It has elements Λx,z specified by

Λx,z =W ∗(|x̃〉〈x̃| ⊗ |z〉〈z |)W . (7.29)

The justification for calling it a joint measurement of σx and σz comes from the calculations we
performed above, which state that

Γz =
∑

x
Λx,z and Γ̃x =

∑

z
Λx,z , (7.30)

and the fact that the Γ̃ and Γmeasurements are noisy versions of σx and σz .
Interestingly, if we ask for general conditions on when there exists a joint measurement of two

noncommuting observables in the sense above (i.e. the marginals are noisy versions of the original
measurements), then we are lead back to the complementarity tradeoff of Theorem 7.1.1! For more
details, see [26].

7.3 The EPR paradox

Complementarity and uncertainty relations assert that physical systems cannot simultaneously dis-
play two complementary properties or at least that two such properties cannot both be known to an
observer simultaneously. This raises the question: Do systems have these complementary properties
and they just refuse to tell us, or do they not have these properties in the first place? Put differently,
the question is whether complementarity just results from some kind of inevitable disturbance to a
system upon measurement or whether complementary properties somehow do not exist in the first
place, and hence cannot be simultaneously known.

Is there any way to tell which of these two options is correct? Before we attempt to answer this
question, it is worth specifying more precisely we mean by “real properties” in the first place. A very
concise notion is given by Einstein, Podolsky, and Rosen (EPR) in their celebrated 1935 paper in the
Physical Review:
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If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.[27]

Now, if disturbance to elements of reality is caused by measurement, then one thing measurement
ought not do is disturb such elements of reality in systems far from where the measurement takes
place. This is the principle of locality, one of the basic principles of modern physics.

Entangled states have a peculiar relation to locality, as noticed by EPR, Einstein in particular.
EPR considered what we would regard as two purifications of a given density operator:

|Ψ〉AB =
∑

k

|ψk〉A⊗ |uk〉B =
∑

s
|ϕs 〉A⊗ |vs 〉B , (7.31)

where the |ψk〉 and |ϕs 〉 are arbitrary pure states, while the |uk〉 and |vs 〉 are unnormalized, but
mutually orthogonal states. As we have seen, measurement of system B in the |uk〉 basis will result in
the post-measurement state |ψk〉A in A with probability 〈uk |uk〉. Similarly, measurement of system B
in the |vs 〉 basis will result in the post-measurement state |ϕs 〉A in A with probability 〈vs |vs 〉. Indeed,
due to the unitary freedom in the purification, there are many possible post-measurement states that
can be prepared in system B by action on system A. Schrödinger termed this sort of phenomenon
steering and noted the conflict with locality by saying

It is rather discomforting that the theory should allow a system to be steered or piloted
into one or the other type of state at the experimenter’s mercy in spite of his having no
access to it.[28]

Note that steering does not imply the possibility of superluminal signalling. Although it is true that
if Bob measures system B , his description of Alice’s system A changes upon obtaining the outcome of
the measurement. But Alice’s description has not changed since she does not know the measurement
outcome. For her the state of A was and is ρA = trB[|Ψ〉〈Ψ|AB]. Since her state contains no infor-
mation about Bob’s measurement choice or outcome, no communication of any kind is possible,
superluminal or otherwise.

Returning to the EPR argument, observe that the various different post-measurement states could
correspond to eigenvectors of noncommuting observables on B . But then the values taken by these
observables should therefore all be elements of reality, at least if the action taken at A does not influ-
ence the elements of reality at B . But, as we know from the Robertson-type uncertainty relations,
noncommuting observables cannot simultaneously take on well-defined values. This is the EPR
paradox.

The conclusion of the EPR paper is that the quantum-mechanical description of systems in terms
of state vectors is incomplete, that is, there are elements of reality associated with noncommuting
observables, the uncertainty principle notwithstanding, but that these are not encapsulated in the
state vector |ψ〉. The state vector should contain all elements of reality, but does not.

Einstein stated a slightly different conclusion in a letter to Schrödinger, eschewing the argument
regarding elements of reality and taking aim directly at the state vector as a description of reality:

Now what is essential is exclusively that [|ψk〉B] and [|ϕs 〉B] are in general different
from one another. I assert that this difference is incompatible with the hypothesis that
the description is correlated one-to-one with the physical reality (the real state). After
the collision [which in the EPR model produces the entangled state], the real state of
(AB) consists precisely of the real state of A and the real state of B , which two states have
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nothing to do with one another. The real state of B thus cannot depend upon the kind of
measurement I carry out on A. (“Separation hypothesis” from above.) But then for the
same state of B there are two (in general arbitrarily many) equally justified [|ψ〉B] , which
contradicts the hypothesis of a one-to-one or complete description of the real states.5

Clearly what Einstein has in mind here is that each system has its own elements of reality, or real
state, and these should obey locality. We call this sort of description a locally realistic. If a locally
realistic description of quantum phenomena is possible, it is not found in the use of state vectors.

An important aspect of the EPR argument to note is their reasoning from counterfactuals, that is
measurements that were not performed. They themselves acknowledge this, noting that

One could object to this conclusion on the grounds that our criterion of reality is not
sufficiently restrictive. Indeed, one would not arrive at our conclusion if one insisted
that two or more physical quantities can be regarded as simultaneous elements of reality
only when they can be simultaneously measured or predicted. On this point of view,
since either one or the other, but not both simultaneously, of the quantities P and Q can
be predicted, they are not simultaneously real. This makes the reality of P and Q depend
upon the process of measurement carried out on the first system, which does not disturb
the second system in any way. No reasonable definition of reality could be expected to
permit this.

7.4 Bell inequalities

The EPR argument perhaps raises our hopes that complementarity is due to the inevitable distur-
bance of measurement, by “revealing” the existence of elements of reality obscured by the uncer-
tainty relation and complementarity. But the elements of reality must be partly in the form of hidden
variables not contained in the state vector description of a system. Is such a description possible? Is
a locally realistic formulation of quantum mechanics possible, one possibly making use of hidden
variables? By showing that local realism constrains the possible correlations between measurements
made on two separated systems, Bell demonstrated that such a description is not possible. Thus, we
face two unpalatable alternatives. Either the source of complementarity should be attributed to a lack
of existence of local elements of reality, or these independent elements of reality must be nonlocal.

7.4.1 The CHSH inequality

A simplified version of Bell’s argument was put forth by Clauser, Horne, Shimony, and Holt, and is
known as the CHSH inequality. It involves two systems, upon which the experimenters Alice and
Bob can each make one of two possible measurements. Every measurement has two possible out-
comes, which we will label ±1. Abstractly, this defines four observables a0, a1, b0 and b1. According
to local realism, deterministic values ±1 can be assigned to all observables, even though it might be

5“Wesentlich ist nun ausschliesslich, dass ψB und ψB überhaupt voneinander verschieden sind. Ich behaupte, dass
diese Verschiedenheit mit der Hypothese, dass die ψ-Beschreibung ein-eindeutig der physikalischen Wirklichkeit (dem
wirklichen Zustande) zugeordnet sei, unvereinbar ist. Nach dem Zusammenstoss besteht der wirkliche Zustand von (AB)
nämlich aus dem wirklichen Zustand von A und dem wirklichen Zustand von B, welche beiden Zustände nichts miteinan-
der zu schaffen haben. Der wirkliche Zustand von B kann nun nicht davon abhängen, was für eine Messung ich an A
vornehme. (‘Trennungshypothese’ von oben.) Dann aber gibt es zu demselben Zustände von B zwei (überhaupt bel. viele)
gleichberechtigte ψ, was der Hypothese einer ein-eindeutigen bezw. vollständigen Beschreibung der wirklichen Zustände
widerspricht.”[27]
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that a0 and a1 (and b0 and b1) cannot be simultaneously measured (an instance of the reasoning from
counterfactuals described above). From this, it immediately follows that

C = (a0+ a1)b0+(a0− a1)b1 =±2. (7.32)

Now imagine that the values of these observables are not directly given in a model of the situation,
but require additional hidden variables to pin them down exactly. Calling the hidden variable λ and
its distribution PHV(λ), we can express the probability for the observables to take on the definite
values a0, a1, b0, and b1 as

P (a0 = a0,a1 = a1, b0 = b0, b1 = b1|λ)PHV(λ). (7.33)

But since (7.32) is an equality, averaging over λ like so will only lead to

|〈C 〉|= |〈a0b0〉+ 〈a1b0〉+ 〈a0b1〉− 〈a1b1〉| ≤ 2. (7.34)

This is the CHSH inequality, an instance of a generic Bell inequality.
The CHSH inequality can be violated in quantum mechanics, by making use of entangled states.

Suppose the bipartite state of two qubit systems A and B is the state |Ψ〉 = 1p
2
(|01〉AB − |10〉AB ) and

let the observables be associated with Bloch vectors â0, â1, b̂0 and b̂1 so that a0 = ~σ · â0 and so forth,
where ~σ = x̂σx + ŷσy + ẑσz The state |Ψ〉AB , which is the spin-singlet combination of two spin-
1
2 particles, is rotationally invariant, meaning that UA⊗UB |Ψ〉AB = |Ψ〉AB for any unitary U with
detU = 1. From rotation invariance it follows that

〈Ψ|(~σA · â)(~σB · b̂ )|Ψ〉AB =−â · b̂ . (7.35)

To see this, compute

(~σA · â)(~σB · b̂ )|Ψ〉AB =
∑

j k

a j bk (σ j ⊗σk )|Ψ〉AB (7.36)

=−
∑

j k

a j bk (id⊗σkσ j )|Ψ〉AB . (7.37)

The second equality holds because σ j ⊗ σ j |Ψ〉 = −|Ψ〉; det(σ j ) = −1, so it is iσ j that has unit
determinant Then, in the inner product above only the terms with j = k contribute to the sum,
since states of the form id⊗σk |Ψ〉AB have nonzero angular momentum.

Now choose â0 = x̂, â1 = ŷ, b̂0 =
1p
2
(x̂ + ŷ), and b̂1 =

1p
2
(x̂ − ŷ). This gives

〈a0b0〉= 〈a1b0〉= 〈a0b1〉=−
1p
2

and (7.38)

〈a1b1〉=
1p
2
, (7.39)

so that |〈C 〉|= 2
p

2� 2. Therefore, Einstein’s goal of a locally realistic version of quantum mechan-
ics is impossible.

The use of entangled states is necessary in this argument; no non-entangled states can violate
the CHSH inequality. Schrödinger explained the importance of entangled states quite well, though
before the advent of Bell inequalities:
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When two systems, of which we know the states by their respective representatives, enter
into temporary physical interaction due to known forces between them, and when after a
time of mutual influence the systems separate again, then they can no longer be described
in the same way as before, viz. by endowing each of them with a representative of its own.
I would not call that one but rather the characteristic trait of quantum mechanics, the one
that enforces its entire departure from classical lines of thought. By the interaction the
two representatives (or ψ-functions) have become entangled.[28]

The violation of the CHSH inequality also highlights the danger of reasoning from counterfac-
tuals in quantum mechanics. It simply is not possible to consider the consequences of hypothetical
operations or measurements in quantum mechanics that are not actually performed. Peres put it best
in the title of a paper on the subject of Bell inequalities: Unperformed experiments have no results.[29]

Interestingly, it was recently discovered that the CHSH inequality is closely related to the ques-
tion of whether two ±1-valued observables can be jointly measured. Suppose that the two measure-
ments to be jointly measured are the a0 and a1 of the CHSH setup. Then, in [30] it is shown that
the pair of measurements is not jointly measurable in the sense of §7.2.1 if and only if it is possible
to find another pair of observables b0 and b1 and a quantum state such that the CHSH inequality is
violated.

7.4.2 Tsirel’son’s inequality

The value |〈C 〉| = 2
p

2 is actually the largest possible in quantum mechanics, a fact known as
Tsirel’son’s inequality. To prove it, consider the quantity C 2 for a0, a1, b0, and b1 arbitrary Hermitian
operators which square to the identity (so that their eigenvalues are ±1), and for which [ax , by] = 0.
By direct calculation we find

C 2 = 4id− [a0,a1][b0, b1]. (7.40)

Now compute the infinity norm of C 2, which is defined by

||C 2||∞ := sup
|ψ〉

 

||C 2|ψ〉||
|||ψ〉||

!

. (7.41)

The infinity norm has the following two properties, (i) ||AB ||∞ ≤ ||A||∞||B ||∞ and (ii) ||A+ B ||∞ ≤
||A||∞+ ||B ||∞. Then, we have

||C 2||∞ = ||4id− [a0,a1][b0, b1]||∞ (7.42)
≤ 4+ ||[a1,a0]||∞+ ||[b0, b1]||∞ (7.43)
≤ 4+ ||a1||∞ (||a0||∞+ || − a0||∞)+ ||b0||∞ (||b1||∞+ || − b1||∞) (7.44)
= 8. (7.45)

In the last step we used the fact that || ± c ||∞ = 1 for c having eigenvalues ±1.

7.4.3 The CHSH game

There is a slightly different way to formulate the CHSH setup which directly reveals the connection
to the principle of no superluminal signalling. Abstractly, the CHSH scenario consists of Alice and
Bob choosing inputs x and y (their choice of measurements) and then receiving outputs a and b (the
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measurement results). For later convenience, here we change the convention slightly and regard a
and b as also taking on values 0 or 1.

Now consider a game whose goal is to produce outputs a and b given inputs x and y such that
a⊕ b = x · y. If the outputs ax and by have fixed values, then it is easy to see that there is no way to
win the game for all possible inputs x and y. This is because ax and by must satisfy ax ⊕ by = x · y,
but

∑

xy
ax ⊕ by = 0 while

∑

xy
x · y = 1. (7.46)

Examination of the 16 possible settings of ax and by shows that at best Alice and Bob can win with
probability 3/4. For instance, a0 = 1, a1 = 0, b0 = 0, and b1 = 1 obeys ax ⊕ by = x · y in only three
cases, with x = y = 0 giving a0 + b0 = 1. Similarly, a0 = 0, a1 = 1, b0 = 0, and b1 = 1 fails in three
cases, only x = y = 0 being correct. Mixing these deterministic assignments does not change the
bound, so we have found that

P (a⊕ b = ·y) =
∑

λ

p(λ)P (a|x,λ)P (b |y,λ)≤ 3
4 , (7.47)

where the conditional distributions P (a|x,λ) and P (b |y,λ) are deterministic.
But the form of the distribution is the most general possible for a deterministic local hidden

variable theory, so P (a ⊕ b = x · y) ≤ 3
4 is a Bell inequality. Actually it is just a restatement of the

CHSH inequality. To see this, let pxy = P (a ⊕ b = x · y|x, y). Then each term in C is related to

a different pxy . Consider p0,1. Denoting by a′x = (−1)ax and b ′y = (−1)by the original ±1-valued
observables, we have

〈a′0b ′1〉= 〈(−1)a0+b1〉= p01− (1− p01) = 2 p01− 1, (7.48)

since x = 0, y = 1 means the value of a′0b ′1 will be +1 if they win and −1 if they lose. Similarly,
〈a′0b ′0〉= 2 p00− 1, 〈a′1b ′0〉= 2 p10− 1, while 〈a′1b ′1〉= 1− 2 p11. In the last case, a′1b ′1 is −1 if they win
and +1 if they lose. The CHSH inequality |〈C 〉| ≤ 2 then translates into

|〈C 〉|= 2
∑

xy
pxy − 4= 2 · 4 p DLHV

win − 4≤ 2, (7.49)

or p DLHV
win ≤ 3

4 , where p DLHV
win denotes the probability of winning the game when x and y are chosen

randomly, when using a strategy described by a deterministic local hidden variable theory. Using
quantum mechanics, we have |〈C 〉| ≤ 2

p
2, so pQM

win
≤ 1

2 +
1

2
p

2
.

The maximum winning probability is 1, of course, and is achieved by the distribution P (a, b |x, y) =
1
2δa⊕b ,x·y . Interestingly, this distribution also does not allow for superluminal signalling, even though
the non-local correlations are much stronger than in quantum mechanics. Here, |〈C 〉| = 4. Never-
theless, the distribution obeys P (a|x, y) = P (a|x), so that the marginal probability of outcome a
depends only on the x setting and not the y setting. As much holds in the other direction. This
precludes signalling from one party to the other.
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8Quantum Entropy
8.1 The von Neumann entropy and its properties

8.1.1 Entropy of a single system

The von Neumann entropy is just the Shannon entropy of the state’s eigenvalues, i.e.,

H (ρ) :=−
∑

k

λk logλk =−tr[ρ logρ]. (8.1)

Recall that a function (over R) of a Hermitian operator is to be interpreted as the function applied to
the eigenvalues. Some of its properties are

1. H (ρ) = 0 iff ρ is a pure state

2. H (UρU ∗) =H (ρ) for unitary U

3. H (ρ)≤ log |suppρ|

4. H
�∑

k pkρk
�

≥
∑

k pk H
�

ρk
�

5. H
�∑

k PkρPk
�

≥H (ρ) for any complete set of projectors Pk .

Properties 1 and 2 are clear by inspection. Just like the classical case, the rest follow from positivity
of the relative entropy, a statement known as Klein’s inequality1

D(ρ||σ) = tr[ρ(logρ− logσ)]≥ 0, (8.2)

with equality iff ρ= σ . Property 3 follows by defining σ = 1
d id, where id is the identity operator on

suppρ and d = |suppρ|. Then, D(ρ||σ) = log d −H (ρ) ≥ 0. To prove property 4 let ρ =
∑

k pkρk .
Then

∑

k pk D(ρk ||ρ) = H (ρ)−
∑

k pk H
�

ρk
�

≥ 0. Finally to prove property 5, let ρ =
∑

k PkρPk .
Observe that [Pk ,ρ] = 0. Thus, D(ρ||ρ) =−H (ρ)−

∑

k tr[Pk (ρ logρ)Pk] =H (ρ)−H (ρ)≥ 0.

8.1.2 von Neumann entropy of several systems

The von Neumann entropy of a single quantum system behaves very similar to the Shannon entropy
of a single random variable. But not so for the entropy of several quantum systems! The reason is
entanglement, of course. The simplest example is a bipartite pure sate |ψ〉AB =

∑

k
p

pk |ϕk〉A|ξk〉B ,
here expressed in Schmidt form. The marginal states of A and B share the same eigenvalues, and we
have immediately H (AB)ρ = 0 while H (A)ρ = H (B)ρ. Thus the entropy (uncertainty) of the whole
of an entangled state is less than that of the parts, something impossible (and nonsensical) for classical
random variables.

The joint entropy does obey the following conditions:

1. Subadditivity: H (AB)≤H (A)+H (B)

2. Triangle inequality: H (AB)≥ |H (A)−H (B) |.
1Oskar Benjamin Klein, 1894 – 1977, Swedish theoretical physicist.
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To see the former, simply compute the relative entropy D(ρAB ||ρA⊗ρB ), where ρA= trB[ρAB] and
similarly for ρB . The latter follows from the former by making use of a third purifying reference
system R: Let |ψ〉RAB be a purification of ρAB , then

H (B) =H (RA)≤H (A)+H (R) =H (A)+H (AB) , (8.3)

which implies that H (AB)≥ H (B)−H (A). Swapping A and B in the proof gives the absolute value.
It is also easy to see, by direct calculation, that H (AB) = H (A) +H (B) for states of the form ρAB =
ρA⊗ρB .

8.1.3 Conditional von Neumann entropy and quantum mutual information

We can define the conditional entropy and mutual information using the classical entropy expression:

H (A|B) :=H (AB)−H (B) (8.4)

and
I (A : B) :=H (A)+H (B)−H (AB) . (8.5)

Form the discussion above, we see that the conditional entropy can be negative, so perhaps it is
best not to think of it as a conditional uncertainty.2 The quantum mutual information is positive,
however, owing to subadditivity. Moreover, by the triangle inequality, H (AB)≥H (A)−H (B)which
implies 2H (B)≥H (A)+H (B)−H (AB) = I (A : B) and thus I (A : B)≤ 2min{H (A) , H (B)}.

An important property of the conditional von Neumann entropy is duality,

H (A|B)ρ+H (A|C )ρ = 0, (8.6)

for all pure states ρABC . This follows immediately from the fact that marginals of bipartite pure states
have identical eigenvalues and will turn out to have several important implications.

8.1.4 Entropy of CQ states

Classical-quantum states do obey the usual rules of entropy. In particular, H (X |B) ≥ 0. To show
this, let us start by calculating the joint entropy of the CQ state ρX B =

∑

x px (Px )X ⊗ (ρx )B .

H (X B) =−tr[ρX B logρX B] (8.7)

=−tr[
∑

x
px Px ⊗ρx

∑

y
Py ⊗ log pyρy] (8.8)

=−tr[
∑

x
px Px ⊗ρx log pxρx] (8.9)

=−tr[
∑

x
px Px ⊗ρx (log px + logρx )] (8.10)

=H (X )+
∑

x
px H

�

ρx
�

(8.11)

=H (X )+H (B |X ) . (8.12)

Here we have proven the fact that H
�∑

x pxρx
�

=H (X )+
∑

x px H
�

ρx
�

, when ρx are disjoint.

2Nevertheless H (A|B)≤H (A) by subadditivity.
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We have actually already encountered the CQ mutual information I (X : B) in our consideration
of the concavity of entropy in the previous section:

I (X : B) =H (X )+H (B)−H (X B) =H
�

∑

x
pxρx

�

−
∑

x
px H

�

ρx
�

, (8.13)

since ρB =
∑

x pxρx . This quantity is quite important in quantum information theory and usually
goes under the name Holevo information for reasons we shall see shortly.

In contrast to I (A : B), we can prove I (X : B)≤H (X ), which is equivalent to H (X |B)≥ 0.

Lemma 8.1.1. I (X : B)ρ ≤H (X )ρ for any CQ state ρX B .

Proof. The standard proof (for instance in Nielsen & Chuang) is to work in the ensemble picture
and bootstrap form the pure state case to the mixed state case. But we can avoid having to directly
compute too much by considering the following pure state

|ψ〉ABR =
∑

x

p

px |x〉A|ϕx〉BR, where ρx = trR[|ϕx〉〈ϕx |BR]. (8.14)

First, since RAB is pure, H (AR) = H (B) = H
�∑

x pxρx
�

. Second, measurement increases entropy,
so H

�

AR
�

≥H (AR), where AR denotes the state after AR measuring A in the |x〉 basis:

H
�

AR
�

=H
�

∑

x
px Px ⊗ ρ̃x

�

for ρ̃x = trB[|ϕx〉BR]. (8.15)

By the results of the joint entropy calculation above

H
�

AR
�

=H (X )+
∑

x
px H

�

ρ̃x
�

=H (X )+
∑

x
px H

�

ρx
�

, (8.16)

where the last step follows because ρx and ρ̃x are both marginals of the same pure state |ϕx〉. Alto-
gether we have

H (X )+
∑

x
px H

�

ρx
�

≥H
�

∑

x
pxρx

�

, (8.17)

which implies H (X )≥ I (X : B).

8.2 Strong Subadditivity

The most important entropy inequality deals with three systems and states that

H (A|BC )≤H (A|B) , or equivalently (8.18)
I (A : BC )≥ I (A : B). (8.19)

Classically this inequality is easy to prove; it follows directly form subadditivity:

H (X |Y Z) =
∑

y
p(y)H (X |Y = y,Z)≤

∑

y
p(y)H (X |Y = y) =H (X |Y ) . (8.20)

But this will not work quantum mechanically because there is no notion of a conditional state. The
usual proof for the von Neumann entropy makes use of Lieb’s theorem, that the function f (A,B) =
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tr[X ∗At X B1−t ] is jointly concave in positive matrices A,B for all X and 0≤ t ≤ 1. The entire proof
is quite long so we will not go into it here.

However, it is worth mentioning that strong subadditivity (SSA) is nearly trivial to prove for the
conditional min-entropy. This then implies the result for the von Neumann entropy by going to the
smooth min-entropy of the asymptotic i.i.d. case.

Recall that classically the min-entropy of a random variable X is just− log of the largest probabil-
ity. Similarly, the min-entropy of a quantum system ρ is− logλwhere λ is the smallest number such
that λ id−ρ≥ 0. This extends immediately to the conditional min-entropy: Hmin(ρAB |σB ) =− logλ,
where λ minimum real such that λidA ⊗ σB − ρAB ≥ 0. SSA is then immediate. Define λ by
Hmin(ρABC |σBC ) = − logλ so that λidA⊗ σBC − ρABC ≥ 0. Taking the partial trace preserves this
inequality, meaning λidA⊗σB −ρAB ≥ 0 and therefore Hmin(ρAB |σB )≥− logλ.

The reason SSA is so important is that many useful relations can be derived from it. In particular
we shall focus on two: the concavity of the conditional entropy and the fact that local quantum
operations cannot increase mutual information.

Lemma 8.2.1 (Concavity of conditional entropy). H (A|B)ρ ≥
∑

x px H (A|B)ρx
for ρ=

∑

x pxρx .

Proof. Consider the state ρABX =
∑

x p(x)ρAB
x ⊗ P X

x and apply H (A|BX ) ≤ H (A|B). Since X is
classical, we can condition on it in the usual way:

H (A|BX ) =
∑

x
p(x)H (A|B)ρx

≤H (A|B)ρ . (8.21)

Just to be sure, taking the long way gives

H (A|BX ) =H (ABX )−H (BX ) (8.22)

=H (X )+
∑

x
px H (AB)ρx

−H (X )−
∑

x
px H (B)ρx

(8.23)

=
∑

x
px H (A|B)ρx

. (8.24)

This result is interesting because it tells us that negative H (A|B) is a sign of entanglement (which
we might well have suspected already). If ρAB is pure, then H (AB) ≤ 0 implies H (B) > 0 (indeed
−H (A|B) = H (B)) and therefore there is more than one Schmidt coefficient. For the case of mixed
states, consider H (A|B) for a separable state ρAB =

∑

j p jσ
A
j ⊗ ξ

B
j :

H (A|B)ρ ≥
∑

j

p j H (A|B) j =
∑

j

p j H
�

σ j

�

≥ 0. (8.25)

Therefore H (A|B) j < 0 implies ρ is not separable, i.e. ρ is entangled. However, the converse is false:
There exist entangled states for which H (A|B) ≥ 0. Thus, the conditional entropy is not a faithful
measure of entanglement.

Nonetheless, the duality of conditional entropy translates into the monogamy property of entan-
glement, the fact that a system A cannot be entangled with both B and C at the same time.

The other application of SSA we are interested in is the fact that local quantum operations cannot
increase the quantum mutual information, the quantum data processing inequality
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8.3. Entropic Uncertainty Relations

Lemma 8.2.2 (Quantum data processing inequality). For all bipartite states ρAB and CPTP maps E ,
I (A : B)ρ ≥ I (A : B ′)ρ′ , where ρ′

AB ′
=I ⊗E (ρAB ).

Proof. Using the Stinespring representation, we have for some isometry UBR

ρ′AB = trR[UBRρAB U ∗BR] = trR[ψABR]. (8.26)

As entropy is invariant under isometries, I (A : B ′)≤ I (A : BR)ψ = I (A : B)ρ.

The Holevo bound is the data processing inequality for CQ states, and was first established inde-
pendently of SSA:

Corollary 8.2.3 (Holevo bound). For any CQ state ρX B and POVM {Λy} on system B producing the
random variable Y , I (X : B)ρ ≥ I (X : Y )ρ′ .

Along with the bound I (X : B)≤ H (X ), the Holevo bound shows that n qubits cannot be used
to carry more than n classical bits about a classical random variable.

8.3 Entropic Uncertainty Relations

From the duality of the conditional von Neumann entropy we can derive two entropic uncertainty
relations. The first deals with three parties, and to a certain extent captures the notion that non-
commuting observables cannot be simultaneously measured. The second deals with two parties and
relates the ability of one system to predict the value of two observables (however, not simultaneously)
of the other to their shared entanglement.

The proof relies on several facts about the quantum relative entropy which we will use here
without proof: invariance under isometries, monotonicity under CPTP maps (which relies on joint
convexity in both arguments), and D(ρ||σ ′)≤D(ρ||σ) for σ ≤ σ ′.

Theorem 8.3.1 (Entropic Uncertainty). Given two observables X and Z on a quantum system A, let
|ϕx〉 and |ϑz〉 be the eigenstates of X and Z, respectively and define c(X ,Z) =maxx z |〈ϕx |ϑz〉|2. Then,
for any state ρABC and H (X A|B)ρ the entropy of the result of measuring X on A conditional on system
B, and similarly for H (ZA|C ), we have

H (X A|B)ρ+H (ZA|C )ρ ≥ log
1

c(X ,Z)
, and (8.27)

H (X A|B)ρ+H (ZA|B)ρ ≥ log
1

c(X ,Z)
+H (A|B)ρ. (8.28)

Proof. The proof proceeds by showing the first and then deriving the second as a simple consequence.
To prove the first statement, observe that by data processing it is sufficient to establish the statement
for pure ρABC . Then consider the state

|ψ〉X X ′BC =VA→X X ′ |ρ〉ABC =
∑

x
|x〉X |x〉X ′ A〈ϕx |ρ〉ABC , (8.29)

where VA→X X ′ is a Stinespring dilation of the measurement process. Applying entropy duality,
we have H (X |B)ψ + H (X |X ′C )ψ = 0. By direct calculation it is easy to show that H (X |X ′C ) =
−D(ψX X ′C ||idX ⊗ρX ′C ), and thus H (X |B)ψ =D(ψX X ′C ||idX ⊗ρX ′C ). By invariance of the relative
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entropy under isometries, it follows that D(ψX X ′C ||idX⊗ρX ′C ) =D(ρAC ||V ∗A→X X ′
idX⊗ρX ′C VA→X X ).

The second argument to the relative entropy is just

V ∗
A→X X ′

idX ⊗ρX ′C VA→X X =
∑

x x ′
|ϕx ′〉A〈x

′|X 〈x
′|X ′ idX ⊗ρX ′C |x〉X |x〉X ′〈ϕx |A (8.30)

=
∑

x
|ϕx〉〈ϕx |A trX ′[|x〉〈x|X ′ρX ′C ]. (8.31)

But applying the isometry U =
∑

z |z〉Z |z〉Z ′〈ϑz |A to the relative entropy gives

D(ψX X ′C ||idX ⊗ρX ′C ) =D(ψZZ ′C ||
∑

x
U |ϕx〉〈ϕx |U

∗ trX ′[|x〉〈x|X ′ρX ′C ]) (8.32)

≥D(ψZC ||
∑

x
trZ ′[U |ϕx〉〈ϕx |U

∗] trX ′[|x〉〈x|X ′ρX ′C ], (8.33)

where we have used the monotonicity of the relative entropy under CPTP maps. Again we can
simplify the second argument, as follows:

∑

x
trZ ′[U |ϕx〉〈ϕx |U

∗] tr[|x〉〈x|X ′ρX ′C ] =
∑

x z
|〈ϑz |ϕx〉|

2|z〉〈z |Z ⊗ trX ′[|x〉〈x|X ′ρX ′C ] (8.34)

≤
∑

x z
c(X ,Z)|z〉〈z |Z ⊗ trX ′[|x〉〈x|X ′ρX ′C ] (8.35)

= c(X ,Z) idZ ⊗ρC . (8.36)

Since D(ρ||σ ′)≤D(ρ||σ) for σ ≤ σ ′,

D(ψX X ′C ||idX ⊗ρX ′C )≥D(ψZC ||c(X ,Z) idZ ⊗ρC ) (8.37)
=D(ψZC ||idZ ⊗ρC )− log c(X ,Z) (8.38)

=−H (Z |C )ρ+ log
1

c(X ,Z)
, (8.39)

completing the proof of the first statement.
For the second, it is a simple calculation to verify that H (ZAB)ρ = H (ZAC )ρ when C is the pu-

rification of AB so that ρABC is pure. This leads immediately to H (ZA|C )ρ =H (ZA|B)ρ−H (A|B)ρ.
If C is not the purification of AB , then by data processing H (ZA|C )ρ ≥H (ZA|B)ρ−H (A|B)ρ. Using
this expression to replace H (ZA|C ) in the first statement leads to the second.
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9The Resource Framework
We have seen that ebits, classical communication and quantum communication can be seen as valu-
able resources with which we can achieve certain tasks. An important example was the teleportation
protocol which shows one ebit and two bits of classical communication can simulate the transmis-
sion of one qubit. In the following we will develop a framework for the transformation resources
and present a technique that allows to show the optimality of certain transformations.

9.1 Resources and inequalities

We will consider a setup with two parties, Alice and Bob, who wish to convert one type of resource
to another (one may also consider more than two parties, but this is a little outside the scope of this
course). The resources we consider are:

• n[q→ q]: Alice sends n qubits to Bob

• n[c→ c]: Alice sends n bits to Bob

• n[qq]: Alice and Bob share n maximally entangled states

• n[c c]: Alice and Bob share n random classical bits

A resource inequality is a relation X ≥ Y , which means there exists a protocol to simulate re-
sources Y using only resources X and local operations. For superdense coding the resource inequality
reads

[qq]+ [q→ q] ≥ 2[c→ c], (9.1)

while teleportation is the inequality

2[c→ c]+ [qq] ≥ [q→ q]. (9.2)

Of course, resources are usually not perfect and nor do we require the resource conversion to be
perfect. We can then still use resource inequalities to formulate meaningful statements. For instance,
Shannon’s noiseless channel coding theorem for a channel W of capacity C (W ) reads

n[W ] ≥ε n(C (W )− ε)[c→ c], (9.3)

for all ε > 0 and n large enough.
In the remainder we will only be concerned with an exact conversion of perfect resources. Our

main goal will be to show that the teleportation and superdense coding protocols are optimal.

9.2 Monotones

Given a class of quantum operations, a monotone M is a function from states into the real numbers
that has the property that it does not increase under any operations from the class. Rather than
making this definition too formal (e.g. by specifying exactly on which systems the operations act),
we will consider a few characteristic examples.
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Example 9.2.1 (Quantum mutual information). For bipartite states, the quantum mutual informa-
tion is a monotone for the class of local operations, as was shown in Lemma 8.2.2. A similar argument
shows that

I (A : B |E)≥ I (A : B ′|E).

where ρABE is an arbitrary extension of ρAB , i.e. satisfies trEρABE = ρAB .

Example 9.2.2 (Squashed entanglement). The squashed entanglement of a state ρAB is given by

Esq(A : B) := 1
2 inf

E
I (A : B |E), (9.4)

where the minimisation extends over all extensions ρABE of ρAB . Note that we do not impose a
limit on the dimension of E . (That is why we do not know whether the minimum is achieved and
write inf rather than min.) Squashed entanglement is a monotone under local operations and classical
communication (often abbreviated as LOCC). That squashed entanglement is monotone under local
operations follows immediately from the previous example. We just only need to verify that it does
not increase under classical communication.

Consider the case where Alice sends a classical system C to Bob (e.g. a bit string). We want to
compare Esq(AC : B) and Esq(A : BC ). For any extension E , we have

I (B : AC |E) =H (B |E)−H (B |AC E)
≥H (B |EC )−H (B |AEC ) (strong subadditivity)
= I (B : A|EC )
= I (BC : A|EC ) EC =: E ′

≥min
E ′

I (BC : A|E ′)

This shows that Esq(AC : B)≥ Esq(A : BC ). By symmetry Esq(AC : B) = Esq(A : BC ) follows.

Theorem 9.2.3. For any state ρAB , Esq(A : B) = 0 iff ρAB is separable.

Proof. We only prove here that a separable state ρAB implies that Esq(A : B) = 0. The converse is
beyond the scope of this course and has only been established recently [31]. Consider the following
separable classical-quantum state

ρABC =
∑

i

piρ
i
A⊗ρ

i
B ⊗ |i〉〈i |C , (9.5)

for pi a probability distribution. Using the definition of the mutual information we can write

I (A : B |C )ρ =H (A|C )ρ−H (B |AC )ρ (9.6)

=
∑

i

pi H (A)ρi
A
−
∑

i

pi H (A|B)ρi
A⊗ρ

i
B

(9.7)

= 0. (9.8)

The first two equalities follow by definition and the final step by the chain rule:

H (A|B)ρA⊗ρB
=H (AB)ρA⊗ρB

−H (B)ρB
=H (A)ρA

. (9.9)
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Since ebits are so useful, we can ask ourselves how many ebits we can extract per given copy of
ρAB , as the number of copies approaches infinity. Formally, this number is known as the distillable
entanglement of ρAB :

ED (ρAB ) = lim
ε7→0

lim
n 7→∞

sup
Λ LOCC

{
m

n
: 〈Φ|⊗mΛ(ρ⊗n

AB )|Φ〉
⊗m ≥ 1− ε}

This number is obviously very difficult to compute, but there is a whole theory of entanglement
measures out there with the aim to provide upper bounds on distillable entanglement. A particularly
easy upper bound is given by the squashed entanglement.

Es q (ρAB )≥ ED (ρAB ).

The proof uses only the monotonicity of squashed entanglement under LOCC operations and the
fact that the squashed entanglement of a state that is close to n ebits (in the purified distance) is close
to n.

9.3 Teleportation is optimal

We will first show how to use monotones in order to prove that any protocol for teleportation of m
qubits needs at least n ebits, regardless of how much classical communication the protocol uses. In
the resource notation this reads

n[qq]+∞[c→ c]≥ m[q→ q] =⇒ n ≥ m. (9.10)

Observe that

n[qq]+∞[c→ c]≥ m[q→ q] −→ n[qq]+∞[c→ c]≥ m[qq], (9.11)

since we can use the quantum channel to distribute entangled pairs. Thus, we need only show that the
number of ebits cannot be increased by classical communication. This certainly sounds intuitive, but
proof requires using a monotone, for instance squashed entanglement. Since every possible extension
ρABE of a pure state ρAB of n ebits is of the form ρABE = ρAB ⊗ρE we find

2Esq(A : B)ρ = inf
E

I (A : B |E)ρ = I (A : B)ρ = 2n. (9.12)

According to (9.12), having n ebits can be expressed in term of squashed entanglement. Since local
operations and classical communication cannot increase the squashed entanglement as shown in Ex-
ample 9.2.2, we conclude using again (9.12) that it is impossible to increase the number of ebits by
LOCC.

In fact, the statement also holds if one requires the transformation to only work approximately.
The proof is then a little more technical and needs a result about the continuity of squashed entan-
glement.

One can also prove that one needs at least two bits of classical communication in order to teleport
one qubit, regardless of how many ebits one has available. But we will leave this to the exercises.
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9.4 Superdense coding is optimal

Now we would like to prove that at least one qubit channel is needed to send two classical bits,
regardless of how many ebits are available:

n[q→ q]+∞[qq] ≥ 2m[c→ c]+∞[qq] −→ n ≥ m. (9.13)

First observe that concatenation of

n[q→ q]+∞[qq]≥ 2m[c→ c]+∞[qq] (9.14)

with teleportation yields

n[q→ q]+∞[qq]≥ m[q→ q]+∞[qq]. (9.15)

Thus, we need to show that shared entanglement does not enable Alice to send additional qubits
to Bob. For this, we consider an additional player Charlie who holds system C and shares ebits
with Alice. Let Bi be Bob’s initial system, Q an n qubit system that Alice sends to Bob, Λ Bob’s
local operation and B f Bob’s final system. Clearly, if an n qubit channel could simulate an m qubit
channel for m > n, then Alice could send m fresh halves of ebits that she shares with Charlie to Bob,
thereby increasing the quantum mutual information between Charlie and Bob by 2m. We are now
going to show that the amount of quantum mutual information that Bob and Charlie share cannot
increase by more than two times the number of qubits that he receives from Alice, i.e. by 2n. For
this we bound Bob’s final quantum mutual information with Charlie by

I (C : B f )≤ I (C : Bi Q) (9.16)

= I (C : Bi )+ I (C : Q|Bi ) (9.17)
≤ I (C : Bi )+ 2n (9.18)

Therefore m ≤ n. This concludes our proof that the superdense coding protocol is optimal.
For this argument we did not use a monotone such as squashed entanglement. Instead, we merely

used the property that the quantum mutual information cannot increase by too much under com-
munication. Quantities that have the opposite behaviour (i.e. can increase sharply when only few
qubits are communicated) are known as lockable quantities and have been in the focus of the atten-
tion in quantum information theory in recent years. So, we might also say that the quantum mutual
information is nonlockable.
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10
Quantum Data Compression and Entanglement
Purification
In this chapter we examine two tasks of quantum information processing which, in some sense, only
deal with a single quantum system: quantum data compression and entanglement purification.

10.1 Quantum data compression

Quantum data compression is simply the quantum version of classical data compression. The setup
is depicted in Figure 10.1. A source produces a bipartite pure state |ψ〉SR and delivers S to the com-
pressor. The goal of the data compression scheme is for the compressor to send as few qubits (system
C ) to the decompressor as possible, such that approximate reconstruction of the state is nonetheless
possible.

Figure 10.1: Setup of quantum data compression.

There are two distinct figures of merit for the state reconstruction. First, how well does the
output state ρ′

S ′
approximate the input ρS = trR[|ψ〉〈ψ|RS]? Second, how well does does ψ′

S ′R
ap-

proximate ψSR? For classical data compression there is no meaning to the second, since there is no
notion of purification. But as we shall see, there is a big difference between the two in the quantum
case. Essentially, the point is that for the joint output in S ′R to approximate the joint input, there
can be no information about the source left at the compressor. In the classical case, whether the
compressor retains a copy of its input is of no concern.

10.1.1 A direct approach

Let us now try to construct a quantum compression scheme by directly reusing the classical protocol
as much as possible. We can do so by first observing that the quantum task can be mapped to the
classical task by working in the eigenbasis of ρS =

∑

x px |x〉〈x|S . This defines a random variable X
with probability distribution PX (x) = px .

Now suppose we have a data compression protocol for X , based on some compression function
f . We can transform this function into a quantum map by defining its action on the basis vectors,
like so

C (|x〉〈x|S ) = | f (x)〉〈 f (x)|C . (10.1)

Meanwhile, the classical decompressor takes the compressed input y and outputs the x for which the
conditional probability PX |Y=y is the largest. Calling this mapping r (y), we can again promote it to
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a quantum operation

D(|y〉〈y|C ) = |r (y)〉〈r (y)|S ′ . (10.2)

What is the trace distance of ρS and ρ′
S ′

:= D ◦C (ρS )? (Since S and S ′ are isomorphic, we can
ignore the distinction between them.) First, we have

ρ′ :=D ◦C (ρ) =
∑

x
px |r ( f (x))〉〈r ( f (x))| (10.3)

Let Xg be the set of x that are always correctly recovered, i.e. Xg = {x ∈ X |r ( f (x)) = x}. These
are the x values with the highest conditional probabilities in each set having fixed value y under f .
Therefore,

ρ′ =
∑

x∈Xg

px |x〉〈x|+
∑

x /∈Xg

px |r ( f (x))〉〈r ( f (x))|=
∑

x∈Xg

p ′x |x〉〈x|, (10.4)

where p ′x includes the contribution fromXg andX C
g . It follows that p ′x > px for all x ∈Xg . Now,

1
2 ||E (ρ)−ρ||1 = ||

∑

x∈Xg

p ′x |x〉〈x| −
∑

x∈Xg

px |x〉〈x| −
∑

x /∈Xg

px |x〉〈x| ||1 (10.5)

=
1

2

∑

x /∈Xg

px +
1

2

∑

x∈Xg

(p ′x − px ) with
∑

x∈Xg

p ′x = 1 (10.6)

=
1

2

∑

x /∈Xg

px + 1−
∑

x∈Xg

px (10.7)

=
∑

x /∈Xg

px = perr (10.8)

Therefore, if the classical compression scheme has error probability perr ≤ ε, we can find a quan-
tum compression scheme ε-good at accurately reproducing the input to the compressor by directly
recycling the classical encoder and decoder.

10.1.2 Maintaining entanglement fidelity

But what about ψSR approximation? Suppose in the above thatC comes from the following unitary
action,

Uf |x〉s |0〉C = |x〉S | f (x)〉C , (10.9)

and then tracing out S. Even if the compression scheme were perfect, we would have a problem with
the fidelity between ψSR and the output ψ′′SR. The states involved are

|ψ〉SR =
∑

x

p

px |x〉S |ϕx〉R (10.10)

|ψ′〉SRC =U |ψ〉SR|0〉C =
∑

x

p

px |x〉S |ϕx〉R| f (x)〉C (10.11)

|ψ′′〉SRS ′ =
∑

x

p

px |x〉S |ϕx〉R|x〉S ′ (after decompression) (10.12)

ψ′′
RS ′
=
∑

x
px |x〉〈x|S ′ ⊗ |ϕx〉〈ϕx |R (10.13)
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Hence the fidelity is 〈ψ|ψ′′|ψ〉=
∑

x p2
x , which is only close to 1 if |ψ〉 is essentially unentangled.

As an aside, we can define the entanglement fidelity of a mapping E on an input ρ as follows:

F (E ,ρ) :=max
|Φρ〉

F (Φρ,E ⊗I (Φρ)), (10.14)

where |Φρ〉 is a purification of ρ. We can find a nice expression for the entanglement fidelity which

does not involve maximizations over the possible purifications. Suppose E (ρ) =
∑

k AkρA†
k

and
consider the purification |Φρ〉QR =

p

ρQ |Ω〉QR for |Ω〉QR =
∑

k |k〉Q |k〉R, as in (5.20). We then have

F (Φρ,E ⊗I (Φρ))
2 ≥ 〈Ω|pρQ

∑

k

Ak
p
ρQ |Ω〉〈Ω|

p
ρQA†

k
p
ρQ |Ω〉 (10.15)

=
∑

k

|〈Ω|(pρAk
p
ρ⊗1)|Ω〉|2 (10.16)

=
∑

k

|tr[ρAk]|
2, (10.17)

since 〈Φ|A⊗1|Φ〉= tr[A]. Moreover, we could have used any other purification, which is necessarily
of the form UR|Φpρ〉QR for some unitary UR, as UR would cancel out in the first expression.

Now let us be a little more clever about implementing the compressor. The preceding argument
shows that we have to be careful to remove all traces ofψSR from the compressor degrees of freedom.

Instead of the U above, consider the following. First, define Xy = {x : f (x) = y}. Then sort

Xy according to PX |Y=y . Call the result X ↓y . Next define g (x) to be the index or position of x

in X ↓y , counting from 0. The point is that U =
∑

x | f (x)〉C |g (x)〉T 〈x|S is an isometry, because
x→ ( f (x), g (x)) is reversible. For future use, call the inverse map h:

x
h← ( f (x), g (x)) (10.18)

The compression scheme proceeds as follows. First, the compressor applies U and discards T .
Then the decompressor applies V =

∑

y |h(y, 0)〉S ′〈y|C . That is, the decompressor assumes g (x) = 0.
Using (10.17) we can compute the entanglement fidelity. The channel isN (ρ) = trT[VUρU∗V∗]

and so picks up Kraus operators from the partial trace: Az = T 〈z | ⊗V U . Then

F (N ,ρ)2 =
∑

z
|trAzρ|

2 (10.19)

=
∑

z
|tr(T 〈z |V U

∑

x
px |x〉〈x|S )|

2 (10.20)

=
∑

z
|
∑

x
px S〈x|T 〈z |V U |x〉S |

2 (10.21)

=
∑

z
|
∑

x
px S〈x|T 〈z |

∑

y
|h(y, 0)〉S〈y|C · | f (x)〉C |g (x)〉T |

2 (10.22)

=
∑

z
|
∑

x
px

∑

y
δ(x, h(y, 0))δ(z, g (x))δ(y, f (x))|2. (10.23)

Note that δ(x, h(y, 0))⇔ δ( f (x), y)δ(g (x), 0), so only z = 0 contributes. Therefore,

F (N ,ρ) =
∑

x
pxδ(g (x), 0) =

∑

x∈Xg

px , (10.24)
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sinceXg = {x : g (x) = 0} by construction! So we get F (N ,ρ) = 1− perr.
We can now return to the issue of what the compressor is left with after the protocol and whether

it is correlated with the source in any way. The state of RST after the execution of the protocol is

|ψ′〉RST =
∑

x

p

px |φx〉R|g (x)〉T |h( f (x), 0)〉S . (10.25)

Since this state is a purification of the output and we know the output is close to |ψ〉RS , |ψ′〉must be
close to |ψRS〉W |0〉T in fidelity, for some isometry W (from Uhlmann’s Theorem 5.2.5). This means
that not was S compressed, but pure states were created in T in the process. The quantum scheme
explicitly erases unneeded info in S. As we saw above, it has to!

Note that the two compression maps are different; trT [U (·)U ∗] is not the same equantum chan-
nel asC used above. Their action is identical on inputs of the form |x〉〈x|, but we must also consider
“off-diagonal” inputs like |x〉〈x|′. For the former we have

trT [U |x〉〈x
′|U ∗] = | f (x)〉〈 f (x ′)|δ(g (x), g (x ′)), (10.26)

while the latter gives

C (|x〉〈x ′|) = | f (x)〉〈 f (x ′)|δ(x, x ′). (10.27)

10.2 Entanglement purification

Now let us examine a problem sort of “dual” to quantum data compression, namely entanglement
purification. The goal here is to transform a given bipartite pure state |Ψ〉AB =

∑

x
p

px |ϕx〉A⊗|ξx〉B
(expressed here in the Schmidt basis) into an approximate version of |Φm〉=

1p
2m

∑

y |y〉A′⊗|y〉B ′ , for
the largest m possible, using only local operations and classical communication.

As we saw in §10.1.2, data compression can be seen as a means of producing pure states from a
given source, that is, an output which has entropy zero. In entanglement purification, on the other
hand, the goal is to make the local states as mixed as possible (while still keeping the overall state
pure). And, like quantum data compression, it turns out that there is an associated classical task that
we can apply more or less directly to achieve the aims of entanglement purification. That task is
randomness extraction.

10.2.1 Randomness Extraction

Given a random variable X , we would like to find a mapping to a new random variable Y with
Y = {0,1}m such that δ(Y, Um)≤ e p s , where Um is the uniform distribution on m bits and δ is the
statistical distance. The goal is to make m as large as possible for fixed ε.

Von Neumann gave a simple construction for binary i.i.d. random variables X n , which goes as
follows. Take two consecutive bits Xk and Xk+1. If the values of the two match, discard them, but if
they differ, then output the first. Since the probabilities of 01 and 10 are identical, the output will be
perfectly random. One may extend this construction to make use of discarded bits, but we will not
go into that here.

Because the input random variable is not necessarily precisely specified, it is useful to look for
universal randomness extraction schemes. That is, means of extracting the randomness of X without
having to know too much about its distribution PX . In computer science, especially cryptography,
this has motivated the definition of an extractor. Formally, a (k , m,ε) seeded extractor E is a function
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10.2. Entanglement purification

from {0,1}n × {0,1}d → {0,1}m such that for all random variables X of n bits having min entropy
Hmin(X )≥ k and Ut the uniformly distributed random variable on t bits,

δ(E(X , Ud ), Um)≤ ε. (10.28)

The goal in coming up with new extractors is to make the seed as small as possible.
One might ask if the seed is really necessary. In order for the extractor to be universal, it is.

Consider the case that X is a random variable of n bits with Hmin(X ) ≥ n− 1 and we would like to
extract just one bit. For any function E : {0,1}n→{0,1}, at least half of the inputs are mapped to one
output value or the other. Thus, for X uniformly distributed on this set of inputs, Hmin(X )≥ n− 1
but E(X ) is constant. Clearly what we need to do is choose a random E such that the probability of
E being improperly matched to X in this way is small. That is where the seed comes in.

The reason the min entropy is involved is easy to understand: the best guess as to the output
of the extractor is f (x) for x having the maximum probability, i.e. 2−Hmin(X ). If this best guess
probability is to be 1

2m , then m should equal Hmin(X ).
A strong extractor is a function Es : {0,1}n ×{0,1}d → {0,1}m such that (Es (X ), Ud ) is ε-close to

(Um , Ud ). That is, strong extractors produce uniform bits even when the seed is known.
Universal hashing can be used for randomness extraction, a statement which is formalized in the

Leftover Hash Lemma.

10.2.2 The leftover hash lemma

The leftover hash lemma, due to Impagliazzo, Levin, and Luby, states that for a random variable X
one can use universal hashing to extract `=H2(X )−2 log(1/ε)+2 ε-good uniformly distributed bits,
where H2 is the Renyi entropy of order 2. Specifically, for a universal familyF with |F |= 2d of hash
functions f , the function E f (X , U ) = fu (x) (use random variable U to choose the hash function fu
and output fu (x)) is a strong extractor.

Proof. The proof proceeds by observing that the collision probability bounds the statistical distance to
the uniform distribution and then calculating the collision probability of the output of the extractor.

The collision probability of a distribution is the probability of drawing the same result twice:
pcoll(X ) =

∑

x p(x)2. Note that it is directly related to the α = 2 Renyi entropy: pcoll(X ) = 2−H2(X ).
The collision probability also shows up in the 2-norm distance of PX to the uniform distribution
QX :

||P −Q||22 =
∑

x
(p(x)− 1/|X |)2 = pcoll(X )− 1/|X |. (10.29)

And the 2-norm distance in R|X | bounds the statistical distance, |X |||P −Q||22 ≥ ||P −Q||2 as shown
in Section ??. Thus ||P −Q||2 ≤ |X | pcoll(X )− 1.

What is the collision probability of the output random variable (EU (X ), U )?

pcoll(EU (X ), U ) =
∑

x,x ′, f , f ′
P[( f (x), f ) = ( f ′(x), f ′)] (10.30)

= pcoll(F )PX ,X ′, f [ f (x) = f (x ′)] (10.31)

= 2−d (pcoll(X )+ P[ f (x) = f (x ′)|x 6= x ′]) (10.32)

= 2−d (2−H2(X )+ 2−m). (10.33)

Therefore ||(EU (X ), Ud )− (Um , Ud )||2 ≤ 2(m+d )(2−H2(X )+1/2m)/2d −1= 2m−H2(X ). Choosing m =
H2(X )− 2 log(1/ε) then implies ||(EU (X ), Ud )− (Um , Ud )|| ≤ ε.
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10.2.3 Extractable randomness

Another closely related question of interest is the following. Given a probability distribution PX ,
how many random bits can we extract from it by applying some (possibly seeded) extractor function
E?

By the Leftover Hash Lemma (cf. Section 10.2.2), we can get at least roughly H2(X ) bits. A bit
of smoothing improves this amount. Suppose that P ′X is the distribution with largest min entropy in
the ε neighborhood of PX . Then ||PX − P ′X || ≤ ε and by the leftover hash lemma ||PE(X ′)−U || ≤ ε′,
where U is the uniform distribution on the same alphabet as E(X ), and E is the extractor constructed
for P ′X . By the triangle inequality ||PE(X )−U || ≤ ε+ε′. Therefore, H2(X

′)−2 logε′ sets the number
of bits we can get from X . But H2(X

′)≥Hmin(X
′) and Hmin(X

′) =H ε
min(X ), so we conclude that at

least H ε
min(X )− 2 logε′ (ε+ ε′)-random bits can be extracted from X .

On the other hand, the smooth min entropy also sets an upper bound. If m perfectly random
bits can be obtained from X by E , then the most probable E(X ) must be 1

2m . The most probable
E(X ) has at least the probability of the most probable X , 2−Hmin(X ). So m ≤ Hmin(X ). By allowing
a deviation of ε from the perfect case, so as to get ε-random bits, this upper bound increases to
m ≤H ε

min(X ) since with probability at least 1− ε the output E(X ) is indistinguishable from E(X ′).

10.2.4 From randomness extraction to entanglement purification

The basic idea of entanglement purification is to extract from a large amount of noisy (i.e., low
fidelity) EPR pairs a smaller amount of EPR pairs having a sufficiently high fidelity. In order to do
so we consider the following bipartite state written in the Schmidt basis

|ψ〉AB =
∑

x

p

px |ϕx〉A|ξx〉B , (10.34)

which, using LOCC, can be transform into m-ebits of the form

|φ〉A′B ′ =
1
p

2m

∑

y
|ηy〉A′ |ηy〉B ′ . (10.35)

For this transformation we use randomness extraction adapted to a particular X form |ψ〉. Returning
to (10.28), note that it can be interpreted as the average over the choice of seed:

δ(E(X , Ud ), Um) =
1

2d

∑

u
δ(E(X , u), Um). (10.36)

Therefore, for any extractor applied to a specific X , there is an optimal seed choice for which the
statistical distance is lowest (and necessarily lower than the average ε). Let f denote this function.
Now consider the invertible map X → ( f (x), x) such that

V |ϕx〉A= | f (x)〉A′ |ϕx〉A. (10.37)

Applied to the joint state, we thus obtain

|ψ′〉A′AB =VA|ψ〉AB =
∑

x

p

px | f (x)〉A′ ⊗ |ϕx〉A⊗ |ξx〉B . (10.38)
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Now consider the A′ marginal state. Since the |ξx〉 are an orthonormal basis, we find immediately

ψ′
A′
=
∑

x
p(x)| f (x)〉〈 f (x)|=

∑

y
|y〉〈y|

∑

x∈Xy

px . (10.39)

The probability of any given basis state |y〉 is just
∑

x∈Xy
px , which is precisely that of the output of

the function f , so

δ(ψ′
A′

, 1
2m idA′)≤ ε. (10.40)

By Lemma ??, this implies F (ψ′
A′

, 1
2m idA′)≥ 1−ε. We can then determine the fidelity for purifications

of these two states by Uhlmann’s theorem 5.2.5. Clearly, one possible purification of ψ′
A′

is simply

|ψ′〉A′AB itself. A possible purification of 1
2m idA′ is |Φm〉A′B ′ . To this we are also free to append any

pure state we like, for instance |ψ〉B̄B , which is just the original state, but the A system replaced by B̄ .
Then, by Uhlmann’s theorem, there must exist an isometry WAB→B ′B̄B such that

A′B ′〈Φm |〈ψ|B̄BWAB→B ′B̄B |ψ
′〉A′AB ≥ 1− ε. (10.41)

Thus, knowing that the A′ system is maximally mixed allows us to infer the existence of a unitary
which completes our entanglement purification protocol. This trick of using Uhlmann’s theorem is
quite widespread in quantum information theory, and goes under the name decoupling (since A′ is
decoupled from everything else).

However, this does not yet yield an LOCC protocol, because W might require joint operations
on A and B . To show that there is an LOCC version of W , go back to (10.38) and observe that if the
A system were not present, the above argument would nonetheless proceed exactly as before, except
that W would only involve system B . We can then get rid of A by the following method. First, define
a conjugate basis to |ϕx〉 by

|ϑz〉=
1
p

d

d−1
∑

x=0
ωx z |ϕx〉, (10.42)

whereω = e2πI/d and d is the dimension of the system A. Measuring A in this basis gives the state

A〈ϑz |ψ
′〉A′AB =

1
p

d

∑

x

p

pxω
−x z | f (x)〉A′ |ξx〉B , (10.43)

which is unnormalized. The normalization is the probability of the outcome z; note that these
probabilities are all equal. Now, if Alice sends the outcome z to Bob, he can simply apply the
operation

Rz =
∑

x
ωx z |ξx〉〈ξx | (10.44)

and this will produce the state (now normalized)

|ψ′′〉A′B =
∑

x

p

px | f (x)〉A′ |ξx〉B . (10.45)

Applying the above decoupling argument to this state give an LOCC entanglement purification pro-
tocol. The number of ebits produced is just the number of random bits that can be extracted from X
distributed according to the Schmidt coefficients of the state. Note also that Bob has ended up with
the original state at his side, even though Alice only sent classical information. This is the protocol
of state merging.
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11Quantum Key Distribution
11.1 Introduction

In this chapter, we introduce the concept of quantum key distribution. To start, we introduce the
concept of cryptographic resources. A classical insecure communication channel is denoted by

Alice Bob

Eve

The arrows to the adversary, Eve, indicate that she can receive all messages sent by Alice. Further-
more Eve is able to modify the message which Bob finally receives. This channel does not provide
any guarantees. It can be used to model for example email traffic.

A classical authentic channel is denoted by

and guarantees that messages received by Bob are sent by Alice. It can be used to describe e.g. a
telephone conversation with voice authentification.

The most restrictive classical channel model we consider is the so-called secure channel which has
the same guarantees as the authentic channel and ensures in addition that no information leaks. It is
denoted by

In the quantum setup, an insecure quantum channel that has no guarantees is represented by

Note that an authentic quantum channel is automatically also a secure quantum channel since reading
out a message always changes the message.

The following symbol

k

denotes k classical secret bits, i.e. k bits that are uniformly distributed and maximally correlated
between Alice and Bob.

A desirable goal of quantum cryptography would be to have a protocol that simulates a secure
classical channel using an insecure quantum channel, i.e.,

?
≥

However, such a protocol cannot exist since this scenario has complete symmetry between Alice and
Eve, which makes it impossible for Bob to distinguish between them. If we add a classical authentic
channel in addition to the insecure quantum channel, it is possible as we shall see to simulate a
classical secret channel, i.e.,
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n
n≥

is possible.
In classical cryptography there exists a protocol [32], called authentication, that achieves the

following

k
n≥ n� k.

Thus, if Alice and Bob have a (short) password, they can use an insecure channel to simulate an
authentic channel. This implies

k
n≥ n� k.

11.2 Classical message encryption

The one-time pad protocol achieves the following using purely classical technology.

k
k≥

Let M be a message bit and S a secret key bit. The operation ⊕ denotes an addition modulo 2. Alice
first computes C =M ⊕ S and sends C over a classical authentic channel to Bob. Bob then computes
M ′ =C ⊕ S. The protocol is correct as

M ′ =C ⊕ S = (M ⊕ S)⊕ S =M ⊕ (S ⊕ S) =M .

To prove secrecy of the protocol, we have to show that PM = PM |C which is equivalent to PM C =
PM×PC . In information theoretic terms this condition can be expressed as I (M : C ) = 0 which means
that the bit C which is sent to Bob and may be accessible to Eve does not have any information about
the message bit M . This follows from the observation that PC |M=m is uniform for all m ∈ {0,1}.
Therefore, PC |M = PC which is equivalent to PC M = PC × PM and thus proves that the protocol is
secret.

As the name one-time pad suggests, a secret bit can only be used once. For example consider
the scenario where someone uses a single secret bit to encrypt 7 message bits such that we have e.g.
C = 0010011. Eve then knows that M = 0010011 or M = 1101100.

Shannon proved in 1949 that in a classical scenario, to have a secure protocol the key must be as
long as the message [33], i.e.
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Theorem 11.2.1.

∞

k
n≥ implies k ≥ n.

Proof. Let M ∈ {0,1}n be the message which should be sent secretly from Alice to Bob. Alice and
Bob share a secret key S ∈ {0,1}k . Alice first encrypts the message M and sends a string C over a
public channel to Bob. Bob decrypts the message, i.e. he computes a string M ′ out of C and his key
S. We assume that the protocol fulfills the following two requirements.

1. Reliability: Bob should be able to reproduce M (i.e. M ′ =M ).

2. Secrecy: Eve does not gain information about M .

We consider a message that is uniformly distributed on {0,1}n . The secrecy requirement can be
written as I (M : C ) = 0 which implies that H (M |C ) =H (M ) = n. We thus obtain

I (M : S |C ) =H (M |C )−H (M |C S) = n, (11.1)

where we also used the reliability requirement H (M |C S) = 0 in the last equality. Using the data
processing inequality and the non negativity of the Shannon entropy, we can write

I (M : S |C ) =H (S |C )−H (S |C M )≤H (S). (11.2)

Combining (11.1) and (11.2) gives n ≤H (S) which implies that k ≥ n.

Shannon’s result shows that information theoretic secrecy (i.e. I (M : C )≈ 0) cannot be achieved
unless one uses very long keys (as long as the message).

In computational cryptography, one relaxes the security criterion. More precisely, the mutual
information I (M : C ) is no longer small, but it is still computationally hard (i.e. it takes a lot of time)
to compute M from C . In other words, we no longer have the requirement that H (M |C ) is large. In
fact, for public key cryptosystems (such as RSA and DH), we have H (M |C ) = 0. This implies that
there exists a function f such that M = f (C ), which means that it is in principle possible to compute
M from C. Security is obtained because f is believedto be hard to compute. Note, however, that for
the protocol to be practical, one requires that there exists an efficiently computable function g , such
that M = g (C , S).

11.3 Quantum cryptography

In this section, we explain why Theorem 11.2.1 does not hold in the quantum setup. As we will
prove later, having a quantum channel we can achieve

n

2n
≈ n≥ (�)
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Note that this does not contradict Shannon’s proof of Theorem 11.2.1, since in the quantum regime
the no-cloning theorem (cf. Section ??) forbids that Bob and Eve receive the same state, i.e., the
ciphertext C is not generally available to both of them. Therefore, Shannon’s proof is not valid in
the quantum setup, which allows quantum cryptography to go beyond classical cryptography.

As we will see in the following, it is sufficient to consider quantum key distribution (QKD), which
does the following.

n

n
≈ n≥ (4)

The protocol (4) implies (�) as we can concatenate it with the one-time pad encryption. More
precisely,

n

2n

≈ n

n
≈ nQKD

≥
OTP
≥

which is the justification that we can focus on the task of QKD in the following.
We next define more precisely what we mean by a secret key, as denoted by SA and SB . In

quantum cryptography, we generally consider the following three requirements where ε≥ 0

1. Correctness: Pr[SA 6= SB]≤ ε

2. Robustness: if the adversary is passive, then1 Pr[SA=⊥]≤ ε

3. Secrecy: ‖ρSAE−(pρ⊥⊗ρE⊥
+(1− p)ρk⊗ρEk

)‖1 ≤ ε, where ρE⊥
,ρEk

are arbitrary density oper-
ators, ρ⊥ = | ⊥〉〈⊥ | and ρk is a completely mixed state on {0,1}n , i.e. ρk = 2−n∑

s∈{0,1}n |s〉〈s |.
The cq-state ρSAE describes the key SA together with the system E held by the adversary af-
ter the protocol execution. The parameter p can be viewed as the failure probability of the
protocol.

The secrecy condition implies that there is either a uniform and uncorrelated (to E ) key or there is
no key at all.

11.4 QKD protocols

11.4.1 BB84 protocol

In the seventies, Wiesner had the idea to construct unforgeable money based on the fact that quantum
states cannot be cloned [34]. However, the technology at that time was not ready to start up on his
idea. In 1984, Bennett and Brassard presented the BB84 protocol for QKD [35] which is based on
Wiesner’s ideas and will be explained next.

In the BB84 protocol, Alice and Bob want to generate a secret key which is achieved in four steps.
In the following, we choose a standard basis {|0〉, |1〉} and {|0̄〉, |1̄〉} where |0̄〉 := 1p

2
(|0〉+ |1〉) and

|1̄〉 := 1p
2
(|0〉− |1〉).

1The symbol ⊥ indicates that no key has been produced.
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BB84 Protocol:

Distribution step Alice and Bob perform the following task N times and let i = 1, . . . ,N .
Alice first chooses Bi ,Xi ∈ {0,1} at random and prepares a state of a qubit Qi (with basis
{|0〉, |1〉}) according to

B X Q
0 0 |0〉
0 1 |1〉
1 0 |0̄〉
1 1 |1̄〉.

Alice then sends Qi to Bob.
Bob next chooses B ′i ∈ {0,1} and measures Qi either in basis {|0〉, |1〉} (if B ′i = 0) or in
basis {|0̄〉, |1̄〉} (if B ′i = 1) and stores the result in Xi . Recall that all the steps so far are
repeated N -times.

Sifting step Alice sends B1, . . . ,Bn to Bob and vice versa, using the classical authentic chan-
nel. Bob discards all outcomes for which Bi 6= B ′i and Alice does so as well. For better
understanding we consider the following example situation.

Q |1〉 |1〉 |1̄〉 |0̄〉 |0〉 |1̄〉 |0̄〉 |1〉 |1̄〉
B 0 0 1 1 0 1 1 0 1
X 1 1 1 0 0 1 0 1 1
B’ 0 0 0 1 1 0 1 1 0
X’ 1 1 1 0 1 1 0 0 1
no. 1 2 3 4 5 6 7 8 9

Hence, Alice and Bob discard columns 3 , 5 , 6 , 8 and 9 .

Checking step Alice and Bob compare (via communication over the classical authentic chan-
nel) Xi and X ′i for some randomly chosen sample i of size

p
n. If there is disagreement,

the protocol aborts, i.e. SA= SB =⊥.

Extraction step We consider here the simplest case where we assume to have no errors (due
to noise). The key SA is equal to the remaining bits of X1, . . . ,Xn and the key SB are the
remaining bits of X ′1, . . . ,X ′n . Note that the protocol can be generalized such that it also
works in the presence of noise.

11.4.2 Security proof of BB84

It took almost 20 years until the security of BB84 could be proven [36, 37, 38, 39]. We present in the
following a proof sketch. The idea is to first consider an entanglement-based protocol (called Ekert91
[40]) and prove that this protocol is equivalent to the BB84 protocol in terms of secrecy. Therefore,
it is sufficient to prove security of the Ekert91 protocol which turns out to be easier to achieve. For
this, we will use a generalized uncertainty relation which states that

H (Z |E)+H (X |B)≥ 1, (11.3)

where Z denotes a measurement in the basis {|0〉, |1〉}, X denotes a measurement in the basis {|0̄〉, |1̄〉}
and where B and E are arbitrary quantum systems.
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Ekert91 protocol: Similarly to the BB84 protocol this scheme also consists of four different steps.

Distribution step (repeated N times) Alice prepares entangled qubit pairs and sends one half
of each pair to Bob (over the insecure quantum channel). Alice and Bob then measure
their qubit in a random basis Bi (for Alice)2 and B ′i (for Bob). They report the outcomes
Xi (for Alice) and X ′i (for Bop).

Sifting step Alice and Bob discard all (Xi ,X ′i ) for which Bi 6= B ′i .

Checking step For a random sample of positions i Alice and Bob check whether Xi = X ′i . If
the test fails they abort the protocol by outputting ⊥.

Extracting step Alice’s key SA consists of the remaining bits of X1,X2, . . .. Bob’s key SB con-
sists of the remaining bits X ′1,X ′2, . . ..

We next show that Ekert91 is equivalent to BB84. On Bob’s side it is easy to verify that the two
protocols are equivalent since Bob has to perform exactly the same tasks for both. The following
schematic figure summarizes Alice’s task in the Ekert91 and the BB84 protocol.

randomgenerator meas.

entang.
source

Bi

Alice
Ekert91

Bi Xi

Qi

randomgenerator prep.

randomgenerator

Bi

Alice
BB84

Bi Xi

Qi

In the Ekert91 protocol Alice’s task is described by a state

ρEkert91
Bi Xi Qi

=
1

2

∑

b∈{0,1}
|b 〉〈b |Bi

⊗
1

2

∑

x∈{0,1}
|x〉〈x|Xi

⊗ |ϕb ,x〉〈ϕb ,x |Qi
, (11.4)

where |ϕ0,0〉 = |0〉, |ϕ0,1〉 = |1〉, |ϕ1,0〉 = |0̄〉, and |ϕ1,1〉 = |1̄〉. The BB84 protocol leads to the same
state

ρBB84
Bi Xi Qi

=
1

2

∑

b∈{0,1}
|b 〉〈b |Bi

⊗
1

2

∑

x∈{0,1}
|x〉〈x|Xi

⊗ |ϕb ,x〉〈ϕb ,x |Qi
. (11.5)

We thus conclude that viewed from outside the dashed box the two protocols are equivalent in terms
of security and hence to prove security for BB84 it is sufficient to prove security for Ekert91. Note
that both protocols have some advantages and drawbacks. While for Ekert91 it is easier to prove
security, the BB84 protocol is technologically simpler to implement.

A B

X
meas. basis
{|0̄〉, |1̄〉}

Z
meas. basis
{|0〉, |1〉}

X ′
meas. basis
{|0̄〉, |1̄〉}

Z ′
meas. basis
{|0〉, |1〉}

ρABE

E

2Recall that Bi = 0 means that we measure in the {|0〉, |1〉} basis and if Bi = 1 we measure in the {|0̄〉, |1̄〉} basis.
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It remains to prove that the Ekert91 protocol is secure. The idea is to consider the state of the entire
system (i.e. Alice, Bob and Eve) after the sending the distribution of the entangled qubit pairs over
the insecure channel (which may be arbitrarily modified by Eve) but before Alice and Bob have
measured. The state ρABE is arbitrary except that the subsystem A is a fully mixed state (i.e. ρA
is maximally mixed). At this point the completeness of quantum theory (cf. Chapter ??) shows up
again. Since quantum theory is complete, we know that anything Eve could possibly do is described
within our framework.

We now consider two alternative measurements for Alice (B = 0,B = 1). Call the outcome of the
measurement Z if B = 0 and X if B = 1. The uncertainty relation (11.3) now implies that

H (Z |E)+H (X |B)≥ 1, (11.6)

which holds for arbitrary states ρABE where the first term is evaluated for ρZBE and the second term
is evaluated for ρX BE . The state ρX BE is defined as the post-measurement state when measuring ρABE
in the basis {|0̄〉, |1̄〉} and the sate ρZBE is defined as the post-measurement state when measuring ρABE
in the basis {|0〉, |1〉}. Using (11.6), we can bound Eve’s information as H (Z |E) ≥ 1−H (X |B). We
next show that H (X |B) = 0 which implies that H (Z |E) = 1, i.e. Eve has no information about Alice’s
state. The data processing inequality implies H (Z |E)≥ 1−H (X |X ′).

In the protocol, there is a step called the testing phase where two alternative things can happen

• if Pr[X 6= X ′]> 0, then Alice and Bob detect a deviation in their sample and abort the proto-
col.

• if Pr[X =X ′]≈ 1, Alice and Bob output a key.

Let us therefore assume that Pr[X 6= X ′] = δ for δ ≈ 0. In this case, we have H (Z |E)≥ 1− h(δ)≈
1 −
p
δ for small δ, where h(δ) := −δ log2δ − (1 − δ) log2(1 − δ) denotes the binary entropy

function. Note that also H (Z) = 1, which implies that I (Z : E) = H (Z)−H (Z |E) ≤ h(δ). Recall
that I (Z : E) = D(ρZE ||ρZ ⊗ ρE ). Thus, if I (Z : E) = 0, we have D(ρZE ||ρZ ⊗ ρE ) = 0 for δ → 0.
This implies that ρZE = ρZ ⊗ρE which completes the security proof.3

Important remarks to the security proof The proof given above establishes security under the
assumption that there are no correlations between the rounds of the protocol. Note that if the state
involved in the i -th round is described by ρAi Bi Ei

we have in general

ρA1A2...AnB1B2...Bn E1E2...Bn
6= ρA1B1E1

⊗ρA2B2E2
⊗ . . .⊗ρAnBn En

. (11.7)

Therefore, it is not sufficient to analyze the rounds individually and hence we so far only proved
security against i.i.d. attacks, but not against general attacks. Fortunately, there is a very solution to
this problem: The post-selection technique of [41] shows that the proof for individual attacks also
implies security for general attacks.

3In principle, we have to repeat the whole argument in the complementary basis, i.e. using the uncertainty relation
H (X |E)+H (Z |B)≥ 1.
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AMathematical background
A.1 Hilbert spaces and operators on them

Consider a vector space H , for concreteness over the the field of complex numbers C. An inner
product onH is a bilinear function (·, ·) :H ×H →C with the properties that (i) (v, v ′) = (v ′, v)∗

where ∗ denotes the complex conjugate, (ii) (v,αv ′) = α(v, v ′) for α ∈C and (v, v ′+ v ′′) = (v, v ′) +
(v, v ′′), and (iii) (v, v) ≥ 0. (Note that the inner product is usually taken to be linear in the first
argument in mathematics literature, not the second as here.) The inner product induces a norm on
the vector space, a function || · || : H → C defined by ||v || :=

p

(v, v). A vector space with an
inner product is called an inner product space. If it is complete in the metric defined by the norm,
meaning all Cauchy1 sequences converge, it is called a Hilbert2 space We will restrict attention to
finite-dimensional spaces, where the completeness condition always holds and inner product spaces
are equivalent to Hilbert spaces.

We denote the set of homomorphisms (linear maps) from a Hilbert spaceH to a Hilbert spaceH ′

by Hom(H ,H ′). Furthermore, End(H ) is the set of endomorphisms (the homomorphisms from a
space to itself) onH : End(H ) =Hom(H ,H ). The identity operator v 7→ v that maps any vector
v ∈H to itself is denoted by id. The adjoint of a homomorphism S ∈Hom(H ,H ′), denoted S∗, is
the unique operator in Hom(H ′,H ) such that

(v ′, Sv) = (S∗v ′, v), (A.1)

for any v ∈ H and v ′ ∈ H ′. In particular, we have (S∗)∗ = S. If S is represented as a matrix, then
the adjoint operation can be thought of as the conjugate transpose.

Here we list some properties of endomorphisms S ∈ End(H ):

• S is normal if SS∗ = S∗S, unitary if SS∗ = S∗S = id, and self-adjoint (or Hermitian3) if S∗ = S.

• S is positive if (v, Sv) ≥ 0 for all v ∈ H . Positive operators are always self-adjoint. We will
sometimes write S ≥ 0 to express that S is positive.

• S is a projector if SS = S. Projectors are always positive.

Given an orthonormal basis {bi}i of H , we also say that S is diagonal with respect to {bi}i if the
matrix (Si , j ) defined by the elements Si , j = (bi , S b j ) is diagonal.

A map U ∈ Hom(H ,H ′) with dim(H ′) ≥ dim(H ) will be called an isometry if U ∗U = idH .
It can be understood as an embedding of H into H ′, since all inner products between vectors are
preserved: (φ′,ψ′) = (Uφ, Uψ) = (φ, U ∗Uψ) = (φ,ψ).

A.2 The bra-ket notation

In this script we will make extensive use of a variant of Dirac’s4 bra-ket notation, where vectors are
interpreted as operators. More precisely, we can associate any vector v ∈H with an endomorphism

1Augustin-Louis Cauchy, 1789 – 1857, French mathematician.
2David Hilbert, 1862 – 1943, German mathematician.
3Charles Hermite, 1822 – 1901, French mathematician.
4Paul Adrien Maurice Dirac, 1902 – 1984, English physicist.
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|v〉 ∈Hom(C,H ), called ket and defined as

|v〉 : γ 7→ γv, (A.2)

for any γ ∈ C. We will often regard |v〉 as the vector itself, a misuse of notation which enables a lot
of simplification. The adjoint |v〉∗ of this mapping is called bra and denoted by 〈v |. It is easy to see
that 〈v | is an element of the dual spaceH ∗ :=Hom(H ,C), namely the linear functional defined by

〈v | : u 7→ (v, u), (A.3)

for any u ∈H . Note, however, that bras and kets are not quite on equal footing, as the label of a bra
is an element ofH , notH ∗. The reason we can do this is the Riesz5 representation theorem, which
states that every element of the dual space is of the form given in (A.3).

Using this notation, the concatenation 〈u| ◦ |v〉 of a bra 〈u| ∈ Hom(H ,C) with a ket |v〉 ∈
Hom(C,H ) results in an element of Hom(C,C), which can be identified with C. It follows imme-
diately from the above definitions that, for any u, v ∈H ,

〈u| ◦ |v〉 ≡ (u, v). (A.4)

Thus, in the following we will omit the ◦ and denote the scalar product by 〈u|v〉.
Conversely, the concatenation |v〉◦〈u| is an element of End(H ) (or, more generally, of Hom(H ,H ′)

if u ∈H and v ∈H ′ are defined on different spaces). In fact, any endomorphism S ∈ End(H ) can
be written as a linear combination of such concatenations,

S =
∑

i

|ui 〉〈vi | (A.5)

for some families of vectors {u}i and {v}i . For example, the identity id ∈ End(H ) can be written as

id=
∑

i

|bi 〉〈bi | (A.6)

for any orthonormal basis {bi} of H . This is often called the completeness relation of the basis
vectors.

A.3 Representations of operators by matrices

Given an orthonormalbasis {|bk〉}dk=1
, we can associate a matrix with any operator S ∈ End(H ),

S→ S j k = 〈b j |S |bk〉. (A.7)

Here we are “overloading” the notation a bit, and referring to both the matrix components as well
as the matrix itself as S j k . In the study of relativity, this is referred to as abstract index notation or
slot-naming index notation. We have chosen j to be the row index and k the column index, so that
a product of operators like ST corresponds to the product of the corresponding matrices, but the
other choice could have been made.

5Frigyes Riesz, 1880 – 1956, Hungarian mathematician.
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A.3. Representations of operators by matrices

It is important to realize that the representation of an operator by a matrix is not unique, but
depends on the choice of basis. One way to see this is to use the completeness relation, equation (A.6),
to write

S = id S id (A.8)

=
∑

j ,k

|b j 〉〈b j |S |bk〉〈bk | (A.9)

=
∑

j ,k

S j ,k |b j 〉〈bk |. (A.10)

Now the basis dependence is plain to see. Matrix representations can be given for more general
operators S ∈Hom(H ,H ′) by the same technique:

S = idH ′ S idH (A.11)

=
∑

j ,k

|b ′j 〉〈b
′
j |S |bk〉〈bk | (A.12)

=
∑

j ,k

S j ,k |b
′
j 〉〈bk |. (A.13)

In our version of Dirac notation, |v〉 is itself an operator, so we can apply the above method to this
case. Now, however, the input space is one-dimensional, so we drop the associated basis vector and
simply write

|v〉=
∑

j

v j |b j 〉. (A.14)

According to the above convention, the representation of |v〉 is automatically a column vector, as it
is the column index (which would take only one value) that has been omitted. Following our use of
abstract index notation, the (vector) representative of |v〉 is called v j , not ~v or similar.

In terms of matrix representatives, the inner product of two vectors u and v is given by u∗j · v j ,
since the inner product is linear in the second argument, but antilinear in the first. We expect the
representation of the adjoint of an operator to be the conjugate transpose of the matrix, but let us
verify that this is indeed the case. The defining property of the adjoint is (A.1), or in Dirac notation

〈u|Sv〉= 〈S∗u|v〉. (A.15)

In terms of matrix representatives, reading the above from right to left we have

(S∗u)∗j · v j = u∗j · (Sv) j (A.16)

=
∑

j k

u∗j S j k vk (A.17)

=
∑

j k

([S j k]
∗u j )

∗vk (A.18)

=
∑

j k

([S j k]
†uk )

∗v j . (A.19)

Here † denotes the conjugate transpose of a matrix. Comparing the first expression with the last, it
must be that [S∗] j k = [S j k]

†, as we suspected.
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A.4 Tensor products

Given vectors u and v from two Hilbert spacesHA andHB , we may formally define their product
u × v, which is an element of the Cartesian6 product HA×HB . However, the Cartesian product
does not respect the linearity of the underlying spaces. That is, while we may formally add u×v and
u ′× v, the result is not (u+ u ′)× v; it is just u× v+ u ′× v. The idea behind the tensor product is to
enforce this sort of linearity onHA×HB . There are four combinations of vectors which we would
expect to vanish by linearity:

u × v + u ′× v − (u + u ′)× v,
u × v + u × v ′− u × (v + v ′),
α(u × v)− (αu)× v,
α(u × v)− u × (αv),

(A.20)

for any α ∈ C. These vectors define an equivalence relation on HA×HB in that we can consider
two elements of that space to be equivalent if they differ by some vector of the form in (A.20). These
equivalence classes themselves form a vector space, and the resulting vector space is precisely the
tensor productHA⊗HB .

Since the construction enforces linearity of the products of vectors, we may consider the tensor
product to be the space spanned by products of basis elements of each space. Furthermore, the inner
product ofHA⊗HB is defined by the linear extension of

(u ⊗ v, u ′⊗ v ′) = 〈u|u ′〉〈v |v ′〉. (A.21)

For two homomorphisms S ∈Hom(HA,H ′
A) and T ∈Hom(HB ,H ′

B ), the tensor product S⊗T
is defined as

(S ⊗T )(u ⊗ v) := (S u)⊗ (T v) (A.22)

for any u ∈HA and v ∈HB . The space spanned by the products S ⊗T can be canonically identified
with the tensor product of the spaces of the homomorphisms, i.e.

Hom(HA,H ′
A)⊗Hom(HB ,H ′

B )'Hom(HA⊗HB ,H ′
A⊗H

′
B ). (A.23)

That is, the mapping defined by (A.22) is an isomorphism between these two vector spaces. This
identification allows us to write, for instance,

|u〉⊗ |v〉= |u ⊗ v〉, (A.24)

for any u ∈HA and v ∈HB .

A.5 Trace and partial trace

The trace of an endomorphism S ∈ End(H ) over a Hilbert spaceH is defined by

tr(S) :=
∑

i

〈bi |S |bi 〉, (A.25)

6René Descartes, 1596 – 1650, French philosopher and mathematician.
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where {|bi 〉}i is any orthonormal basis ofH . The trace is well defined because the above expression
is independent of the choice of the basis, as one can easily verify.

The trace operation is obviously linear,

tr(αS +βT ) = αtr(S)+βtr(T ), (A.26)

for any S,T ∈ End(H ) and α,β ∈C. It also commutes with the operation of taking the adjoint,

tr(S∗) = tr(S)∗, (A.27)

since the adjoint of a complex number γ ∈C is simply its complex conjugate. Furthermore, the trace
is cyclic,

tr(ST ) = tr(T S). (A.28)

Also, it is easy to verify using the spectral decomposition that the trace tr(S) of a positive operator
S ≥ 0 is positive. More generally

(S ≥ 0)∧ (T ≥ 0) =⇒ tr(ST )≥ 0. (A.29)

The partial trace trB is a mapping from the endomorphisms End(HA⊗HB ) on a product space
HA ⊗HB onto the endomorphisms End(HA) on HA. (Here and in the following, we will use
subscripts to indicate the space on which an operator acts.) It is defined by the linear extension of the
mapping.

trB : S ⊗T 7→ tr(T )S, (A.30)

for any S ∈ End(HA) and T ∈ End(HB ).
Similarly to the trace operation, the partial trace trB is linear and commutes with the operation of

taking the adjoint. Furthermore, it commutes with the left and right multiplication with an operator
of the form TA⊗ idB where TA ∈ End(HA). That is, for any operator SAB ∈ End(HA⊗HB ),

trB
�

SAB (TA⊗ idB )
�

= trB (SAB )TA (A.31)

and

trB
�

(TA⊗ idB )SAB
�

= TAtrB (SAB ). (A.32)

We will also make use of the property that the trace on a bipartite system can be decomposed
into partial traces on the individual subsystems. That is,

tr(SAB ) = tr(trB (SAB )), (A.33)

or, more generally, for an operator SABC ∈ End(HA⊗HB ⊗HC ),

trAB (SABC ) = trA(trB (SABC )). (A.34)

A.6 Decompositions of operators and vectors

Singular value decomposition. Let S ∈ Hom(H ,H ′) and let {bi}i ({b ′i }i ) be an orthonormal
basis of H . Then there exist unitaries U ,V ∈ End(H ) and an operator D ∈ End(H ) which is
diagonal with respect to {ei}i such that

S =U DV ∗. (A.35)
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Polar decomposition. Let S ∈ End(H ). Then there exists a unitary U ∈ End(H ) such that

S =
p

SS∗U (A.36)

and

S =U
p

S∗S. (A.37)

Spectral decomposition. Let S ∈ End(H ) be normal and let {|bi 〉}i be an orthonormal basis of
H . Then there exists a unitary U ∈ End(H ) and an operator D ∈ End(H ) which is diagonal with
respect to {|bi 〉}i such that

S =U DU ∗. (A.38)

The spectral decomposition implies that, for any normal S ∈ End(H ), there exists a basis {|bi 〉}i
ofH with respect to which S is diagonal. That is, S can be written as

S =
∑

i

αi |bi 〉〈bi | (A.39)

where αi ∈C are the eigenvalues of S.
Equation (A.39) can be used to give a meaning to a complex function f : C → C applied to a

normal operator S. We define f (S) by

f (S) :=
∑

i

f (αi )|bi 〉〈bi |. (A.40)

A.7 Operator norms and the Hilbert-Schmidt inner product

The Hilbert-Schmidt7 inner product between two operators S,T ∈ End(H ) is defined by

(S,T ) := tr(S∗T ). (A.41)

The induced norm ‖S‖2 :=
p

(S, S) is called Hilbert-Schmidt norm. If S is normal with spectral
decomposition S =

∑

i αi |bi 〉〈bi | then

‖S‖2 =
È

∑

i

|αi |2. (A.42)

An important property of the Hilbert-Schmidt inner product (S,T ) is that it is positive whenever
S and T are positive.

Lemma A.7.1. Let S,T ∈ End(H ). If S ≥ 0 and T ≥ 0 then

tr(ST )≥ 0. (A.43)

7Erhard Schmidt, 1876 – 1959, German mathematician.
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Proof. If S is positive we have S =
p

S
2

and T =
p

T
2
. Hence, using the cyclicity of the trace, we

have

tr(ST ) = tr(V ∗V ) (A.44)

where V =
p

S
p

T . Because the trace of a positive operator is positive, it suffices to show that
V ∗V ≥ 0. This, however, follows from the fact that, for any φ ∈H ,

〈φ|V ∗V |φ〉= ‖Vφ‖2 ≥ 0. (A.45)

The trace norm of S is defined by

‖S‖1 := tr|S | (A.46)

where

|S | :=
p

S∗S. (A.47)

If S is normal with spectral decomposition S =
∑

i αi |ei 〉〈ei | then

‖S‖1 =
∑

i

|αi |. (A.48)

The following lemma provides a useful characterization of the trace norm.

Lemma A.7.2. For any S ∈ End(H ),

‖S‖1 =max
U
|tr(U S)| (A.49)

where U ranges over all unitaries onH .

Proof. We need to show that, for any unitary U ,

|tr(U S)| ≤ tr|S | (A.50)

with equality for some appropriately chosen U .
Let S =V |S | be the polar decomposition of S. Then, using the Cauchy-Schwarz8 inequality

|tr(Q∗R)| ≤ ‖Q‖2‖R‖2, (A.51)

with Q :=
p

|S |V ∗U ∗ and R :=
p

|S | we find

�

�tr(U S)
�

�=
�

�tr(UV |S |)
�

�=
�

�tr(UV
Æ

|S |
Æ

|S |)
�

�≤
Æ

tr(UV |S |V ∗U ∗)tr(|S |) = tr(|S |), (A.52)

which proves (A.50). Finally, it is easy to see that equality holds for U :=V ∗.

8Karl Hermann Amandus Schwarz, 1843 – 1921, German mathematician.
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A.8 The vector space of Hermitian operators

The set of Hermitian operators on a Hilbert spaceH , in the following denoted Herm(H ), forms
a real vector space. Furthermore, equipped with the Hilbert-Schmidt inner product defined in the
previous section, Herm(H ) is an inner product space.

If {ei}i is an orthonormal basis ofH then the set of operators Ei , j defined by

Ei , j :=











1p
2
|ei 〉〈e j |+

1p
2
|e j 〉〈ei | if i < j

ip
2
|ei 〉〈e j | −

ip
2
|e j 〉〈ei | if i > j

|ei 〉〈ei | otherwise

(A.53)

forms an orthonormal basis of Herm(H ). We conclude from this that

dim Herm(H ) = (dimH )2. (A.54)

For two Hilbert spacesHA andHB , we have in analogy to (A.23)

Herm(HA)⊗Herm(HB )∼=Herm(HA⊗HB ). (A.55)

To see this, consider the canonical mapping from Herm(HA) ⊗ Herm(HB ) to Herm(HA⊗HB )
defined by (A.22). It is easy to verify that this mapping is injective. Furthermore, because by (A.54)
the dimension of both spaces equals dim(HA)

2 dim(HB )
2, it is a bijection, which proves (A.55).
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