Exercise 11.1 Information measures bonanza

Take a system A in state ρ . Non-conditional quantum min- and max-entropies are given by

 $H_{\min}(A)_{\rho} = -\log \max_{\lambda \in \operatorname{spec}(\rho)} \lambda, \qquad H_{\max}(A)_{\rho} = \log \operatorname{rank}(\rho).$

For instance, if ρ_A has eigenvalues spec $(\rho_A) = \{0.6, 0.2, 0.2, 0\}$, we have

$$H_{\min}(A)_{\rho} = -\log 0.6$$
 and $H_{\max}(A)_{\rho} = \log 3$

The mutual information measures correlations between two systems. For ρ_{AB} , we have

$$I(A:B)_{\rho} = H(A)_{\rho} + H(B)_{\rho} - H(AB)_{\rho}$$
$$= H(A)_{\rho} - H(A|B)_{\rho}.$$

Show that if $\operatorname{spec}(\rho) \prec \operatorname{spec}(\tau)$, then the entropy of ρ is larger than or equal to the entropy of τ , for the von Neumann, min- and max-entropies. $\operatorname{spec}(\rho) \prec \operatorname{spec}(\tau)$ means that $\operatorname{spec}(\tau)$ majorizes $\operatorname{spec}(\rho)$. See exercise 7.3 for more details.

Exercise 11.2 Davies' Theorem

Consider an arbitrary CQ state $\sigma^{XB} = \sum_x p_x |x\rangle \langle x|^X \otimes \rho_x^B$ and imagine making a measurement \mathcal{M} having elements E_y on B. By the Holevo bound, $I(X:Y) \leq I(X:B) = S(\sum_x p_x \rho_x) - \sum_x p_x S(\rho_x)$. Define the accessible information $I_{\text{acc}}(\sigma^{XB}) = \max_{\mathcal{M}} I(X:Y)$.

Show that the optimal measurement consists of rank-one elements and has no more than d^2 outcomes, where $d = \dim(B)$. Hint: the space of Hermitian operators on B is a vector space of size d^2 .

Exercise 11.3 Quantum Data Processing Inequality

Consider two CPTP maps $\$_1$ and $\$_2$ acting on system Q. Call the initial state of $Q \rho^Q$, the output of the first map $\rho^{Q'} = \$(\rho^Q)$ and the output of the second map $\rho^{Q''} = \$_2 \circ \$_1(\rho^Q)$. Purifying the initial state with a system R and using the Stinespring dilations of the CPTP maps, we can regard this transformation as taking the pure state Ψ^{RQ} to $\Psi^{RQ'E_1}$ and then to $\Psi^{RQ''E_1E_2}$, where E_1 (E_2) is the environment of the first (second) map, so that E_1E_2 is the environment of the concatenated map $\$_2 \circ \$_1$. Now define the *coherent information* I(A)B) = -S(A|B). Show that

$$S(Q) \ge I(R \wr Q') \ge I(R \wr Q'').$$

Hint: use (strong) subadditivity.