Exercise 1. $2 \rightarrow 2$ scattering

The cross section for the process $a\left(p_{a}, m_{a}\right) b\left(p_{b}, m_{b}\right) \rightarrow c\left(p_{c}, m_{c}\right) d\left(p_{d}, m_{d}\right)$ can be written in terms of the squared matrix element $|M|^{2}$ as

$$
\sigma=\frac{1}{f} \int \frac{d^{3} \vec{p}_{c}}{(2 \pi)^{3} 2 E_{c}} \frac{d^{3} \vec{p}_{d}}{(2 \pi)^{3} 2 E_{d}}(2 \pi)^{4} \delta\left(p_{a}+p_{b}-p_{c}-p_{d}\right)|M|^{2}
$$

where $f=4\left[\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{1 / 2}$ is the flux factor.
Show that the differential cross section is given by

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \frac{\lambda^{1 / 2}\left(s, m_{c}^{2}, m_{d}^{2}\right)}{\lambda^{1 / 2}\left(s, m_{a}^{2}, m_{b}^{2}\right)}|M|^{2}
$$

where $\lambda\left(x_{1}, x_{2}, x_{3}\right) \equiv x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}$.

Exercise 2. $\quad e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
In the lecture the differential cross section for the process $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$at order $\mathcal{O}\left(e_{0}^{4}\right)$ was computed in the high energy limit as

$$
\frac{d \sigma}{d \Omega}=\frac{e_{0}^{4}}{32 \pi^{2} s} \frac{s^{2}+u^{2}}{t^{2}}
$$

Use this result and crossing symmetry to show that the total cross section for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$ in the high energy limit is given by

$$
\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)=\frac{4 \pi \alpha^{2}}{3 s}
$$

where the fine-structure constant is defined as $\alpha \equiv e^{2} /(4 \pi)$.

Exercise 3. Bhabha scattering $e^{+} e^{-} \rightarrow e^{+} e^{-}$

Draw all Feynman diagrams for the process $e^{+} e^{-} \rightarrow e^{+} e^{-}$and the corresponding cut diagrams for the amplitude squared.

Evaluate the cut diagrams and show that the spin summed/averaged matrix element squared for the process $e^{+} e^{-} \rightarrow e^{+} e^{-}$in the high-energy limit is given by

$$
\left.\left.\langle | M\right|^{2}\right\rangle=2 e_{0}^{4}\left(\frac{t^{2}+u^{2}}{s^{2}}+\frac{s^{2}+u^{2}}{t^{2}}+\frac{2 u^{2}}{s t}\right)
$$

What is the total cross section for this process in the high-energy limit?
Hint: recycle previous calculations/results as much as possible.

