Exercise 1. Gupta-Bleuler quantization

Choosing $p^{\mu}=(E, 0,0, E)$, we define $\left|\psi_{s l}\right\rangle \equiv\left(a_{\vec{p}, 0}^{\dagger}-a_{\vec{p}, 3}^{\dagger}\right)|0\rangle$. A general transverse 1-particle state $\left|\psi_{T}\right\rangle$ is an arbitrary linear combination $\left(c_{1} a_{\vec{p}, 1}^{\dagger}+c_{2} a_{\vec{p}, 2}^{\dagger}\right)|0\rangle$.
A state $\left|\psi_{T}^{\prime}\right\rangle$ is said to be equivalent to $\left|\psi_{T}\right\rangle$ if $\left|\psi_{T}^{\prime}\right\rangle=\left|\psi_{T}\right\rangle+\kappa\left|\psi_{s l}\right\rangle$ with a constant κ and we write $\left|\psi_{T}^{\prime}\right\rangle \sim\left|\psi_{T}\right\rangle$.
(a) Show $\left\langle\psi_{T}^{\prime} \mid \psi_{T}^{\prime}\right\rangle=\left\langle\psi_{T} \mid \psi_{T}\right\rangle \geq 0$
(b) Show $\left\langle\psi_{T}^{\prime}\right| P^{\mu}\left|\psi_{T}^{\prime}\right\rangle=\left\langle\psi_{T}\right| P^{\mu}\left|\psi_{T}\right\rangle$ and $\left\langle\psi_{T}^{\prime}\right| H\left|\psi_{T}^{\prime}\right\rangle \geq 0$
(c) Show that for any physical state $\left|\psi_{\text {phys }}\right\rangle$ we have $\left\langle\psi_{\text {phys }} \mid \psi_{T}^{\prime}\right\rangle=\left\langle\psi_{\text {phys }} \mid \psi_{T}\right\rangle$

Exercise 2. Photon propagator

(a) In the lecture the propagator in the Coulomb gauge has been given as

$$
D_{\mu \nu}^{\operatorname{tr}}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p(x-y)}}{p^{2}+i 0^{+}} \sum_{\lambda=1}^{2} \epsilon_{\mu}(p, \lambda) \epsilon_{\nu}^{*}(p, \lambda)
$$

Show that this can be written as

$$
D_{\mu \nu}^{\operatorname{tr}}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p(x-y)}}{p^{2}+i 0^{+}}\left(-g_{\mu \nu}-\frac{p^{2} n_{\mu} n_{\nu}-(p n)\left(p_{\mu} n_{\nu}+p_{\nu} n_{\mu}\right)+p_{\mu} p_{\nu}}{(p n)^{2}-p^{2}}\right)
$$

where $n^{\mu} \equiv(1,0,0,0)$.
(b) Show that the photon propagator in the covariant gauge with arbitrary gauge parameter ξ is given by

$$
D_{\mu \nu}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p(x-y)}}{p^{2}+i 0^{+}}\left(-g_{\mu \nu}+(1-\xi) \frac{p_{\mu} p_{\nu}}{p^{2}}\right)
$$

Hint: recall that the propagator is the Green function of the equations of motion.

Exercise 3. Positronium

Positronium is a bound state of an electron and a positron. It can have total spin $S=0$ (para-positronium) or $S=1$ (ortho-positronium).
(a) Show that the parity of a positronium with orbital angular momentum L is $P=(-1)^{L+1}$.
(b) Show that a positronium with angular momentum L and $\operatorname{spin} S$ is an eigenstate of the charge conjugation operator with eigenvalue $C=(-1)^{L+S}$.
(c) Positronium can decay into a final state with only photons. Find the minimal number of photons in the final state for the decay of the ground state $(L=0)$ of para-positronium and ortho-positronium respectively.

