Exercise 1. Gupta-Bleuler quantization

Choosing $p^{\mu} = (E, 0, 0, E)$, we define $|\psi_{sl}\rangle \equiv (a^{\dagger}_{\vec{p},0} - a^{\dagger}_{\vec{p},3})|0\rangle$. A general transverse 1-particle state $|\psi_T\rangle$ is an arbitrary linear combination $(c_1 a^{\dagger}_{\vec{p},1} + c_2 a^{\dagger}_{\vec{p},2})|0\rangle$.

A state $|\psi'_T\rangle$ is said to be equivalent to $|\psi_T\rangle$ if $|\psi'_T\rangle = |\psi_T\rangle + \kappa |\psi_{sl}\rangle$ with a constant κ and we write $|\psi'_T\rangle \sim |\psi_T\rangle$.

- (a) Show $\langle \psi'_T | \psi'_T \rangle = \langle \psi_T | \psi_T \rangle \ge 0$
- (b) Show $\langle \psi'_T | P^\mu | \psi'_T \rangle = \langle \psi_T | P^\mu | \psi_T \rangle$ and $\langle \psi'_T | H | \psi'_T \rangle \ge 0$
- (c) Show that for any physical state $|\psi_{\rm phys}\rangle$ we have $\langle\psi_{\rm phys}|\psi_T'\rangle = \langle\psi_{\rm phys}|\psi_T\rangle$

Exercise 2. Photon propagator

(a) In the lecture the propagator in the Coulomb gauge has been given as

$$D_{\mu\nu}^{\rm tr}(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{e^{-ip(x-y)}}{p^2 + i0^+} \sum_{\lambda=1}^2 \epsilon_{\mu}(p,\lambda) \epsilon_{\nu}^*(p,\lambda)$$

Show that this can be written as

$$D_{\mu\nu}^{\rm tr}(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{e^{-ip(x-y)}}{p^2 + i0^+} \left(-g_{\mu\nu} - \frac{p^2 n_\mu n_\nu - (pn)(p_\mu n_\nu + p_\nu n_\mu) + p_\mu p_\nu}{(pn)^2 - p^2} \right)$$

where $n^{\mu} \equiv (1, 0, 0, 0)$.

(b) Show that the photon propagator in the covariant gauge with arbitrary gauge parameter ξ is given by

$$D_{\mu\nu}(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{e^{-ip(x-y)}}{p^2 + i0^+} \left(-g_{\mu\nu} + (1-\xi)\frac{p_{\mu}p_{\nu}}{p^2}\right)$$

Hint: recall that the propagator is the Green function of the equations of motion.

Exercise 3. Positronium

Positronium is a bound state of an electron and a positron. It can have total spin S = 0 (para-positronium) or S = 1 (ortho-positronium).

- (a) Show that the parity of a positronium with orbital angular momentum L is $P = (-1)^{L+1}$.
- (b) Show that a positronium with angular momentum L and spin S is an eigenstate of the charge conjugation operator with eigenvalue $C = (-1)^{L+S}$.
- (c) Positronium can decay into a final state with only photons. Find the minimal number of photons in the final state for the decay of the ground state (L = 0) of para-positronium and ortho-positronium respectively.