Exercise 1. Weyl spinors

We write a Lorentz transformation in terms of the six parameters $\vec{\theta}$ and $\vec{\eta}$ as $\Lambda^{\mu}{ }_{\nu}=g^{\mu}{ }_{\nu}+\omega^{\mu}{ }_{\nu}$ with

$$
\omega_{\nu}^{\mu}=\left(\begin{array}{cccc}
0 & \eta_{1} & \eta_{2} & \eta_{3} \tag{1}\\
\eta_{1} & 0 & -\theta_{3} & \theta_{2} \\
\eta_{2} & \theta_{3} & 0 & -\theta_{1} \\
\eta_{3} & -\theta_{2} & \theta_{1} & 0
\end{array}\right)
$$

(a) Write the transformation property of a (contravariant) 4 -vector under infinitesimal rotations as well as under infinitesimal boosts in terms of the (infinitesimal) parameters $\vec{\theta}$ and $\vec{\eta}$.
(b) Using the transformation property of a left-handed Weyl spinor ψ_{L}, show that $\psi_{L}^{\dagger} \bar{\sigma}^{\mu} \psi_{L}$ transforms as a (contravariant) 4 -vector.
(c) Deduce from your working in (b) that $\psi_{R}^{\dagger} \sigma^{\mu} \psi_{R}$, where ψ_{R} is a right-handed Weyl spinor, also transforms as a (contravariant) 4 -vector.

Exercise 2. Poincare Algebra

In the lecture it was shown that the the generators $J^{\mu \nu}$ transform as

$$
\begin{equation*}
D(\Lambda, a) J^{\mu \nu} D^{-1}(\Lambda, a)=\Lambda_{\sigma}^{\mu} \Lambda_{\kappa}^{\nu}\left(J^{\sigma \kappa}+a^{\kappa} P^{\sigma}-a^{\sigma} P^{\kappa}\right) \tag{2}
\end{equation*}
$$

under a general Poincare transformation $x^{\mu} \rightarrow \Lambda_{\nu}^{\mu} x^{\nu}+a^{\mu}$.
(a) Considering a pure translation $\Lambda^{\mu}{ }_{\nu}=g^{\mu}{ }_{\nu}$ with infinitesimal a^{μ} derive the commutation relations between $J^{\mu \nu}$ and P^{ρ}.
(a) Considering a homogeneous Lorentz transformation $a^{\mu}=0$ and $\Lambda^{\mu}{ }_{\nu}=g^{\mu}{ }_{\nu}+\omega^{\mu}{ }_{\nu}$ with infinitesimal $\omega^{\mu}{ }_{\nu}$ derive the commutation relations between $J^{\mu \nu}$ and $J^{\rho \sigma}$.

Exercise 3. Dirac equation

The most general linear (in ∂_{t} and $\vec{\nabla}$) wave equation can be written as $\left(i \partial^{\mu} \gamma_{\mu}-m\right) \psi=0$. Show that the requirement that this equation is consistent with the Klein-Gordon equation entails that the "coefficients" γ_{μ} satisfy the relations $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$.
Hence show that the coefficients γ_{μ} have to be at least 4×4 matrices.

