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Exercise 1. Classical Klein-Gordon field
The Lagrangian of a classical real scalar field
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results in equations of motion whose general solution can be written as
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a) Starting from the energy-momentum tensor show that P=— i d3f(6¢)d.>.

b) Express P in terms of the coefficients ay and a;; and interpret the result.

Exercise 2. Representations of J*

The Lie algebra of the Lorentz group is given by
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(a) Show that the generators of the vector representation
(V) =ilg" 9" — 97 9'5)
satisfy the Lie algebra, Eq.(1).
(b) Show that the operators
LY =i(ah 9" — x¥ OM)

satisfy the Lie algebra, Eq.(1).

Exercise 3. Weyl spinors and the Dirac equation

(a) Let ¢¥r(0) be a right-handed Weyl spinor for a particle of mass m at rest. Using the
transformation properties of 1)p under a Lorentz boost, show that
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where 1r(p) is a right-handed Weyl spinor for a particle with momentum p* = (E, p) .

(b) Deduce directly from Eq.(2) that the corresponding relation for a left-handed Weyl spinor
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(¢) Combining Eqs.(2) and (3) with ¥)g(0) = 11 (0) derive the Dirac equation
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