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Exercise 1. Yukawa theory

Consider a theory with fermions ψ and a real scalar field φ coupled through a Yukawa coupling.
The Lagrangian reads

L = ψ̄ (i 6∂ −m0)ψ +
1

2
∂µφ∂µφ−

M2
0

2
φ2 − g0 ψ̄ψφ (1)

(a) Find the Feynman rules of this theory and write down the amplitude for the process

e−(p1) e
−(p2)→ e−(p3) e

−(p4)

at leading order in perturbation theory.

Solution. The momentum space Feynman rules for this theory are:

Figure 1: Feynman rules for Yukawa theory [1].

where mφ = M0, m = m0 and g = g0 here. At leading order there are two diagrams which contribute to
this process; t-channel and u-channel. The amplitudes for these diagrams are:

iMt = (−ig)2ūs3(p3)us1(p1)

(
i

t−M2
0

)
ūs4(p4)us2(p2)

iMu = −(−ig)2ūs3(p3)us2(p2)

(
i

u−M2
0

)
ūs4(p4)us1(p1)

where t = (p1 − p3)2, u = (p1 − p4)2 and the minus sign in iMu comes from the crossing of the final state
fermion lines.

(b) Compute the differential cross section dσ/dΩ for electron-electron scattering in the Yukawa
theory at leading order in perturbation theory.
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Solution. From sheet 9 Ex 1 the differential cross-section (in the centre of mass frame) is:

dσ

dΩ
=
|M|2

64π2s

where the Källén function dependence has cancelled because ma = mb = mc = md = m and M is the
total amplitude. If one makes the assumption that the initial and final spin states are unknown then one
can perform an average of the amplitude over the initial state spins and sum over the final state spins:
1
2

∑
s1

1
2

∑
s2

∑
s3,s4

|M|2 = 1
4

∑
s1,s2,s3,s4

|M|2 := |M|2. For e−e− → e−e− one has:

|M|2 =
1

4

∑
spins

[
|Mt|2 + |Mu|2 +MtM†u +MuM†t

]
where the first two terms are (using

∑
s us(p)ūs = 6p+m):

1

4

∑
spins

|Mt|2 =

(
g4

4(t−M2
0 )2

) ∑
spins

ūs3(p3)us1(p1)ūs4(p4)us2(p2) · ūs2(p2)us4(p4)ūs1(p1)us3(p3)

=

(
g4

4(t−M2
0 )2

)
Tr
[
( 6p1 +m)(6p3 +m)

]
Tr
[
(6p2 +m)( 6p4 +m)

]
=

(
4g4

(t−M2
0 )2

)[
(p1 · p3) +m2][(p2 · p4) +m2]

=

(
4g4

(t−M2
0 )2

)[
(p1 · p3)(p2 · p4) +m2(p1 · p3) +m2(p2 · p4) +m4]

1

4

∑
spins

|Mu|2 =

(
4g4

(u−M2
0 )2

)[
(p2 · p3)(p1 · p4) +m2(p2 · p3) +m2(p1 · p4) +m4] (similarly)

and the interference terms have the form:

1

4

∑
spins

[
MtM†u +MuM†t

]
=−

(
g4

4(t−M2
0 )(u−M2

0 )

)
Tr
[
(6p1 +m)( 6p4 +m)( 6p2 +m)(6p3 +m)

]
−
(

g4

4(u−M2
0 )(t−M2

0 )

)
Tr
[
(6p1 +m)( 6p3 +m)( 6p2 +m)(6p4 +m)

]
=−

(
2g4

(t−M2
0 )(u−M2

0 )

)[
(p1 · p4)(p2 · p3)− (p1 · p2)(p3 · p4) + (p1 · p3)(p2 · p4)

+m2(p1 · p4) +m2(p1 · p2) +m2(p1 · p3) +m2(p2 · p3)

+m2(p2 · p4) +m2(p3 · p4) +m4]
By making use of the following Mandelstam identities:

(p1 · p2) = (p3 · p4) =
s

2
−m2, (p1 · p3) = (p2 · p4) = m2 − t

2

(p1 · p4) = (p2 · p3) = m2 − u

2
, s+ t+ u = 4m2

the spin averaged/summed amplitude can be written:

|M|2 =
4g4

(t−M2
0 )2

[(
m2 − t

2

)2

+ 2m2

(
m2 − t

2

)
+m4

]
+

4g4

(u−M2
0 )2

[(
m2 − u

2

)2
+ 2m2

(
m2 − u

2

)
+m4

]

− 2g4

(t−M2
0 )(u−M2

0 )

[(
m2 − u

2

)2
−
( s

2
−m2

)2
+

(
m2 − t

2

)2

+ 2m2
(
m2 − u

2

)
+ 2m2

(
m2 − t

2

)
+ 2m2

( s
2
−m2

)
+m4

]
=
g4(t− 4m2)2

(t−M2
0 )2

+
g4(u− 4m2)2

(u−M2
0 )2

+
g4(ut− 4sm2)

(t−M2
0 )(u−M2

0 )

hence one has:

dσ

dΩ
=

g4

64π2s

[
(t− 4m2)2

(t−M2
0 )2

+
(u− 4m2)2

(u−M2
0 )2

+
(ut− 4sm2)

(t−M2
0 )(u−M2

0 )

]
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(c) Rewrite the Lagrangian as L = Lr + Lct, where Lr has the same form as Eq.(1) but is

written in terms of renormalized fields, ψR = Z
−1/2
2 ψ and φR = Z

−1/2
φ φ, renormalized

masses, m and M and the renormalized coupling g. Write the counterterm Lagrangian
Lct in terms of δφ = Zφ − 1, δM = M2

0Zφ −M2 . . .

Solution. Plugging in the expressions for the fields in terms of renomalized ones:

ψ = Z
1/2
2 ψR, φ = Z

1/2
φ φR

the Lagrangian becomes:

L = Z2 ψ̄R (i 6∂ −m0)ψR +
1

2
Zφ ∂

µφR ∂µφR −
M2

0

2
Zφ φ

2
R − g0 Z2 Z

1/2
φ ψ̄RψRφR

We still have the bare masses and the bare coupling in this Lagrangian. Now with the definitions δφ = Zφ−1,

δM = M2
0Zφ −M2, δ2 = Z2 − 1, δm = Z2m0 −m, g Z1 = g0 Z2 Z

1/2
φ and δ1 = Z1 − 1 we can rewrite the

Lagrangian as:

L =ψ̄R (i 6∂ −m)ψR +
1

2
∂µφR ∂µφR −

1

2
M2 φ2

R − g ψ̄RψRφR

+
1

2
δφ ∂

µφR ∂µφR −
1

2
δM φ2

R + ψ̄R (iδ2 6∂ − δm )ψR − gδ1 ψ̄RψRφR

=Lr + Lct

(d) Calculate the self energy Π(p2) of the scalar field at one loop in renormalized perturbation
theory using dimensional regularization.

Solution. The scalar field propagator receives corrections at order g2 from a fermion loop diagram and
two propagator counterterms:

iΠ(p2) = iΠ2(p2) + i
(
p2δφ − δM

)
= −(−ig)2

∫
dDk

(2π)D
Tr
[ i(/k + /p+m)i(/k +m)

[(k + p)2 −m2][k2 −m2]

]
+ i
(
p2δφ − δM

)
= −4g2

∫
dDk

(2π)D
k · (p+ k) +m2

[(k + p)2 −m2][k2 −m2]
+ i
(
p2δφ − δM

)
(S.1)

Now we need to bring this integral into the form:

dDk

(2π)D
k2 + ∆

(k2 −∆ + iε)2

So that we can use the formulas (Series 11, Ex1):

dDk

(2π)D
∆

(k2 −∆ + iε)2
=

i

(4π)D/2
Γ(2−D/2)∆D/2−1

dDk

(2π)D
k2

(k2 −∆ + iε)2
=

iD/2

(4π)D/2
Γ(1−D/2)∆D/2−1

To do this we use the Feynman parametrization to combine the denominators into a single denominator.
Then rotate to Euclidean space, and also we shift the loop momentum as:

k → k + xp

Then the Equation S.1 becomes:

iΠ2(p2) = −4g2
∫ 1

0

∫
dx

dDk

(2π)D
k2 − x(1− x)p2 +m2

(k2 + x(1− x)p2 −m2)2

=− 4g2
∫ 1

0

∫
dx

−i
(4π)D/2

(
D/2Γ(1−D/2)

∆1−D/2 − ∆Γ(2−D/2)

∆2−D/2

)
=

4ig2(D − 1)

(4π)D/2

∫ 1

0

∫
dx

Γ(1−D/2)

∆1−D/2

where
∆ = m2 − x(1− x)p2

3



(e) Use the renormalization conditions

Π(p2 = M2) = 0 and
d

dp2
Π(p2)

∣∣
p2=M2 = 0

to determine the counterterms δM and δφ.

Solution. In order to satisfy the renormalization conditions both of the counterterms must be nonzero.
To determine δM we subtract the value of the loop diagram at p2 = m2 so that:

δM =
4g2(D − 1)

(4π)D/2

∫ 1

0

dx
Γ(1−D/2)

[m2 − x(1− x)M2]1−D/2
+M2δφ

To determine δφ we cancel also the first derivative with respect to p2 of the loop integral. We obtain:

δφ = −4g2(D − 1)

(4π)D/2

∫ 1

0

dx
x(1− x)Γ(2−D/2)

[m2 − x(1− x)M2]2−D/2

→︸︷︷︸
D→4

− 3g2

4π2

∫ 1

0

dxx(1− x)

(
1

ε
− γ − 2

3
+ log(4π)− log

[
m2 − x(1− x)M2])

To write it in terms of ZM note that these relations actually hold, namely,

Π(M2) = 0 = Π2(M2)−M2 δφ + δM

= Π2(M2)− (1− ZM )M2 Zφ

(S.2)

and hence
Π2(M2) = (1− ZM )M2 +O(g4) (S.3)

(f) Give an example for a suitable renormalization condition to define the renormalized cou-
pling g.

Solution. A renormalization condition for the vertex could be:

− iΓ(pf − pi = q)|q2=M2 = g (S.4)

(g) Is this theory as given in Eq.(1) renormalizable?

Solution. The theory as given in eq (1) is not renormalizable, since box diagrams where fermions run
in the loop and external legs are scalar fields also appear, which turn out to be divergent. Therefore one
must consider a counterterm for these diagrams and hence the 4-point self interaction term λ

4!
φ4 must be

added to the Lagrangian.
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