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Exercise 1. D dimensional integrals

Starting from ∫
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and differentiating with respect to qµ and qν compute∫
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Hence, by setting q → 0 show that∫
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Verify eq. (2) by contracting with gµν , using k2 = (k2 − m2) + m2 and inserting the explicit
result given in eq. (1) with qµ = 0.

Exercise 2. Vacuum polarization

The vacuum polarization Πµν at one loop is given by the single one-particle irreducible diagram

µ ν

p

≡ iΠµν

with no propagators for the external photon legs. By doing an explicit calculation using di-
mensional regularization in D = 4 − 2ε dimensions, show that the vacuum polarization can be
written as

iΠµν = i (gµνp2 − pµpν) Π(p2)

and that the leading quadratic singularities cancel. Show that upon expansion in ε we have
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where ē0 = e0µ
−ε is the dimensionless bare coupling.
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