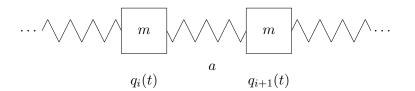
Exercise 1. Discrete and continuous models of an elastic rod

We consider a one-dimensional array of N particles connected by elastic springs with spring force constant κ . Let us assume that all the particles have the same mass m and that, at rest, their relative distance is a. By $q_i(t)$, i = 1, ..., N, we denote their position relative to the equilibrium.



- a) Derive the Lagrangian $L(q_i(t), \dot{q}_i(t))$ of this system in the limit of large N.
- b) Compute the Euler-Lagrange equations.
- c) Take the limit $a \to 0$ of the Lagrangian and the Euler-Lagrange equations that you obtained in a) and b). As in the lecture, denote by $\phi(t, \vec{x})$ the vibration amplitudes, by μ the mass density $\lim_{a\to 0} \frac{m}{a}$, and by Y Young's modulus $\lim_{a\to 0} (\kappa a)$.
- d) Check that you obtain the same result if you derive the Euler-Lagrange equations directly from the Lagrangian of an elastic rod.

Exercise 2. Equations of motion of electrodynamics

In electrodynamics the Lagrangian density has the following form:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - j_{\mu}A^{\mu}$$

where $F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ and j_{μ} is some external current density.

Using the Euler-Lagrange equations (see lecture 1) and the expression for \mathcal{L} above, derive the equations of motion of the electromagnetic field.

Exercise 3. Lorentz transformations

Consider a classical field $\phi(x)$ and assume its Lagrangian density is invariant under (infinitesimal) Lorentz transformation $x \to x + \delta x$, with:

$$\delta x^{\mu} = \omega^{\mu}_{\nu} x^{\nu} \tag{1}$$

where ω_{ν}^{μ} is an infinitesimal, antisymmetric constant matrix: $\omega^{\mu\nu} = -\omega^{\nu\mu}$. Apply Noether's Theorem to find the conserved current and charge, writing them in terms of the conserved energy-momentum tensor $T^{\mu\nu}$.

Hint. Use the Euler-Lagrange field equations.