Sheet XII

Return by 19.12.2013

Question 1 [Dimensions of $\mathfrak{su}(3)$ representations]: The $\mathfrak{su}(3)$ representation with Dynkin label [a, b] is associated with the Young diagram λ with two rows of length $r_1 = a + b$ and $r_2 = b$. The dimension of this representation equals the number of Young tableau fillings of λ with elements from the set $\{1, 2, 3\}$. Show that the dimension of the $\mathfrak{su}(3)$ representation [a, b] equals

$$\dim ([a,b]) = \frac{1}{2}(a+1)(b+1)(a+b+2) .$$
(1)

Question 2 [Construction of the simple algebra \mathfrak{g}_2]: The exceptional Lie algebra \mathfrak{g}_2 is a 14-dimensional Lie algebra of rank 2. The purpose of this exercise is to construct it by extending the algebra $\mathfrak{sl}(3)$ in a suitable way; in the end you also need to check that the resulting commutators actually define a Lie algebra (i.e., that they satisfy the Jacobi identity).

- (a) Start with the generators of sl(3). Add to them 6 other generators that transform in the [1,0] ⊕ [0,1] representation of sl(3); this set of 14 generators spans a basis for g₂. Draw the corresponding root diagram and check that there are 'short' roots and 'long' roots that have different lengths.
- (b) Divide the roots of \mathfrak{g}_2 into positive and negative roots, and denote the positive roots by α_i with $i = 1, \ldots, 6$. Without loss of generality, we assume that the two simple roots (in terms of which all other positive roots are non-negative integer combinations) are α_1 and α_2 . Moreover, the eigenvectors corresponding to the α_i are E_i , while those corresponding to $(-\alpha_i)$ are E_{-i} . Finally, we use as generators of the Cartan subalgebra H_1 and H_2 , i.e., the Cartan generators associated with the two $\mathfrak{sl}(2)$ subalgebras corresponding to E_i and E_{-i} with i = 1, 2.

Define the generators corresponding to the other positive roots by iterating the adjoint action of the simple positive roots, and similarly for the negative roots.

- (c) Identify all vanishing commutators.
- (d) Check that the generators you have defined in point (b) satisfy the Jacobi identity. Hint: Whenever possible, use that $[E_{\alpha}, E_{\beta}] = 0$ if $\alpha + \beta = 0$ is not a root.