Sheet VIII

Return by 21.11 .2013

Question 1 [Comparison between $\mathfrak{s l}(2, \mathbb{R})$ and $\mathfrak{s u}(1,1)]$: In this exercise we will consider the two three-dimensional Lie groups $\mathrm{SL}(2, \mathbb{R})$ and $\mathrm{SU}(1,1)$. They are defined as subgroups of the general linear groups

$$
\begin{align*}
& \mathrm{SL}(2, \mathbb{R}):=\{M \in \mathrm{GL}(2, \mathbb{R}): \operatorname{det}(M)=1\} \tag{1}\\
& \mathrm{SU}(1,1):=\left\{M \in \mathrm{GL}(2, \mathbb{C}): \operatorname{det}(M)=1, M^{\dagger} \cdot I_{(1,1)} \cdot M=I_{(1,1)}\right\} \tag{2}
\end{align*}
$$

where

$$
I_{(1,1)}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

a) Construct the corresponding real Lie algebras $\mathfrak{s l}(2, \mathbb{R})$ and $\mathfrak{s u}(1,1)$, respectively. Compute their Killing forms and show that they are both semi-simple.
b) Show that the complexifications of $\mathfrak{s l}(2, \mathbb{R})$ and $\mathfrak{s u}(1,1)$ are isomorphic; that is, construct an isomorphism between $\mathfrak{s l}(2, \mathbb{R})$ and $\mathfrak{s u}(1,1)$, considered as complex vector spaces.

Question 2 [Special orthogonal and symplectic algebras]: The special orthogonal group $\mathrm{SO}(N)$ is defined as

$$
\begin{equation*}
\mathrm{SO}(N):=\left\{M \in \mathrm{GL}(N, \mathbb{R}): M^{T} \cdot M=I_{N} \text { and } \operatorname{det}(M)=1\right\} \tag{3}
\end{equation*}
$$

where I_{N} is the $N \times N$ identity matrix. On the other hand, the symplectic group $\mathrm{SP}(2 N)$ is defined as

$$
\begin{equation*}
\mathrm{SP}(2 N):=\left\{M \in \mathrm{GL}(N, \mathbb{R}): M^{T} \cdot \Omega \cdot M=\Omega\right\} \tag{4}
\end{equation*}
$$

where Ω is the $2 N \times 2 N$ real matrix (written in terms of $N \times N$ blocks)

$$
\Omega=\left(\begin{array}{cc}
0 & I_{N} \tag{5}\\
-I_{N} & 0
\end{array}\right)
$$

Construct the corresponding Lie algebras $\mathfrak{s o}(N)$ and $\mathfrak{s p}(2 N)$, and calculate their dimensions.

Question 3 [Embeddings of $\mathfrak{s u}(2)$ in $\mathfrak{s u}(3)]$: Consider the Lie algebra $\mathfrak{s u}(3)$, consisting of 3×3 antihermitian traceless matrices. For simplicity, consider the standard basis in terms of the eight Gell-Mann matrices ${ }^{1}$

$$
\begin{array}{llll}
\lambda_{1}=\left(\begin{array}{cccc}
0 & i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{3}=\left(\begin{array}{ccc}
i & 0 & 0 \\
0 & -i & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \\
\lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0 \\
-0 & 0 & 0
\end{array}\right), & \lambda_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & 0
\end{array}\right), & \lambda_{8}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -i
\end{array}\right) . \tag{7}
\end{array}
$$

[^0]The aim is to identify the two inequivalent embeddings of $\mathfrak{s u}(2)$ into $\mathfrak{s u}(3)$, and to decompose in each case the adjoint representation of $\mathfrak{s u}(3)$ into the representations of $\mathfrak{s u}(2)$ under the adjoint action.
a) There is a 'naive' embedding of $\mathfrak{s u}(2)$ into $\mathfrak{s u}(3)$ consisting of a direct identification of a set of $\mathfrak{s u}(2)$ generators among the generators of $\mathfrak{s u}(3)$. Find such an embedding, and decompose the adjoint representation of $\mathfrak{s u}(3)$ in terms of representations of this $\mathfrak{s u}(2)$.
Hint: By construction the generators of $\mathfrak{s u}(2)$ that you have chosen transform as the three dimensional (adjoint) representation under the action of $\mathfrak{s u}(2)$. In order to work out the remaining decomposition, it is easier to work with the complexified $\mathfrak{s l}(2)$ generators, rather than $\mathfrak{s u}(2)$. Thus you should construct the generators H, E, F you have seen in the lecture in terms of complex linear combinations of the $\mathfrak{s u}(2)$ generators you have picked. Then find two different linear combinations of Gell-Mann matrices $M_{k}=\sum_{i} \alpha_{i}^{k} \lambda_{i}, k=1,2$ such that

$$
\left[E, M_{k}\right]=0, \quad\left[H, M_{k}\right]=M_{k}
$$

Show that each of these two elements belongs to a distinct two-dimensional representation of $\mathfrak{s u}(2)$; in the end, show that the residual one-dimensional subalgebra transforms trivially under $\mathfrak{s u}(2)$.
b) For the other embedding consider the generators

$$
\begin{aligned}
& D=2\left(\lambda_{3}+\lambda_{8}\right), \\
& M_{12}=\sqrt{2}\left(\lambda_{2}+\lambda_{7}\right), \\
& \widehat{M}_{12}=\sqrt{2}\left(\lambda_{1}+\lambda_{6}\right) .
\end{aligned}
$$

Show that they form the subalgebra $\mathfrak{s u}(2)$. Decompose the adjoint representation of $\mathfrak{s u}(3)$ in terms of representations of this $\mathfrak{s u}(2)$.

Hint: As before, construct the complexified generators H, E, F, and check that it is possible to find a linear combination of Gell-Mann matrices $N=\sum_{i} \beta_{i} \lambda_{i}$ such that

$$
[E, N]=0, \quad[H, N]=4 N
$$

Show that N generates a five-dimensional irreducible representation of $\mathfrak{s l}(2)$ by acting repeatedly with F.

[^0]: ${ }^{1}$ Note that this differs slightly from the usual definition of the Gell-Mann matrices: in particular, we included a factor of i in the definition of the matrices, and our definition of λ_{8} is somewhat non-standard.

