## Sheet VI

Return by 31.10.2013

Question 1 [Dimensions of irreducible representations of $S_{4}$ ]:
(a) Recall from the lecture that we have seen three different ways of computing the dimensions of the irreducible representations of the symmetric groups: the one directly obtained from Frobenius theorem, the hook formula, and the enumeration of different Young tableaux of shape $\lambda$. Use all three formulae to compute the dimensions of the irreducible representations of $S_{4}$, showing that the answers agree with what you had already computed.
(b) Use Frobenius theorem to compute the characters of the different irreducible representations of $S_{4}$, and compare the result with what you derived before.

Question 2 [Characters of $S_{n}$ ]: Show that if $g$ is a cycle of length $n$ in $S_{n}$, then

$$
\chi_{\lambda}(g)= \begin{cases}(-1)^{s} & \text { if } \lambda=(n-s, 1, \ldots, 1), \text { where } 0 \leq s \leq(n-1)  \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Question 3 [Hook formula from Frobenius formula ]: The aim of this exercise is to deduce the hook length formula from the Frobenius formula. Recall that, given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, the Frobenius dimension formula for $S_{n}$ gives

$$
\begin{equation*}
\operatorname{dim}\left(V_{\lambda}\right)=\frac{n!}{l_{1}!\ldots l_{k}!} \prod_{i<j}\left(l_{i}-l_{j}\right), \quad \text { where } \quad l_{i}=\lambda_{i}+k-i \tag{2}
\end{equation*}
$$

On the other hand, the hook formula reads

$$
\begin{equation*}
\operatorname{dim}\left(V_{\lambda}\right)=\frac{n!}{\prod_{(i, j) \in \lambda} h(i, j)}, \tag{3}
\end{equation*}
$$

where $h(i, j)$ is the hook length of the box $(i, j)$.
(a) Given an arbitrary Young diagram, identify the boxes whose hook length is equal to the $l_{i}$ 's of the same diagram.
(b) Prove that the Frobenius formula and the hook length formula give the same result for any diagram.
Hint: use induction and proceed as follows:
(i) first prove it for a diagram with a single column ${ }^{1}$;
(ii) prove that, if the two are equal for a diagram, then they are also equal for the diagram where an additional box has been added on the bottom left;
(iii) finally, prove that if they are equal for a given diagram, they are also equal for the diagram where an additional column of the same length as the first column has been added on the left.

[^0]
[^0]:    ${ }^{1}$ Actually, it is enough to prove it for a diagram with a single box.

