Sheet IV

Return by 17.10.2013

Question 1 [Representation theory of S_{4} and characters - part II]: Using the known results for the characters of S_{3} and S_{4}, decompose the irreducible representations of S_{4} in terms of the irreducible representations of S_{3}.

Question 2 [Branching rules from O to D_{4}]: In the lecture the branching rules from O to D_{3}, i.e. the decomposition of irreducible O-representations into D_{3}-representations, were computed. In particular, they allowed one to describe qualitatively the splitting of the energy eigenstates with angular momentum number $L=0,1,2,3$ under a crystal-field perturbation that preserves the symmetry around a diagonal.

In this exercise you should perform the corresponding analysis for the case when the crystal-field perturbation breaks the octahedral symmetry down to the symmetries that preserve one of the four-fold axes of the group O.
[Hint: The residual symmetry group is then D_{4}. Be careful to identify the conjugacy classes of D_{4} inside those of O.]

Question 3 [Vanishing of characters]: A general theorem in character theory states that the character of any irreducible representation R of dimension greater than 1 assumes the value 0 on some conjugacy class of the group, i.e. there exists some conjugacy class C such that $\chi_{R}(g)=0$ for all $g \in C$.

Prove the above statement with the additional assumption that the character of the corresponding representation takes values in \mathbb{Z}, i.e. that $\chi_{R}(g) \in \mathbb{Z}$ for all $g \in G$.

