Sheet II

Return by 3.10.2013

Question 1 [S_3 and D_3]: The symmetric group in 3 elements, S_3 , is generated by two group elements σ_1 and σ_2 that satisfy the relations

$$\sigma_1^2 = \sigma_2^2 = e, \qquad \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2. \tag{1}$$

Show that S_3 is isomorphic to D_3 as defined in the lecture (or on Sheet I).

Hint: To construct the isomorphism, define its action on the generators and show that this can be extended to a well-defined and bijective group homomorphism.

Question 2 [*Dihedral group* — *Part II*]: Find all the irreducible representations of the dihedral group D_n , distinguishing between the cases n = 2l and n = 2l + 1.

Hints: All irreducible representations of D_n have dimension 1 or 2. Remember that we have the relation

$$|G| = \sum_{i=1}^{m} (\dim V_i)^2 ,$$

where the sum runs over the inequivalent irreducible representations of the finite group G. Find enough inequivalent irreducible representations such that this formula is satisfied.

Question 3 [Irreducible representations of abelian groups]: Show that the irreducible representations of finite abelian groups are all one-dimensional¹.

Hint: Recall Schur's Lemma: Suppose V, W are irreducible representations of G and $T: V \to W$ is a G-module homomorphism, i.e.

$$T \circ \rho_V = \rho_W \circ T , \qquad (2)$$

then

(i) either T is an isomorphism or T = 0;

(ii) if V = W, then $T = \lambda \cdot \mathbf{1}$ for some $\lambda \in \mathbb{C}$, where $\mathbf{1}$ is the identity map.

¹Actually, this result also holds for infinite abelian groups.