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Question 1 [Orbit-Stabiliser Theorem ]: Let X be a set and G be a group. We say that
G has an action on X if, for each element g ∈ G, we have a map

g : X → X , x 7→ g · x

such that

e · x = x , (g1g2) · x = g1 · (g2 · x) ∀g1, g2 ∈ G , ∀x ∈ X , (1)

where e is the identity element of the group G. Thus G has an action on X if G can be
considered as a group of transformations acting on X.

Given a group action on X, we define the stabiliser of an element x ∈ X as the subset
of transformations that map x onto itself,

Stab(x) :=
{
g ∈ G | g · x = x

}
. (2)

The orbit of an element x ∈ X under the action of G is the subset of X whose elements
can be obtained by acting on x with some element of G,

Gx :=
{
y ∈ X | y = g · x for some g ∈ G

}
. (3)

The orbit-stabiliser theorem states that the order |G| of G can be calculated as the product
of the order of the stabiliser of x times the cardinality of the orbit Gx

card(Gx) · |Stab(x)| = |G| . (4)

This is true for any x ∈ X.

The aim of this question is to verify this theorem in a simple (nontrivial) case, where G is
the symmetry group of the cube (named O). Furthermore, one can relatively easily prove
the statement abstractly.

(a) Enumerate the elements of O in terms of transformations of the cube. Do not include
inversions (therefore consider only proper rotations). [Hint: |O| = 24.]

(b) Verify the orbit-stabiliser theorem by considering the action of O on

– the set F of faces of a cube;

– the set V of vertices of a cube.

*(c) Prove the orbit-stabiliser theorem in the general case.

Hint: fix an element x ∈ X, then

(i) show that the relation g ∼ h if g · x = h · x is an equivalence relation;



(ii) show that the number of elements of G in each equivalence class is equal (and
compute it!);

(iii) show that the number of equivalence classes into which G is partitioned via ∼
is equal to the cardinality of Gx.

Question 2 [Dihedral group — Part I ]: The goal of this exercise is to gain familiarity
with the dihedral group Dn and its irreducible representations. Recall that Dn is generated
by two elements d and s satisfying the relations

dn = s2 = e , d−ks = s dk ∀k ∈ Z . (5)

(a) The simplest dihedral group is D3, the symmetry group of an equilateral triangle.
Identify the elements d and s with symmetries of the triangle and convince yourself
that the relations (5) are satisfied. Draw the multiplication table of D3.

Recall that a representation ρ of a group G on a complex vector space V is a group
homomorphism ρ : G→ GL(V ), i.e. a map ρ such that ρ(g1 · g2) = ρ(g1) ◦ ρ(g2).

(b) Suppose that S and D are l × l matrices satisfying

Dn = S2 = 1l, S Dk S = D−k ∀k ∈ Z . (6)

Show that ρ(s) = S and ρ(d) = D then defines an l-dimensional representation of
Dn (acting by l × l matrices on an l-dimensional vector space).

(c) For the case of D3 find three inequivalent irreducible representations of dimensions
1, 1 and 2. (We will see later that these are actually all representations of D3.)

(d) Similarly, for the case of D4 find five inequivalent irreducible representations of
dimensions 1, 1, 1, 1, and 2. Again, this list will turn out to be complete.

*(e) For the case of D5 find four inequivalent irreducible representations of dimensions
1, 1, 2, and 2. Once again, this list is actually complete.

Hints: A representation ρ : G → GL(V ) is called irreducible if there exists no proper
non-zero subspace W ⊂ V that is invariant under ρ(a) for all a ∈ G. Moreover, two
representations ρ1 and ρ2 of a group G on vector spaces V1 and V2 are said to be equivalent
if there exists an isomorphism T : V1 → V2 such that

T ◦ ρ1(a) = ρ2(a) ◦ T , ∀a ∈ G .


