Sheet I

Return by 26.9.2013

Question 1 [Orbit-Stabiliser Theorem]: Let X be a set and G be a group. We say that G has an action on X if, for each element $g \in G$, we have a map

$$
g: X \rightarrow X, \quad x \mapsto g \cdot x
$$

such that

$$
\begin{equation*}
e \cdot x=x, \quad\left(g_{1} g_{2}\right) \cdot x=g_{1} \cdot\left(g_{2} \cdot x\right) \quad \forall g_{1}, g_{2} \in G, \forall x \in X \tag{1}
\end{equation*}
$$

where e is the identity element of the group G. Thus G has an action on X if G can be considered as a group of transformations acting on X.

Given a group action on X, we define the stabiliser of an element $x \in X$ as the subset of transformations that map x onto itself,

$$
\begin{equation*}
\operatorname{Stab}(x):=\{g \in G \mid g \cdot x=x\} . \tag{2}
\end{equation*}
$$

The orbit of an element $x \in X$ under the action of G is the subset of X whose elements can be obtained by acting on x with some element of G,

$$
\begin{equation*}
G x:=\{y \in X \mid y=g \cdot x \text { for some } g \in G\} . \tag{3}
\end{equation*}
$$

The orbit-stabiliser theorem states that the order $|G|$ of G can be calculated as the product of the order of the stabiliser of x times the cardinality of the orbit $G x$

$$
\begin{equation*}
\operatorname{card}(G x) \cdot|\operatorname{Stab}(x)|=|G| \tag{4}
\end{equation*}
$$

This is true for any $x \in X$.
The aim of this question is to verify this theorem in a simple (nontrivial) case, where G is the symmetry group of the cube (named O). Furthermore, one can relatively easily prove the statement abstractly.
(a) Enumerate the elements of O in terms of transformations of the cube. Do not include inversions (therefore consider only proper rotations). [Hint: $|O|=24$.]
(b) Verify the orbit-stabiliser theorem by considering the action of O on

- the set F of faces of a cube;
- the set V of vertices of a cube.
*(c) Prove the orbit-stabiliser theorem in the general case.
Hint: fix an element $x \in X$, then
(i) show that the relation $g \sim h$ if $g \cdot x=h \cdot x$ is an equivalence relation;
(ii) show that the number of elements of G in each equivalence class is equal (and compute it!);
(iii) show that the number of equivalence classes into which G is partitioned via \sim is equal to the cardinality of $G x$.

Question 2 [Dihedral group - Part I]: The goal of this exercise is to gain familiarity with the dihedral group D_{n} and its irreducible representations. Recall that D_{n} is generated by two elements d and s satisfying the relations

$$
\begin{equation*}
d^{n}=s^{2}=e, \quad d^{-k} s=s d^{k} \quad \forall k \in \mathbb{Z} \tag{5}
\end{equation*}
$$

(a) The simplest dihedral group is D_{3}, the symmetry group of an equilateral triangle. Identify the elements d and s with symmetries of the triangle and convince yourself that the relations (5) are satisfied. Draw the multiplication table of D_{3}.

Recall that a representation ρ of a group G on a complex vector space V is a group homomorphism $\rho: G \rightarrow \operatorname{GL}(V)$, i.e. a map ρ such that $\rho\left(g_{1} \cdot g_{2}\right)=\rho\left(g_{1}\right) \circ \rho\left(g_{2}\right)$.
(b) Suppose that S and D are $l \times l$ matrices satisfying

$$
\begin{equation*}
D^{n}=S^{2}=\mathbf{1}_{l}, \quad S D^{k} S=D^{-k} \quad \forall k \in \mathbb{Z} \tag{6}
\end{equation*}
$$

Show that $\rho(s)=S$ and $\rho(d)=D$ then defines an l-dimensional representation of D_{n} (acting by $l \times l$ matrices on an l-dimensional vector space).
(c) For the case of D_{3} find three inequivalent irreducible representations of dimensions 1,1 and 2. (We will see later that these are actually all representations of D_{3}.)
(d) Similarly, for the case of D_{4} find five inequivalent irreducible representations of dimensions $1,1,1,1$, and 2. Again, this list will turn out to be complete.
*(e) For the case of D_{5} find four inequivalent irreducible representations of dimensions $1,1,2$, and 2 . Once again, this list is actually complete.

Hints: A representation $\rho: G \rightarrow \mathrm{GL}(V)$ is called irreducible if there exists no proper non-zero subspace $W \subset V$ that is invariant under $\rho(a)$ for all $a \in G$. Moreover, two representations ρ_{1} and ρ_{2} of a group G on vector spaces V_{1} and V_{2} are said to be equivalent if there exists an isomorphism $T: V_{1} \rightarrow V_{2}$ such that

$$
T \circ \rho_{1}(a)=\rho_{2}(a) \circ T, \quad \forall a \in G
$$

