Exercise 1. The Bogolyubov transformation.

We consider a gas of weakly interacting bosonic particles at low temperatures. In this limit, the corresponding Hamiltonian can be approximated by

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2} U \Omega n_{0}^{2}-\mu \Omega n_{0}+\frac{1}{2} \sum_{\boldsymbol{k} \neq 0}\left\{\left(\epsilon_{\boldsymbol{k}}-\mu+2 U n_{0}\right)\left(\hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}}+\hat{a}_{-\boldsymbol{k}}^{\dagger} \hat{a}_{-\boldsymbol{k}}\right)+U n_{0}\left(\hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{-\boldsymbol{k}}^{\dagger}+\hat{a}_{\boldsymbol{k}} \hat{a}_{-\boldsymbol{k}}\right)\right\} \tag{1}
\end{equation*}
$$

where $\epsilon_{\boldsymbol{k}}$ is the free dispersion,

$$
\begin{equation*}
\epsilon_{\boldsymbol{k}}=\frac{\hbar^{2} k^{2}}{2 m} \tag{2}
\end{equation*}
$$

(a) Introduce quasiparticle annihilation and creation operators $\hat{\gamma}_{\boldsymbol{k}}$ and $\hat{\gamma}_{\boldsymbol{k}}^{\dagger}$ which are defined by the relation

$$
\begin{equation*}
\hat{a}_{\boldsymbol{k}}=u_{\boldsymbol{k}} \hat{\gamma}_{\boldsymbol{k}}-v_{\boldsymbol{k}} \hat{\gamma}_{-\boldsymbol{k}}^{\dagger} \quad \text { and } \quad \hat{a}_{-\boldsymbol{k}}=u_{\boldsymbol{k}} \hat{\gamma}_{-\boldsymbol{k}}-v_{\boldsymbol{k}} \hat{\gamma}_{\boldsymbol{k}}^{\dagger} . \tag{3}
\end{equation*}
$$

What is the condition for $u_{\boldsymbol{k}}$ and $v_{\boldsymbol{k}}$ in order to obtain bosonic commutation relations for these operators?
(b) For real-valued $u_{\boldsymbol{k}}$ and $v_{\boldsymbol{k}}$ you can write the transformation coefficients as

$$
\begin{equation*}
u_{k}=\frac{1}{\sqrt{1-\chi_{k}^{2}}} \quad \text { and } \quad v_{k}=\frac{\chi_{k}}{\sqrt{1-\chi_{k}^{2}}} \tag{4}
\end{equation*}
$$

Determine the function $\chi_{\boldsymbol{k}}$ such that the Hamiltonian is diagonal in the quasiparticle operators,

$$
\begin{equation*}
\mathcal{H}=E_{0}-\mu \Omega n_{0}+\frac{1}{2} \sum_{\boldsymbol{k} \neq 0} E_{\boldsymbol{k}}\left(\hat{\gamma}_{\boldsymbol{k}}^{\dagger} \hat{\gamma}_{\boldsymbol{k}}+\hat{\gamma}_{-\boldsymbol{k}}^{\dagger} \hat{\gamma}_{-\boldsymbol{k}}\right) \tag{5}
\end{equation*}
$$

(c) Find the quasiparticle dispersion $E_{\boldsymbol{k}}$. Fix the chemical potential μ in such a way that the energy spectrum is linear for $\boldsymbol{k} \rightarrow 0$. Approximate the dispersion for small $(\boldsymbol{k} \rightarrow 0)$ and large $\left(\epsilon_{\boldsymbol{k}} \gg U n_{0}\right)$ momenta and calculate the sound velocity for $k \rightarrow 0$.

Exercise 2. Temperature dependence of the superfluid fraction.

In the lecture we calculated the number of condensed (superfluid) particles at zero temperature [Eq. (6.31)]. In this exercise we want to determine the temperature dependence of this fraction in the limit $T \rightarrow 0$.
(a) Calculate the expectation value of the density of particles with momentum \boldsymbol{k},

$$
\begin{equation*}
n_{\boldsymbol{k}}:=\frac{1}{\Omega}\left\langle\hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}}\right\rangle \tag{6}
\end{equation*}
$$

Hint. Use the fact that the Bogolyubov quasiparticles defined in Eq. (3) follow a Bose-Einstein distribution.
(b) Approximate the temperature dependence of this density,

$$
\begin{equation*}
\delta n_{\boldsymbol{k}}(T):=n_{\boldsymbol{k}}(T)-n_{\boldsymbol{k}}(T=0) \tag{7}
\end{equation*}
$$

in the limit $T \rightarrow 0$.
(c) Calculate the temperature dependence of the density of condensed particles,

$$
\begin{equation*}
\delta n_{0}=-\sum_{\boldsymbol{k}} \delta n_{\boldsymbol{k}} \tag{8}
\end{equation*}
$$

in the same limit. What happens in a two-dimensional system?
Hint. Keep only the terms of lowest order in T.
(d) Calculate the expectation value $\left\langle\hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{-\boldsymbol{k}}^{\dagger}\right\rangle$. What is the physical interpretation of this quantity?

