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Exercise 1. Pair correlation functions for fermions at finite temperature

In this exercise we want to study the correlation functions for a system of free independent
fermions at finite temperature, especially in the high temperature limit.

(a) Evaluate the thermal average 〈Ô〉 =
tr
{
e−βH

′
Ô
}

tr e−βH′
for Ô = n̂~k and Ô = n̂~kn̂~q at T = 0 and

at T > 0, where H ′ = H − µN̂ and β = 1
kBT

.

(b) Show that the one-particle correlation function is

n

2
gs(~R) =

∫∫∫
d3k

(2π)3
n~ke
−i~k·~R , (1)

where n~k is the Fermi-Dirac distribution.

(c) Show that in the high temperature limit

gs(~R) ≈ e−
π~R2

λ2 , (2)

where λ =
√

h2

2πmkBT
is the thermal wavelength. Compare this result with the one you

know for T = 0.

Hint.
∫∞
−∞ e−ax

2+bx =
√

π
a e

b2

4a ∀a ∈ R+, b ∈ C .

(d) Show that in the high temperature limit

g(~R) =
g↑↑(~R) + g↑↓(~R)

2
≈ 1− e−

2π~R2

λ2

2
. (3)

Compare this result with the one you know for bosons.

(e) How does the density depletion change? It is defined as n
∫∫∫

d3r (g(~r)− 1).

Exercise 2. Single-particle correlation function for bosons

Consider a homogeneous gas of free independent spin-0 bosons at T > Tc. The single-particle
correlation function is given by

g(~R) =

∫∫∫
d3k

(2π)3
n~ke
−i~k·~R , (4)

where ε~k = ~2~k2
2m and n~k = 1

e
β(ε~k

−µ)−1
(Section 3.7.2 from the Lecture Notes).
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(a) Show that in the ~R→ 0 limit

g(~R) ≈ n

(
1−

~R2

6
〈~k2〉

)
, (5)

where n is the particle density.

(b) Study 〈~k2〉 in the low and high temperature limits and derive the correlation function g(~R)

in these limits. Express the result in terms of the thermal wave length λ =
√

h2

2πmkBT
.

Hint.
∫∞
0
dx x2ne−ax

2

=
√

π
a

1·3···(2n−1)
an2n+1 ∀a ∈ R+, n ∈ N .

Hint. ζ(x)Γ(x) =
∫∞
0
du u

x−1

eu−1 ∀x > 1 .

(c) How would you modify the previous result for the correlation function to describe the
Bose-Einstein condensate regime, too?
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