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Exercise 1. Playing around with wave functions in second quantization.

In the formalism of second quantization, a general state of N particles at positions ~r1, ~r2, ... is
given by

|~r1, ~r2, ..., ~rN 〉 =
1√
N !

Ψ̂† (rN ) · · · Ψ̂† (r1) |0〉 , (1)

where |0〉 is the vacuum state and the field operators Ψ̂ (~r) are defined as

Ψ̂ (~r) =
∑
k

φk (~r) âk , (2)

with âk the annihilator of mode k and φk (~r) the one-particle wave function of mode k.

Consider a state |ψ〉 of three particles in modes k1, k2, and k3. Consider its wave function

ψ (~r1, ~r2, ~r3) = 〈~r1, ~r2, ~r3 |ψ〉 = 〈~r1, ~r2, ~r3 |â†k3 â
†
k2
â†k1 |0〉 . (3)

(a) First calculate the vacuum expectation value

〈0|â`1 â`2 â`3 â
†
k3
â†k2 â

†
k1
|0〉 , (4)

for bosons and for fermions.

(b) Determine ψ(~r1, ~r2, ~r3) for bosons and for fermions. What symmetries does the wave
function possess?

(c) Determine the normalization of the wave function for fermions and for bosons. First
consider the case where k1, k2 and k3 are all different, and then study the case where two
or more modes are the same. What do you observe?

Note: for the lazy, it is also possible to do the whole exercise with two particles only. For the motivated,

calculate it for N particles.

Exercise 2. Magnetostriction in a Spin-Dimer-Model.
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As in Exercise 2.3, we consider a dimer consisting of
two spin-1/2 particles with the Hamiltonian

H0 = J
(
~S1 · ~S2 + 3/4

)
,

with J > 0 (note that the energy levels are shifted as
compared to Ex. 2.3). This time, however, the distance
between the two spins is not fixed, but they are connected to a spring. The spin–spin coupling
constant depends on the distance between the two sites such that the Hamilton operator of the
system is

H =
p̂2

2m
+
mω2

2
x̂2 + J(1− λx̂)

(
~S1 · ~S2 + 3/4

)
, (5)

where λ ≥ 0, m is the mass of the two constituents, mω2 is the spring constant and where x
denotes the displacement from the equilibrium distance d between the two spins (in the case of
no spin-spin interaction).

1



(a) Write the Hamiltonian (5) in second quantized form and calculate the partition sum, the
internal energy, the specific heat and the entropy. Discuss the behavior of the entropy in
the limit T → 0 for different values of λ.

Hints. Set ~ = 1. Rewrite the Hamiltonian using the total spin as in Exercise 2.3, and bring it by
completing the square to the form

H =
p̂2

2m
+

1

2
mω2 X̂2 + J̃ n̂t , (6)

where n̂t is the projector on the triplet subspace, and X̂ and J̃ are appropriately shifted quantities

x̂ and J (X̂ may depend on n̂t). Recall then the creation and annihilation operators of a harmonic

oscillator.

(b) Calculate the expectation value of the distance between the two spins, 〈d + x̂〉, as well
as the fluctuation, 〈(d + x̂)2〉. How are these quantities affected by a magnetic field in
z-direction, i.e., by adding an additional term in (5) of the form

Hm = −gµBH
∑
i

Ŝz
i ?

Hints. Write first those averages in terms of 〈n̂t〉, which you can calculate explicitly. Recall that
for a harmonic oscillator, 〈X̂〉 vanishes, as well as 〈a〉, 〈a2〉 etc.

Recalculate the partition function adding the magnetic field term and see how this affects 〈n̂t〉.

(c*) If the two sites are oppositely charged, i.e., ±q, the dimer forms a dipole with moment
P = q 〈d+ x̂〉. This dipole moment can be measured by applying an electric field E along
the x-direction, resulting in the additional Hamiltonian term

Hel = −q(d+ x̂)E .

Calculate the susceptibility of the dimer at zero electric field,

χ
(el)
0 = − ∂2F

∂E2

∣∣∣∣
E=0

,

and compare your result with the simple form of the fluctuation-dissipation theorem, which
asserts that

χ
(el)
0 ∝

〈
(d+ x̂)2

〉
−
〈
d+ x̂

〉2
. (7)

Hint. Proceeding as in Section 1.5.3 of the lecture notes or Exercise 2.1 (e), find out which step

no longer applies. How should (7) be “corrected”?

Plot the susceptibility at zero electric field as a function of an applied magnetic field H
and discuss your result.
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