
Statistical Physics.

Exercise Sheet 2.
HS 2013

Prof. Manfred Sigrist

Exercise 1. The Classical Ideal Paramagnet Reloaded.

Consider a lattice of N noninteracting particles, each possessing a magnetic moment ~mi of fixed
magnitude m which can point in any spacial direction. (This changes from last week’s exercise,
where mi = ±m.) The Hamiltonian is, as you might have guessed,

H = −
∑
i

~mi · ~H , (1)

where ~H is the externally applied magnetic field, assumed homogeneous and in the Z direction.

(a) Calculate the canonical partition function Z of the system.

(b) Calculate the free energy F , internal energy U and heat capacity C. Discuss the limiting
cases where kBT � mH and kBT � mH. Calculate the entropy S in those cases.

(c) If Mz is the thermodynamic variable corresponding to magnetization, show that

Mz = −
(
∂F

∂Hz

)
T,N

, (2)

if the paramagnet obeys the Curie law Mz = KHz/T for some constant K.

Hint. Remember that in the thermodynamics of magnetic systems, H and M replace respectively

variables p and V as conjugate variables.

(d) The magnetization in statistical mechanics is given by Mz =
∑

im
z
i . Show explicitly that

〈Mz〉 = − ∂F

∂Hz
. (3)

Calculate the value of 〈Mz〉. In which regime does the system obey Curie’s law?

(e) Calculate the fluctuations 〈M2
z 〉 − 〈Mz〉2 and relate them to the magnetic susceptibility

χzz = (∂Mz/∂Hz).

Exercise 2. Rigid Pendulums.
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We will now consider a lattice of N classical rigid rotors. Each
rotor is independent, is free to point in any spatial direction and
has a moment of inertia I = mR2. Its Hamiltonian is

H =
1

2I

(
p2θ +

p2ϕ

sin2 θ

)
. (4)

(a) Calculate the (canonical) partition function of the system
of N rotors. Calculate the internal energy and the heat
capacity. Study the regimes T → 0 and T →∞.
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We now immerse theN rotors into a gravitational field with potential V = mg xi,z = −mgR cos θi.

(b) Determine the partition function and compare it with the partition function of Exercise ??.
Calculate the free energy, internal energy and heat capacity of the system. Discuss the
limits T → 0 and T →∞.

Exercise 3. Independent Dimers in a Magnetic Field. Quantum vs Ising.

We consider a system of N independent dimers of two spins,
s = 1/2, described by the Hamiltonian

Hquantum
0 = J

∑
i

(
~Si,1 · ~Si,2

)
, (5)

where i is the dimer index and m = 1, 2 denotes the spin state
along z direction (|↑〉 or |↓〉). For simplicity, we use ~ = 1. To this quantum system corresponds
a classical Ising dimer, described by:

HIsing
0 =

1

2
J
∑
i

(
σi,1 · σi,2 −

1

2

)
, (6)

where σi,m = ±1. The spins are aligned along the z axis. We will use eigenstates and eigenen-
ergies to denote also the classical states and energies.

(a) What are the eigenstates and the eigenenergies of a single dimer for the two cases?

(b) For both cases consider the macroscopic system and determine the Helmholtz free energy,
the entropy, the internal energy and the specific heat as a function of temperature and
N . Discuss the limit T → 0 and T → ∞ for both signs of J (antiferromagnetic and
ferromagnetic case).

Note: The following exercises are left for the fun of the interested students.

(c*) We now apply a magnetic field along z direction leading to an additional term in the
Hamiltonian,

Hquantum
mag = −gµBH

∑
i,m

Szi,m (7a)

HIsing
mag = −gµBH

∑
i,m

σi,m
2
. (7b)

How do the eigenenergies change? Sketch the energies with respect to the applied field H,
the partition functions and determine the ground state for both cases. For the antiferro-
magnetic case you should notice a critical field. What differences do you notice between
the classical and quantum system when the the critical field is reached? For the quantum
case discuss in this context the entropy per dimer in the limit T → 0.

(d*) Calculate the magnetization m for the two cases. In which limit are they the same?
Moreover compute the magnetic susceptibility χ for the quantum case and discuss its
dependence on H for different temperatures.
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