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Introduction

Thermodynamics is a phenomenological, empirically derived description of the equilibrium prop-
erties of macroscopic physical systems. These systems are usually considered large enough such
that the boundary effects do not play an important role (we call this the ”thermodynamic
limit”). The macroscopic states of such systems can be characterized by several macroscopically
measurable quantities whose mutual relation can be cast into equations and represent the theory
of thermodynamics.
Much of the body of thermodynamics has been developed already in the 19th century before the
microscopic nature of matter, in particular, the atomic picture has been accepted. Thus, the
principles of thermodynamics do not rely on the input of such specific microscopic details. The
three laws of thermodynamics constitute the essence of thermodynamics.
Statistical Physics provides a road towards thermodynamics from a microscopic models of mat-
ter. We consider a macroscopic systems consisting of an extremely large number of (often
identical) microscopic entities which can be found in different microstates, whose dynamics is
often understood through a Hamiltonian. The number of degrees of freedom (variables) is large
enough such that following the evolution of each microscopic entity individually becomes in-
accessible. Rather a statistical approach taking averages over the microstates is appropriate
to derive the essential and desired information on the macroscopic properties of a macroscopic
system.
There are two basic viewpoints to this: (1) kinetic theory such as the Boltzmann kinetic gas
theory and (2) statistical physics based on the Gibbsian concept of ensembles.
(1) The kinetic theory is based on statistical time evolution of a macroscopic system using the so-
called Master equations. This allows us to discuss systems out of equilibrium which gradually
approach equilibrium after long time when they are left on their own . The motion towards
equilibrium is most impressively displayed in Boltzmann’s H-theorem. Equilibrium is reached
when macroscopic quantities do not show any time-dependence. Average properties are obtained
through time averages over microstates.
(2) The Gibbsian approach considers a large number of identical copies of the system each one
being in another microstate of the system, corresponding to the same macroscopic parameters
(energy, volume, etc). Here time does not play a role and the averages are taken over en-
sembles, as we will see below. In many aspects this is the more accessible approach to derive
thermodynamics and is for equilibrium physics equivalent to the kinetic theory if the ergodicity
of the system is guaranteed. This means any microstate in the ensembles is (approximately)
connected to any other microstate through temporal evolution following the dynamics given by
the Hamiltonian.

5



Chapter 1

Classical statistical Physics

Statistical physics deals with the equilibrium properties of matter and provides the microscopic
understanding and basis for thermodynamics. This chapter develops a new practical approach
to equilibrium state of macroscopic systems. Time is not a variable anymore and measurements
may be considered as averages over a large ensemble of identical systems in different possible
microscopic states under the same external parameters.

1.1 Gibbsian concept of ensembles

As a practical example, we consider the state of a gas of N classical particles, given by 3N canon-
ical coordinates q1, . . . , q3N and by the corresponding 3N conjugate momenta p1, . . . , p3N . These
define a 6N -dimensional space Γ, where each point in Γ represents a state of the microscopic
system. Considering the whole system of N particles under certain macroscopic conditions,
given external parameter such as temperature, pressure, volume, internal energy, .... , we find
that an infinite number of states in Γ are compatible with the same external condition, and
would not be distinguishable by macroscopic measurements.

ensemble

[p]

[q]
Γ

t=0

t>0

time evolution

Fig. 1.1: Time averages are replaced by averages over an ensemble of systems in different
microscopic states, but with the same macroscopic conditions.

If we would like to calculate a certain macroscopic quantity we could perform temporal average
of the microscopic variables over a very long evolution time. Based on the states in Γ this
is, however, not a practical method as it involves the discussion of the temporal evolution.
Gibbs introduced the concept of ensembles to circumvent this problem. Taking a large (infinite)
number of systems under identical macroscopic conditions, we can find macroscopic quantities
by averaging over an ensemble of states. That this scheme is equivalent to a temporal average
is a hypothesis, as it is assumed that the time evolution of the system would lead to all possible
states also represented in the ensemble. This is the ergodicity hypothesis.1 The set of states

1Ergodicity hypothesis: We consider the subspace defined by H(p, q) = E in Γ. Due to energy conservation a
point in this subspace, evolving in time, does not leave this subspace. The ergodicity hypothesis states, that a
point on H = E can reach in its temporal evolution every point of this subspace (Boltzmann, 1887). This is not
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for given macroscopic parameters is then represented by a distribution of points in the space Γ.
This distribution is generally continuous for a gas of particles.
For the calculation of averages we introduce the density function ρ(p, q) providing the measure
of the density of points in Γ-space ((p, q) stands for the whole state (p1, . . . , p3N ; q1, . . . q3N )).
Then

ρ(p, q)d3Npd3Nq (1.1)

gives the number of representative points contained in the small volume d3Npd3Nq in Γ, very
analogous to the distribution function in Boltzmann theory. This can now be used to calculate
averages of any desired quantity which can be expressed in the variable (p, q), A(p, q):

〈A〉 =

∫
dpdqA(p, q)ρ(p, q)∫

dpdqρ(p, q)
. (1.2)

We will use from now on the short notation dpdq for d3Npd3Nq where it is not misleading.

1.1.1 Liouville Theorem

The dynamics of the system of N particles shall be described by a Hamiltonian H(p, q) which
yields the equation of motion in the Hamiltonian formulation of classical mechanics,

ṗi = −∂H
∂qi

and q̇i =
∂H
∂pi

(i = 1, . . . , 3N) . (1.3)

This equation describes the motion of the points in Γ. If H does not depend on time derivatives
of pi and/or qi, then the equations of motion are time reversal invariant. They determine the
evolution of any point in Γ uniquely.
Now let us consider the points in the Γ space and note that their number does not change in
time, as if they form a fluid. Thus, they satisfy the continuity equation

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (1.4)

where ~v = (ṗ1, . . . , ṗ3N ; q̇1, . . . , q̇3N ) and ~∇ = (∂/∂p1, . . . , ∂/∂p3N ; ∂/∂q1, . . . , ∂/∂q3N ). Intro-
ducing the generalized substantial derivative we can rewrite this equation as

Dρ

Dt
+ ρ~∇ · ~v = 0 . (1.5)

The divergence of the ”velocity” ~v is

~∇ · ~v =

3N∑
i=1

{
∂q̇i
∂qi

+
∂ṗi
∂pi

}
=

3N∑
i=1

{
∂

∂qi

∂H
∂pi
− ∂

∂pi

∂H
∂qi

}
︸ ︷︷ ︸

= 0

= 0. (1.6)

This means that the points in Γ space evolve like an incompressible fluid. This property is
known as Liouville’s theorem. We may write this also in the form

0 =
Dρ

Dt
=
∂ρ

∂t
+

3N∑
i=1

{
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

}
=
∂ρ

∂t
+

3N∑
i=1

{
∂H
∂pi

∂ρ

∂qi
− ∂H
∂qi

∂ρ

∂pi

}
. (1.7)

Using Poisson brackets2 this equation reads

∂ρ

∂t
= {H, ρ} . (1.9)

rigorously valid, however. Ehrenfest’s version of this hypothesis (1911) states: The trajectory of a point comes
any other point in the same subspace arbitrarily close in the course of time. Of course, it is possible to find
(singular) counter examples, for which only a tiny fraction of the subspace is accessed.

2The Poisson bracket is defined as

{u, v} =
∑
i

{
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

}
= −{v, u} . (1.8)
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1.1.2 Equilibrium system

A satisfactory representation of a system in equilibrium requires for an ensemble that the density
function does not depend on time t, i.e. ∂ρ/∂t = 0. From Liouville’s theorem we get the
condition that

0 =
3N∑
i=1

{
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

}
= ~v · ~∇ρ = {H, ρ} . (1.10)

A general way to satisfy this is to take a density function which depends only on quantities
conserved during the motion, such as energy or particle number. Then the system would evolve
within a subspace where ρ is constant.
We may use this feature of ρ now to consider averages of certain quantities, based on the above
mentioned equivalence between the temporal and ensemble averages. Defining the temporal
average of A(p, q) as

〈A〉 = lim
T→∞

1

T

∫ T

0
A(p(t), q(t))dt (1.11)

for any starting point (p(t = 0), q(t = 0)) in the space Γ and (p(t), q(t)) obeying the equation
of motion (1.3). The hypothesis of ergodicity, even in its restricted sense, implies that this
average can be taken as an average of an ensemble of an infinite number of different microscopic
states (points in Γ-space). As the evolution of (p, q) conserves the energy, this leads naturally
to consider an ensemble of states of a fixed energy (internal energy). We call such ensembles
microcanonical. Although the microcanonical ensemble is not so frequently used in practice
than other ensembles which we will consider later, it is very useful for illustrative purposes. It
describes an isolated closed system with no energy exchange with the environment.
We postulate that in equilibrium any state of a macroscopic system satisfying the external
conditions appears with equal probability. In our microcanonical description with fixed energy,
number of particles N and volume V , we postulate

ρ(p, q) =


const. E ≤ H(p, q) ≤ E + δE

0 otherwise
(1.12)

where δE is small. The average value of A is then given by (1.2). The validity of this approach
is based on the assumption of small mean square fluctuations (standard deviation)

〈{A− 〈A〉}2〉
〈A〉2 � 1 . (1.13)

Such fluctuations should be suppressed by the order N−1 as we will see below.

1.2 Microcanonical ensemble

We consider a macroscopic system of N particles in a volume V which is isolated and closed.
The microcanonical ensemble for a given energy E consists of all systems of this kind, whose
energy lies in the range [E,E + δE]. First we define the phase volume

Φ(E) = ΛN

∫
H(p,q)≤E

dpdq , (1.14)

which contains all point in Γ space with energy lower than or equal to E. Moreover, ΛN is a
renormalization factor

ΛN =
1

N !h3N
(1.15)

which compensates for the over-counting of the phase space in the integral by dividing by the
number of equivalent states reached by permutations of the particles, N !. The factor h3N corrects
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for the dimension integral to produce a dimensionless Φ(E). Thus, h has the units of action
([pq] = Js). While this could be Planck constant h, its magnitude is completely unimportant in
classical statistical physics. From this we obtain the volume of the microcanonical ensemble as

ω(E) = Φ(E + δE)− Φ(E) =
dΦ(E)

dE
δE . (1.16)

Thus we now can renormalize ρ(p, q) with the condition,

1 = ΛN

∫
dp dq ρ(p, q) =

ΛN
ω(E)

∫
E≤H(p,q)≤E+δE

dp dq (1.17)

such that

ρ(p, q) =


1

ω(E)
E ≤ H(p, q) ≤ E + δE

0 otherwise

. (1.18)

As postulated ρ(p, q) is constant in the energy range [E,E + δE].

1.2.1 Entropy

We use ω(E) to define the entropy

S(E, V,N) = kB lnω(E) . (1.19)

We can consider ω(E) or S as a measure of the imprecision of our knowledge of the state of the
system. The more states are available in microcanonical ensemble, the less we know in which
state the system is at a given time and the larger is the volume ω and the entropy.
We consider a composite system consisting of two subsystems, 1 and 2,

H(p, q) = H1(p1, q1) +H2(p2, q2) , (1.20)

with (N1, V1) and (N2, V2), resp., for the corresponding particle number and volume. Each of
the two systems is characterized by ω1(E1) and ω2(E2), respectively. The volume ω(E) of the
microcanonical ensemble is the product of the subsystems under the conditions

E = E1 + E2 , N = N1 +N2 and V = V1 + V2 . (1.21)

For simplicity we assume that the volumes and particle numbers of the subsystems may be fixed,
while they can exchange energy, such that E1 and E2 can fluctuate. Therefore the volume of
the microcanonical ensemble of the total system for given E reads,

ω(E) =
∑

0≤E′≤E
ω1(E′) ω2(E − E′) , (1.22)

where we assume for the sum a ”discrete” mesh of equally spaced E′-values of mesh spacing
δE (� E). We claim that this sum is well approximated by a single value E′0 giving rise to
a sharp maximum among the summands (E1 = E′0 and E2 = E − E′0)3. The largest term is

3Note that lnωi ∝ Ni and Ei ∝ Ni (i = 1, 2) as both quantities are extensive. We then find quickly the
following bounds:

ω1(E′0)ω2(E − E′0) ≤ ω(E) ≤ E

δE
ω1(E′0)ω2(E − E′0) . (1.23)

Note that E/δE is the number of summands. Thus, we obtain for the entropy

kB lnω1(E′0)ω2(E − E′0) ≤ S(E) ≤ kB lnω1(E′0)ω2(E − E′0) + kB ln
E

δE
. (1.24)

It is important to see that the last term only scales with system size as lnN (keeping δE fixed), while the first
term scales with N . Therefore in the very large-N limit the last term is irrelevant. Which proves that S(E) is
given by the maximal term in the sum (1.22).
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obtained by
∂ω1(E′) ω2(E − E′)

∂E′

∣∣∣∣
E′=E′0

= 0 (1.25)

such that

0 =

{
1

ω1(E′)

∂ω1(E′)

∂E′
+

1

ω2(E − E′)
∂ω2(E − E′)

∂E′

}
E′=E′0

=
∂ lnω1(E1)

∂E1

∣∣∣∣
E1=E′0

− ∂ lnω2(E2)

∂E2

∣∣∣∣
E2=E−E′0

.

(1.26)

From this we obtain with Ē1 = E′0 and Ē2 = E − E′0
∂S1(E1)

∂E1

∣∣∣∣
E1=Ē1

=
∂S2(E2)

∂E2

∣∣∣∣
E2=Ē2

(1.27)

which can be considered as the equilibrium condition. Note that this is equivalent to the state-
ment that the equilibrium state corresponds to the macrostate with the largest number of mi-
croscopic realizations.
Identifying E as the internal energy U we define the temperature

∂S

∂U
=

1

T
⇒ 1

T1
=

1

T2
, (1.28)

leading to T as an equilibrium state variable. We have ignored the other variables V,N which
we will consider later.
Let us assume that there is some impediment which forces the two subsystems to specific vari-
ables such that each subsystem independently is at equilibrium, but not the total system. For
example, a big vessel of gas may be separated by a wall into two subvessels. Then we find for
the corresponding ω of the combined system,

ω̃(E, V,N) = ω1(E1, V1, N1)ω2(E2, V2, N2) with


E = E1 + E2

V = V1 + V2

N = N1 +N2

(1.29)

such that the entropy is given by

S̃(E, V,N) = S1(E1, V1, N1) + S2(E2, V2, N2) ≤ S(E, V,N) , (1.30)

i.e. the entropy is concave. This means also the equilibrium is obtained by the maximal entropy,
which is a consequence of the second law of thermodynamics. In terms of the volume of the
microcanonical volume ω the equilibrium state assumes among all volumes the maximal one,
the most likely one in terms of probability.

1.2.2 Relation to thermodynamics

With (1.19) we have a definition of the entropy which for the variables E(= U), V and N is a
thermodynamic potential and allows us to calculate a variety of state variables and relations,

dS =

(
∂S

∂E

)
V,N

dE +

(
∂S

∂V

)
E,N

dV +

(
∂S

∂N

)
E,V

dN =
1

T
dE +

p

T
dV − µ

T
dN . (1.31)

This allows also to calculate the thermodynamic equation of state,

p = T

(
∂S

∂V

)
E,N

(1.32)
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and to determine other thermodynamic potentials. The caloric equation of state is obtained
from (

∂S

∂U

)
V,N

=
1

T
, (1.33)

by using U = E as the internal energy. The derivative with respect to N yields finally the
chemical potential

µ = −T
(
∂S

∂N

)
E,V

, (1.34)

the energy in order to add a particle to the system.

1.2.3 Ideal gas - microcanonical treatment

We consider a classical gas of N independent mono-atomic particles in the fixed volume V ,
which is closed and isolated. The Hamiltonian is simply given by

H(p, q) = H(p) =

N∑
i=1

~p 2
i

2m
. (1.35)

Hence we obtain the volume

Φ(E) = ΛN

∫
H(p)≤E

dpdq = ΛNV
N

∫
H(p)≤E

dp . (1.36)

This p-integral corresponds to the volume of a sphere of radius R in 3N -dimensional space.4

The integral is straightforward,

Φ(E) = ΛNV
NC3N (2mE)3N/2 with Cn =

πn/2

Γ
(
n
2 + 1

) (1.39)

4Volume of sphere in ν-dimensional space: V(R) = CRν . The volume enclosed in a thin shell of width δR at
the radius R is given by

vshell = V(R)− V(R− δR) = CRν
[
1−

(
1− δR

R

)ν]
(1.37)

with δR� R, see Fig. 1.2 . In the limit ν very large, νδR� R, we find

vshell ≈ V(R) . (1.38)

Thus, the main part of the volume in the sphere is concentrated at the outermost shell.
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Fig. 1.2: The volume of the sphere is located close to the surface in high dimensions, see the central diagram.
Thus, the fraction of the volume close to the shell and the total volume converges towards one as n→∞

(diagram on the right hand side).
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where C3N is the proper prefactor for the volume of an 3N -dimensional sphere.5 This leads to

ω(E) =
∂Φ(E)

∂E
δE = ΛNC3NV

N 3N

2
2m (2mE)3N/2−1 δE . (1.42)

Remarkably, for very large N (∼ 1023) we find that the following definitions for the entropy are
identical up to terms of order lnN and constants:

Sω = kB lnω(E, V,N) and SΦ = kB ln Φ(E, V,N) (1.43)

leading to

Sω = kB ln(ΛNV
NC3N ) + kB

(
3N

2
− 1

)
ln(2mE) + kB ln

(
3N

2
2mδE

)

= kB ln(ΛNV
NC3N ) + kB

3N

2
ln(2mE) +O(lnN) = SΦ +O(lnN) .

(1.44)

Since we can drop terms of order lnN for the extensive entropy, we will continue, for convenience,
using SΦ instead of Sω,

S(E, V,N) = NkB ln

{
V

(
2mπE

h2

)3/2
}
− 3N

2
kB ln

3N

2
+

3N

2
kB −NkB lnN +NkB (1.45)

where we used Stirling’s formula

lnn! ≈ n lnn− n+
1

2
ln(2πn) for n→∞ , (1.46)

and neglected all terms of order lnN . We then rewrite

S(E, V,N) = NkB ln

{
V

N

(
4πmE

3Nh2

)3/2
}

+
5

2
NkB . (1.47)

This equation may now be solved for E so that we obtain the internal energy as a thermodynamic
potential

U(S, V,N) = E =
3N5/3h

4πmV 2/3
exp

{
2S

3NkB
− 5

3

}
. (1.48)

The thermodynamic quantities are obtained by derivation: the temperature

T =

(
∂U

∂S

)
V,N

=
2U

3NkB
⇒ U =

3

2
NkBT , (1.49)

the pressure

p = −
(
∂U

∂V

)
S,N

=
2

3

U

V
=
NkBT

V
⇒ pV = NkBT , (1.50)

and the chemical potential

µ =

(
∂U

∂N

)
S,V

=
U

N

(
5

3
− 2

3

S

NkB

)
= −kBT ln

{
V

N

(
2πmkBT

h2

)3/2
}
. (1.51)

Through further derivatives it is possible to obtain various response functions. The ideal gas is
readily described by means of the microcanonical ensemble.

5Prefactor Cn: Use the n-dimensional Gaussian integral in Cartesian coordinates

I =

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dxne

−(x21+···+x2n) =

(∫ +∞

−∞
dxe−x

2
)n

= πn/2 . (1.40)

The same integral in spherical coordinates is given by

I = nCn

∫ ∞
0

drrn−1e−r
2

=
n

2
Cn

∫ ∞
0

dt t
n
2
−1e−t =

n

2
CnΓ

(n
2

)
= CnΓ

(n
2

+ 1
)

(1.41)

such that we obtain Cn given in (1.39). Note, Γ(n+ 1) = n! for n ≥ 0 as an integer.
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1.3 Canonical ensemble

We change to a macroscopic system for which we control the temperature by connecting it to a
very large heat reservoir. The system together with the reservoir forms a closed system of given
total energy. Therefore we consider two subsystems, system 1 describing our system and system
2 being the heat reservoir,

H(p, q) = H1(p1, q1) +H2(p2, q2) . (1.52)

The heat reservoir is much larger than system 1, N2 � N1, such that energy transfer between
the two subsystems would be too small to change the temperature of the reservoir. Within
the microcanonical scheme we determine the phase space of the combined system in the energy
range

E ≤ E1 + E2 ≤ E + δE . (1.53)

E  , S   , T

11

2 2

E  , S   , T

Fig. 1.3: The two systems 1 and 2 are coupled thermally. System 2 acts as a huge reservoir
fixing the temperature of the system 1 which we want to investigate.

Therefore the volume of the microcanonical ensemble of the total system is

ω(E) =
∑

0≤E1≤E
ω1(E1)ω2(E − E1) . (1.54)

Analogously to our previous discussion in section 1.2.1, there is one value Ē1 = E′0 (Ē2 = E−E′0)
which provides the by far dominant contribution. In addition here Ē2 � Ē1 is valid. The
corresponding volumes in Γ-space are ω1(Ē1) and ω2(Ē2) and ω(E) ≈ ω1(Ē1)ω2(E − Ē1). Due
to this simple product form we can determine the density function ρ1(p1, q1) of the system 1, by
considering the mean value of A(p, q) in system 1,

〈A〉1 =

∫
1 dp1dq1A(p1, q1)

∫
2 dp2dq2ρ(p, q)∫

1 dp1dq1

∫
2 dp2dq2ρ(p, q)

=

∫
1 dp1dq1A(p1, q1)ρ1(p1, q1)∫

1 dp1dq1ρ1(p1, q1)
. (1.55)

Taking into account that ρ(p, q) is constant in the range E ≤ H1(p1, q1) +H2(p2, q2) ≤ E + δE
we obtain

〈A〉1 =

∫
1 dp1dq1A(p1, q1)ω2(E −H1(p1, q1))∫

1 dp1dq1ω2(E −H1(p1, q1))
. (1.56)

Using the assumption that Ē2 ≈ E � Ē1 we may expand ω2(E −H1(p1, q1)) in H1(p1, q1)) ,

kB lnω2(E −H1(p1, q1)) = S2(E −H1(p1, q1)) = S2(E)−H1(p1, q1)
∂S2(Ē2)

∂E2

∣∣∣∣
Ē2=E

+ · · ·

= S2(E)− H1(p1, q1)

T
+ · · ·

(1.57)
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from which we derive

ω2(E −H1(p1, q1)) = eS2(E)/kBe−H1(p1,q1)/kBT . (1.58)

Here T is the temperature of both systems which are in equilibrium.
Within the canoncial ensemble, taking the temperature T as a given parameter, we write gener-
ally for the density function, the probability to find the system of N particles in the microstate
(p, q),

ρ(p, q) =
1

Z
e−H(p,q)/kBT , (1.59)

where we introduced the partition function Z

Z = ΛN

∫
dp dqe−βH(p,q) with β =

1

kBT
, (1.60)

which, up to prefactors, corresponds to the volume of the ensemble of system 1, called canonical
ensemble, again renormalized by ΛN .6

1.3.1 Thermodynamics

The connection to thermodynamics is given by the relation

Z = e−βF (T,V,N) , (1.61)

where F (T, V,N) is the Helmholtz free energy, a thermodynamical potential. Note, F is an
extensive quantity, because obviously scaling the system by a factor λ would yield Zλ. Moreover,

F = U − TS (1.62)

with

U = 〈H〉 and S = −
(
∂F

∂T

)
V,N

. (1.63)

This can be proven using the equation,

1 = ΛN

∫
dp dqeβ(F−H) , (1.64)

which through differentiation with respect to β on both sides gives,

0 = ΛN

∫
dp dqeβ(F−H)

{
F + β

(
∂F

∂β

)
V,N

−H
}

⇒ F (T, V,N)− U(T, V,N)− T
(
∂F

∂T

)
V,N

= 0 .

(1.65)

Using this formulation for the free energy we obtain for the pressure

p = −
(
∂F

∂V

)
T,N

, (1.66)

which in the case of a gas leads to the thermodynamic equation of state.
The internal energy is easily obtained from the partition function in the following way,

U(T, V,N) = 〈H〉 =
ΛN
Z

∫
dp dq He−βH = − 1

Z

∂Z

∂β
= − ∂

∂β
lnZ . (1.67)

This is the caloric equation of state.

6Note that there is, rigorously speaking, the constraint H1(p1, q1) < E. However, ignoring this constraint is a
good approximation, as the main contribution is from the valid range.
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1.3.2 Equipartition law

We now consider a set of special average values which will lead us to the so-called equipartition
law, the equal distribution of energy on equivalent degrees of freedom. We examine the mean
value, 〈

qµ
∂H
∂qν

〉
=

ΛN
Z

∫
dp dqqµ

∂H
∂qν

e−βH = −ΛN
Zβ

∫
dp dqqµ

∂

∂qν
e−βH

= −ΛN
Zβ

∫ ′
dp d′q qµe

−βH︸ ︷︷ ︸
= 0

+
ΛNδµν
Zβ

∫
dpdqe−βH = δµνkBT ,

(1.68)

where we used integration by parts leading to the boundary terms in the qν-coordinate (expressed
by
∫ ′
d′q...), which we assume to vanish. Analogously we find for the momentum〈

pµ
∂H
∂pν

〉
= δµνkBT . (1.69)

If the Hamiltonian is separable into a p-dependent kinetic energy and a q-dependent potential
energy part and, moreover, if the following scaling behavior is valid

H(p, q) = Ekin(p) + V (q) with Ekin(λp) = λ2Ekin(p) and V (λq) = λαV (q) (1.70)

then we can use the above relations and find for mono-atomic particles

〈Ekin〉 =
3N

2
kBT and 〈V 〉 =

3N

α
kBT . (1.71)

The total energy is given by the sum of the two contributions.

1.3.3 Ideal gas - canonical treatment

Consider a gas of N particles without external potential and mutual interactions described by
the Hamiltonian

H(p) =

N∑
i=1

~pi
2

2m
. (1.72)

The partition function is given by

Z = ΛN

N∏
i=1

∫
d3pi d

3qi e
−~pi 2/2mkBT = ΛN

{∫
d3p d3q e−~p

2/2mkBT

}N

= ΛNV
N {2πmkBT}3N/2 .

(1.73)

From this we obtain the free energy and the internal energy using Stirling’s formula,

F (T, V,N) = −kBT lnZ = −NkBT ln

{
V

N

(
2πmkBT

h2

)3/2
}
−NkBT ,

U(T, V,N) = − ∂

∂β
lnZ =

3N

2
kBT (caloric equation of state) .

(1.74)

The entropy is given by

S(T, V,N) = −
(
∂F

∂T

)
V,N

= NkB ln

{
V

N

(
2πmkBT

h2

)3/2
}

+
5N

2
kB (1.75)
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and the pressure by

p = −
(
∂F

∂V

)
T,N

=
NkBT

V
(1.76)

which corresponds to the thermodynamic equation of state. Finally the chemical potential is
obtained as

µ =

(
∂F

∂N

)
T,V

= −kBT ln

{
V

N

(
2πmkBT

h2

)3/2
}
. (1.77)

An important aspect for the ideal system is the fact that the partition function has a product
form because each particle is described independently. In this way it leads to an extensive free
energy and internal energy.

1.4 Grand canonical ensemble

We consider now a new situation by allowing beside the heat exchange also the exchange of
matter of our system with a very large reservoir, see Fig. 1.4 . Thus we take the system 1 with
N1 particles in a volume V1 coupled to the reservoir 2 with N2 particles in the volume V2 with

N1 � N2 and V1 � V2 , (1.78)

and N = N1 +N2 and V = V1 + V2 fixed.

T

N2, V2
N1, V1

T, µ
T, µ

Fig. 1.4: The two systems 1 and 2 can exchange matter between each other while the
surrounding heat reservoir fixes the temperature of system 1 and 2. System 2 acts as a huge

particle reservoir fixing the chemical potential µ of the system 1 which we want to investigate.

The Hamiltonian can be decomposed into two parts

H(p, q,N) = H(p1, q1, N1) +H(p2, q2, N2) (1.79)

such that the corresponding partition function for given temperature (everything is coupled to
an even larger heat reservoir) is given by

ZN (V, T ) =
1

h3NN !

∫
dp dq e−βH(p,q,N) . (1.80)

The factor 1/N ! takes into account that all possible commutation of the particles give the same
states (distinguishable classical particles). Now we segregate into the subsystems fixing the
volumes and particle numbers (N2 = N −N1),

ZN =
1

h3NN !

N∑
N1=0

N !

N1!N2!

∫
dp1 dp2

∫
V1

dq1

∫
V2

dq2e
−β{H(p1,q1,N1)+H(p2,q2,N2)}

=
N∑

N1=0

1

h3N1N1!

∫
V1

dp1 dq1 e
−βH(p1,q1,N1) 1

h3N2N2!

∫
V2

dp2 dq2 e
−βH(p2,q2,N2) .

(1.81)
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Note that the distribution of the particles into the two subsystems is not fixed yielding the
combinatorial factor of N !/N1!N2! (number of configurations with fixed N1 and N2 by permuting
the particles in each subsystem). From this we define the probability ρ(p1, q1, N1) that we can
find N1 particles in the volume V1 at the space coordinates (p1, q1),

ρ(p1, q1, N1) =
e−βH(p1,q1,N1)

ZNN1!h3N2N2!

∫
V2

dp2 dq2 e
−βH(p2,q2,N2) (1.82)

which is renormalized as
N∑

N1=0

1

h3N1

∫
V1

dp1dq1ρ(p1, q1, N1) = 1 . (1.83)

We may write

ρ(p1, q1, N1) =
ZN2

ZN

1

N1!
e−βH(p1,q1,N1) , (1.84)

where we now use the relation

ZN2(V2, T )

ZN (V, T )
= e−β{F (T,V−V1,N−N1)−F (T,V,N)} (1.85)

with

F (T, V − V1, N −N1)− F (T, V,N) ≈ −
(
∂F

∂V

)
T,N

V1 −
(
∂F

∂N

)
T,V

N1 = −µN1 + pV1 . (1.86)

Thus we define
z = eβµ (1.87)

which we call fugacity. Thus within the grand canonical ensemble we write for the density
function

ρ(p, q,N) =
zN

N !
e−β{pV+H(p,q,N)} . (1.88)

µ is the chemical potential as introduced earlier. We now introduce the grand partition function

Z(T, V, z) =

∞∑
N=0

zNZN (V, T ) , (1.89)

which incorporates all important information of a system of fixed volume, temperature and
chemical potential.

1.4.1 Relation to thermodynamics

We use now (1.88) and integrate both sides

1 = e−βpV
∞∑
N=0

zN

N !

∫
dp dq

h3N
e−βH(p,q,N) = e−βpV Z(T, V, z) (1.90)

which leads to
Ω(T, V, µ) = −pV = −kBT lnZ(T, V, z) , (1.91)

the grand potential
dΩ = −SdT − pdV −Ndµ . (1.92)

The average value of N is then given by

〈N〉 = −
(
∂Ω

∂µ

)
T,V

= kBT
∂

∂µ
lnZ = z

∂

∂z
lnZ =

1

Z
∞∑
N=0

NzNZN . (1.93)

It is also convenient to derive again the internal energy

U = − ∂

∂β
lnZ ⇒ CV =

(
∂U

∂T

)
V,µ

. (1.94)
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1.4.2 Ideal gas - grand canonical treatment

For the ideal gas, it is easy to calculate the grand partition function (here for simplicity we set
h = 1),

Z(T, V, z) =
∞∑
N=0

zNZN (T, V ) =
∞∑
N=0

zN

N !
V N (2πmkBT )3N/2 = exp

{
zV (2πmkBT )3/2

}
. (1.95)

We can also derive the probability PN of finding the system with N particles. The average value
is given by

〈N〉 = z
∂

∂z
zV (2πmkBT )3/2 = zV (2πmkBT )3/2 ⇒ Z = e〈N〉 . (1.96)

From this we conclude that the distribution function for the number of particles is given by

PN = e−〈N〉
〈N〉N
N !

≈ 1√
2π〈N〉

e−(N−〈N〉)2/2〈N〉 (1.97)

which is strongly peaked at N = 〈N〉 � 1.7 The fluctuations are given by

〈N2〉 − 〈N〉2 = z
∂〈N〉
∂z

= 〈N〉 ⇒ κT =
v

kBT
=

1

p
. (1.98)

The grand potential is given by

Ω(T, V, µ) = −kBTeβµV (2πmkBT )3/2 = −kBT 〈N〉 = −pV . (1.99)

The chemical potential is obtained by solving Eq.(1.96) for µ

µ = kBT ln

(
〈N〉(2πmkBT )−3/2

V

)
. (1.100)

1.4.3 Chemical potential in an external field

In order to get a better understanding of the role of the chemical potential, we now consider an
ideal gas in the gravitational field, i.e. the particles are subject to the potential φ(h) = mgh̃,
where h̃ and g denote the altitude and We introduce a reference chemical potential µ0 as a
constant. Then we write for the chemical potential,

µ = µ0 +mgh̃+ kBT ln
{
n(2πmkBT )−3/2

}
(1.101)

where we define n = 〈N〉/V as the local number density of particles. In equilibrium the tem-
perature and the chemical potential shall be constant. We may determine µ by the condition
that at h̃ = 0 the density is n = n0,

µ(T ) = µ0 + kBT ln
{
n0(2πmkBT )−3/2

}
⇒ mgh = kBT ln

(n0

n

)
. (1.102)

We can now solve this equation for n = n(h̃),

n(h̃) = n0e
−βmgh̃ , (1.103)

and with the (local) equation of state we find

p(h̃) = n(h)kBT = p0e
−βmgh̃ . (1.104)

This is the famous barometer formula.
7Note that for µ > 0 it pays the energy µ to add a particle to the system. Therefore as T goes to 0 the average

particle number 〈N〉 increases (diverges). Oppositely, 〈N〉 decreases for T → 0, if µ < 0 and energy has to be
paid to add a particle.
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1.5 Fluctuations

Changing from one type of ensemble to the other we have seen that certain quantities which
have been strictly fixed in one ensemble are statistical variables of other ensembles. Obvious
examples are the internal energy which is fixed in the microcanonical ensemble but not in the
other two, or the particle number which is fixed in the microcanonical and canonical ensembles
but not in the grand canonical ensemble. The question arises how well the mean values of
these quantities are determined statistically, which is connected with the equivalence of different
ensembles. In this context we will also introduce the fluctuation-dissipation theorem which
connects the fluctuations (statistical variance) of a quantity with response functions.

1.5.1 Energy

In the canonical ensemble the internal energy is given as the average of the Hamiltonian U = 〈H〉.
Therefore the following relation holds:

ΛN

∫
dp dq [U −H] eβ(F−H) = 0 . (1.105)

Taking the derivative of this equation with respect to β we obtain

0 =
∂U

∂β
+ ΛN

∫
dp dq (U −H)

[
F − T ∂F

∂T
−H

]
eβ(F−H) =

∂U

∂β
+ 〈(U −H)2〉 . (1.106)

This leads to the relation for the fluctuations of the energy around its average value U ,

〈H2〉 − 〈H〉2 = 〈(U −H)2〉 = −∂U
∂β

= kBT
2∂U

∂T
= kBT

2CV . (1.107)

Because CV is an extensive quantity and therefore proportional to N , it follows that

〈H2〉 − 〈H〉2
〈H〉2 ∝ 1

N
(1.108)

which is a sign of the equivalence of microcanonical and canonical ensembles. In the thermo-
dynamic limit N → ∞, the fluctuations of the energy vanish compared to the energy itself.
Therefore the internal energy as U = 〈H〉 = E is a well defined quantity in the canonical
ensemble as well as it was in the microcanonical ensemble.

We now consider the partition function

Z = ΛN

∫
dp dq e−βH(p,q) =

∫ ∞
0

dE ω(E)e−βE =

∫ ∞
0

dE e−βE+lnω(E) =

∫ ∞
0

dE eβ(TS(E)−E)

(1.109)
where the entropy S(E) is defined according to the microcanonical ensemble. The maximum of
the integrand at E = E0 is defined by the condition, see Fig. 1.5,

T
∂S

∂E

∣∣∣∣
E=E0

= 1 and
∂2S

∂E2

∣∣∣∣
E=E0

< 0 . (1.110)

Note that
∂2S

∂E2

∣∣∣∣
E=E0

=
∂

∂E

1

T

∣∣∣∣
E=E0

= − 1

T 2

∂T

∂E

∣∣∣∣
E=E0

= − 1

T 2CV
< 0 . (1.111)

If we now expand the exponent in the integrand, we obtain

TS(E)− E = TS(E0)− E0 −
1

2TCV
(E − E0)2 + · · · (1.112)
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such that with U = E0,

Z ≈ eβ(TS−U)

∫ ∞
0

dE e−(E−U)2/2kBT
2CV = eβ(TS−U)

√
2πkBT 2CV

⇒ F ≈ U − TS − 1

2
kBT ln

{
2πkBT

2CV
}

= U − TS +O(lnN) .

(1.113)

Since the free energy is extensive, the term of order lnN is in the large-N limit irrelevant.

Gaussian approximation

U = E0

eβ(TS(E)−E)

Fig. 1.5: Saddle point approximation of the partition function, i.e. the approximation of the
integrand by a Gaussian.

1.5.2 Particle number

We consider now the fluctuations of the particle number. The following relation holds

〈N2〉 − 〈N〉2 = z
∂

∂z
z
∂

∂z
lnZ = z

∂

∂z

1

Z
∑
N

NzNZN =
1

Z
∑
N

N2zNZN −
{

1

Z
∑
N

NzNZN

}2

(1.114)
from which we derive

〈N2〉 − 〈N〉2 = −kBT
∂2

∂µ2
Ω(T, V, µ) = kBT

∂〈N〉
∂µ

. (1.115)

We now relate the right hand side with the isothermal compressibility. Introducing the specific
volume v = V/N we consider µ = µ(v, T ) (note that µ is not extensive). Moreover we use the
Gibbs-Duhem relation

SdT − V dp+Ndµ = 0 (1.116)

which derives from considerations on the Gibbs free energy (see thermodynamics course) and
obtain

dµ = v dp− S

N
dT ⇒

(
∂µ

∂v

)
T

= v

(
∂p

∂v

)
T

. (1.117)

Since v = V/N depends on both V and N , the following derivatives are useful(
∂

∂v

)
V,T

=

(
∂N

∂v

)
V,T

(
∂

∂N

)
V,T

= −N
2

V

(
∂

∂N

)
V,T

,

(
∂

∂v

)
N,T

=

(
∂V

∂v

)
N,T

(
∂

∂V

)
N,T

= N

(
∂

∂V

)
N,T

.

(1.118)

From (1.117) then conclude

− N2

V

(
∂µ

∂N

)
V,T

= V

(
∂p

∂V

)
N,T

⇒ 1

N

(
∂N

∂µ

)
V,T

= − 1

vV

(
∂V

∂p

)
N,T

=
κT
v
. (1.119)

Consequently the fluctuations of the particle number is connected with the response function,
κT , the isothermal compressibility,

κT =
v

〈N〉kBT
{
〈N2〉 − 〈N〉2

}
. (1.120)
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1.5.3 Magnetization

Considering a system of N classical magnetic moments ~m i which have fixed magnitude m and
can be fully rotated, we define the magnetization

~M =
N∑
i=1

~m i . (1.121)

The average value of the magnetization is

〈Mz〉 = N〈m1,z〉 =

∫ N∏
i=1

dΩiMze
β[F−H( ~m 1,..., ~mN ; ~H )] = −

(
∂F

∂Hz

)
T,N

. (1.122)

Note that the magnetic field couples to magnetic moments through Zeeman coupling,

H( ~m 1, . . . , ~mN ; ~H ) = H0( ~m 1, . . . , ~mN )− ~H · · · ~M . (1.123)

Now we discuss the equation,

0 =

∫
dΩ1 · · · dΩN (〈Mz〉 −Mz)e

β(F−H) , (1.124)

taking the derivative with respect to the field Hz leads to

0 =
∂〈Mz〉
∂H

− β
∫
dΩ1 · · · dΩN (〈Mz〉 −Mz)

∂

∂Hz
(F −H) eβ(F−H)

= χzz − β
∫
dΩ1 · · · dΩN (〈Mz〉 −Mz)

2eβ(F−H) = χzz − β〈(〈Mz〉 −Mz)
2〉 .

(1.125)

This yields the convenient fluctuation-dissipation relation for magnetic susceptibility,

χzz =
1

kBT

{
〈M2

z 〉 − 〈Mz〉2
}
. (1.126)
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Chapter 2

Quantum Statistical Physics

Quantum statistical physics opens the door to new phenomena and also provides an under-
standing of the third law of thermodynamics, which we had found to be often violated within
classical statistical physics. Moreover, we will find that for ideal quantum gases the concept of
indistinguishable particles leads to the classification of particles into two categories: Bosons and
Fermions.

2.1 Basis of quantum statistical physics

Every state of a quantum mechanical system can be described by a superposition of stationary
states |ψn〉 of the Hamiltonian H, which form a complete orthonormal basis,

|Ψ〉 =
∑
n

cn|ψn〉 (2.1)

where the complex coefficients cn represent the wavefunction whose time dependence is deter-
mined by the Hamiltonian H. For the stationary states the following holds:

H|ψn〉 = εn|ψn〉 with 〈ψn|ψn′〉 = δnn′ and 1 =
∑
n

|ψn〉〈ψn| . (2.2)

The renormalization of the state |Ψ〉 requires

1 = 〈Ψ|Ψ〉 =
∑
n,n′

c∗ncn′〈ψn|ψn′〉 =
∑
n

|cn|2 . (2.3)

The square modulus |cn|2 denotes the probability to find the state |ψn〉 in |Ψ〉.
Observable quantities are represented by Hermitian operators A, and their expectation value is

〈Ψ|A|Ψ〉 =
∑
n,n′

c∗ncn′〈ψn|A|ψn′〉 . (2.4)

This expectation value is generally time dependent, cn = cn(t).
Let’s consider now a measurement of a macroscopic observable, which corresponds to an average
(indicated here by over-bar) over a time much longer than the microscopic time scales (time
between collisions, inverse energy spacing, etc.),

〈Ψ|A|Ψ〉 =
∑
n,n′

c∗ncn′〈ψn|A|ψn′〉 , (2.5)

and focus on eigenstates in a certain narrow energy range, E ≤ εn ≤ E + δE (microcanonical
point of view). The quantum statistical physics is based on two key postulates:
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• Equal probability:

c∗ncn =


r , E ≤ εn ≤ E + δE ,

0 , otherwise ,
(2.6)

where r is a real constant.

• Random phase: if n 6= n′ then
c∗ncn′ = 0 , (2.7)

i.e. the phase of the wavefunction is a random variable. Such a behavior requires an at
least weak coupling to the environment in order to randomize the phases.

As a consequence averaged expectation values are given by

〈Ψ|A|Ψ〉 =
∑
n

|cn|2〈ψn|A|ψn〉 (2.8)

which corresponds to considering the state |Ψ〉 as an incoherent superposition of the eigenstates
(pure versus mixed state). We may consider the drop out of interference terms as an effect of
averaging over a long time whereby the phases depend on time. Alternatively, we average over
an ensemble of many different states with different phases.

2.2 Density matrix

Mixed states or incoherent superpositions of states are conveniently described by density matrices
ρ̂. We define first the density matrix as an operator through its matrix elements

〈ψn|ρ̂|ψn′〉 = ρnn′ = |cn|2δnn′ . (2.9)

In the basis of stationary states the density matrix is diagonal. Therefore we may formally write
the density matrix in spectral form as

ρ̂ =
∑
n

|cn|2|ψn〉〈ψn| . (2.10)

We may also express the average value of A as a trace of the form,

〈A〉 =

∑
n〈ψn|Aρ̂|ψn〉∑
n〈ψn|ρ̂|ψn〉

=
tr(Aρ̂)

trρ̂
. (2.11)

Note that the final expression is independent of the basis {|ψn〉}, as known from standard linear
algebra. The cyclic permutation of matrices (operators) does not change the trace: tr(ABC) =
tr(BCA). Thus the basis transformation U yields A′ = UAU−1, such that

tr(A′) = tr(UAU−1) = tr(AU−1U) = tr(A) . (2.12)

In this sense the density matrix is a convenient tool to perform ensemble averages as it contains
basis-free informations. In order to describe equilibrium properties ρ̂ should not depend on
time t and therefore it should commute with the Hamiltonian,

i~
∂ρ̂

∂t
= [H, ρ̂] = 0 . (2.13)

It is obvious that the density matrix defined in (2.10) commutes with H. Compare this with
Liouville’s theorem of classical mechanics.
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2.3 Ensembles in quantum statistics

We now formulate the quantum statistical physics in terms of the three types of ensembles which
we introduced for the classical statistical physics.

2.3.1 Microcanonical ensemble

The microcanonical ensemble is suitable for closed systems which do not exchange energy and
particles with the environment. We take the density matrix in its diagonal form ρnn′ = δnn′ |cn|2.
In this ensemble we consider an incoherent state which consists of the equally distributed set of
states within a certain narrow energy range between E and E + δE. Thus,

|cn|2 =


1 E ≤ εn ≤ E + δE

0 otherwise .
(2.14)

The energies εn are the eigenenergies of the stationary states |ψn〉 for the Hamiltonian H.
Formally we then write the density matrix as

ρ̂ =
∑

E≤εn≤E+δE

|ψn〉〈ψn| with trρ̂ =
∑
n

ρnn = ω(E) . (2.15)

Here ω(E) is the number of quantum states |ψn〉 with energy in the given energy range. Anal-
ogously to the classical case we use now ω(E) to define the entropy

S(E, V ) = kB lnω(E) . (2.16)

From this we may derive the thermodynamics. Note that ω(E) is connected with the density of
states dΦ(E)/dE of the quantum system.

Φ(E) =
∑
n

Θ(E − εn) ⇒ ω(E) =
dΦ(E)

dE
δE (2.17)

with Θ(x) as the step function

Θ(x) =

{
1 x > 0
0 x ≤ 0

. (2.18)

2.3.2 Canonical ensemble

For a system which is in thermal equilibrium with a reservoir of given temperature T we use the
canoncial ensemble formulation. Analogously to the classical statistical physics we define the
density matrix here as

ρ(p, q) = e−βH(p,q) → ρnn′ = δnn′e
−βεn , (2.19)

and we define the partition function as

Z =
∑
n

e−βεn = trρ̂ = e−βF (T,V,N) (2.20)

where F is the Helmholtz free energy. The density matrix can be written as an operator,

ρ̂ =
∑
n

|ψn〉e−βεn〈ψn| = e−βH
∑
n

|ψn〉〈ψn|︸ ︷︷ ︸
=1

= e−βH . (2.21)

Thus the partition function can also be expressed as

Z = tre−βH (2.22)
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and average values of observables are given by

〈A〉 =
tr(Ae−βH)

tre−βH
=

1

Z
tr
(
Ae−βH

)
. (2.23)

The connection to thermodynamics is given via the Helmholtz free energy,

F (T, V,N) = −kBT lnZ . (2.24)

2.3.3 Grand canonical ensemble

Now we connect the system in addition to the heat reservoir also to the particle reservoir of
given chemical potential µ. In the same spirit as for the canonical ensemble we use the analogy
to the classical systems. The density matrix now reads,

ρ̂ = e−β(H−µN̂) (2.25)

with N the particle number operator and the grandcanonical partition function is then

Z = tre−β(H−µN̂) =
∑
N

zNZN (2.26)

with z = eβµ as the fugacity, leading to the grand potential

Ω(T, V, µ) = −kBT lnZ . (2.27)

2.4 Ideal quantum paramagnet - canonical ensemble

The ideal paramagnet with quantum spins represents a simple example to illustrate some aspects
of quantum statistics before going to the more involved cases.

2.4.1 Spin 1/2

We consider N quantum spin 1/2 moments where for each spin the Hilbert space contains two
states, {| ↑〉, | ↓〉} for a given quantization axis which we may choose to be the z-axis. In a
magnetic field these moments are described by the Hamiltonian,

H = −µBg
~

N∑
i=1

~H · ~̂Si = −gµB
2

N∑
i=1

~H · ~̂σi (2.28)

with µB the Bohr magneton and g = 2 the gyromagnetic ratio. The Pauli matrices are defined
as

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
and σ̂z =

(
1 0
0 −1

)
, (2.29)

and σ̂0 is the 2× 2 unit matrix. Now we use the properties1

(~a · ~̂σ)2n = |~a |2nσ̂0 and (~a · ~̂σ)2n+1 = |~a |2n~a · ~̂σ (2.31)

and tr ~̂σ = 0 and trσ̂0 = 2 in order to determine the partition function,

Z = tr
{
e−βH

}
= tr

{
eβµB

∑
i
~H · ~̂σi

}
=
(
tr
{
eβµB

~H · ~̂σ
})N

=
(
tr
{
σ̂0 cosh(βµBH) + Ĥ · ~̂σ sinh(βµH)

})N
= (2 cosh(βµBH))N ,

(2.32)

1We use the well known relation:

(~a · ~̂σ)(~b · ~̂σ) = ~a ·~b σ̂0 + i(~a×~b) · ~̂σ . (2.30)
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where H = | ~H | and Ĥ = ~H /H. We obtain the free energy

F = −NkBT ln[2 cosh(βµBH)] =


−NµBH kBT � µBH

−NkBT ln 2 kBT � µBH
(2.33)

which is interpreted as F = U − TS being dominated by the internal energy U at low and by
the entropy S = kB ln 2 in the high-temperature limit. Note that the entropy is given by

S(T ) = −∂F
∂T

= NkB ln[2 cosh(βµBH)]−NkBβµBH tanh(βµBH) (2.34)

which goes to zero for T → 0 satisfying the third law of thermodynamics. Now we turn to the
magnetization,

Mn = µB

N∑
i=1

〈n̂ · ~̂σi〉 = µBN〈n̂ · ~̂σ1〉

= N
tr
{
µBn̂ · ~̂σ

[
σ̂0 cosh(βµBH) + Ĥ · ~̂σ sinh(βµH)

]}
2 cosh(βµBH)

= Nn̂ · ĤµB tanh(βµBH)

(2.35)
where n̂ is a normal vector. Let us calculate the magnetic susceptibility for the case that ~H ‖ ẑ,
first for a moment along z,

χzz = µ2
BβN

{
〈σ̂z2〉 − 〈σ̂z〉2

}
= µ2

BβN
{
〈σ̂0〉 − 〈σ̂z〉2

}
=
µ2
BN

kBT

{
1− tanh2(βµBH)

}
=
µ2
BN

kBT

1

cosh2(βµBH)
.

(2.36)

This yields a high-temperature behavior (kBT � µBH)

χzz(T ) =
µ2
BN

kBT
(2.37)

corresponding to a Curie-behavior.

2.4.2 Spin S - classical limit

We now turn to larger quantum spins with magnitude S = ~s where s is an integer or half-
integer. The Hilbert space of such a spin contains 2s+1 basis states {|s, sz〉} = {|s,−s〉, |s,−s+

1〉, . . . , |s, s− 1〉, |s, s〉} with ~̂S2|s, sz〉 = ~2s(s+ 1)|S, Sz〉 and Ŝz|S, Sz〉 = ~sz|S, Sz〉. We apply
a magnetic field parallel to the z-axis of the N independent spins, leading to the Hamiltonian,

H = −gµB
~

N∑
i=1

~̂S · ~H = −gµB
~

N∑
i=1

ŜziH , (2.38)

where g = 2 again. Note that the field direction does not matter for the following discussion.
We calculate again the partition function of the canonical ensemble,

Z = tr
{
e−βH

}
= tr

{
N∏
i=1

eβgµBHŜ
z
i /~

}
=

(
s∑

sz=−s
〈s, sz|seβgµBHŜ

z
i /~|s, sz〉

)N
=

(
s∑

sz=−s
eβgµBHsz

)N

=

(
e−βgµBHs

2s∑
n=0

eβgµBHn

)N
=

(
e−βgµBHs

eβgµBH(2s+1) − 1

eβgµBH − 1

)N
=

(
sinh (βµBH(2s+ 1))

sinh (βµBH)

)N
.

(2.39)
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We obtain the free energy

F = −NkBT ln

{
sinh (βµBH(2s+ 1))

sinh (βµBH)

}
(2.40)

and the internal energy

U = −NµBH
{

(2s+ 1) coth (βµBH(2s+ 1)))− coth (βµBH)
}

= −NµBHsBs(βµBH) (2.41)

where Bs(x) is the ”Brillouin function”. In Fig.2.1 the heat capacity is depicted, which is the
derivative of U with respect to temperature. Note the approach towards the classical limit with
increasing spin s (see also discussion for F below). Also the magnetization can be expressed by
the Brillouin function,

Mz = gµB

N∑
i=1

〈Ŝzi 〉 = NµB2sBs(βµBH) , (2.42)

which also identifies the internal energy as U = −MzH. The other components vanish, Mx =
My = 0.
The limit of s� 1 leads us to the classical limit2. Let us examine this by simultaneously fixing
2sµB = m to be finite. The free energy and entropy take the limit for kBT � mH,

F = −NkBT ln 2s and S = NkB ln 2s (2.47)

where we may identify the value of S with S0 of the classical case in the footnote. In the
low-temperature limit we distinguish two regimes:
(1) 2skBT � mH � kBT : we find

F = −NmH +NkBT ln(βmH/s) and S = NkB ln 2s−NkB ln(2βmH) +NkB (2.48)

which corresponds essentially to the low-temperature classical regime.
(2) mH � 2skBT : we obtain

F = −NmH
(

1− 1

2s

)
+O

(
Te−2βmH/s

)
and S → 0 (2.49)

2Classical ideal paramagnet: We take a classical vector magnetic moment ~m of lengthm and assume a magnetic
field along the z-direction. Thus, each moment possesses only the angular orientation as a degree of freedom.
This leads to the partition function,

Z =

∫ N∏
i=1

{
dΩi
4π

eβ ~m i· ~H
}

=

(∫
dΩ

4π
eβmH cos θ

)N
=

(
sinh(βmH)

βmH

)N
. (2.43)

The free energy is given by

F = −NkBT {ln (sinh(βmH))− ln(βmH)} =


−NmH +NkBT ln(2βmH) kBT � mH

−NkBT
3!

(
mH

kBT

)2

kBT � mH

(2.44)

and the entropy in the limiting cases,

S − S0 = −
(
∂F

∂T

)
H,N

=


−NkB ln(2βmH) +NkB kBT � mH

−N
3

(
mH

kBT

)3

kBT � mH

(2.45)

where we observe that in the zero-temperature limit the classical entropy diverges logarithmically in temperature.
In the high-temperature limit the entropy should reach a value connected to the phase space of each magnetic
moment, such that we may choose

S0 = NkB ln(2s+ 1) ≈ NkB ln(2s) . (2.46)
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which corresponds to the quantum result. This quantum range shrinks for increasing s, see
Fig.2.1 .

quantum

classical

s = 80
s = 25
s = 10

kBT

∝ 1/s

CV

Figure 2.1: As the spin s increases, the ”quantum” heat capacity approaches the classical heat
capacity.

2.5 Ideal quantum gas - grand canonical ensemble

A gas of independent particles in quantum mechanics has the additional key feature that in-
distinguishable particles are classified in fermions (particles with half-integer spins) and bosons
(particles with integer spins). The former follow the Pauli principle, i.e. we cannot find two
fermions in the same quantum state. For bosons no such restriction exists. A many-particle
state of bosons (fermions) is described by a wavefunction which is completely symmetric (anti-
symmetric) under the pair-wise exchange of particle variables. We will discuss this in detail in
the next chapter when we introduce the technique of second quantization. The free particles in
quantum mechanics are represented by plane waves

ψ~p(~r) = 〈~r|ψ~p〉 =
1√
V
ei~p·~r/~ with ε~p =

~p 2

2m
. (2.50)

The grand partition function for a gas of such particles is given by

Z =
∑
{n~p}

g{n~p}e
−β(E−µN){n~p} , (2.51)

with
E =

∑
~p

ε~pn~p and N =
∑
~p

n~p . (2.52)

Here n~p is the number of particles per state, the occupation number, whereby the sum
∑
{n~p}

runs over all allowed configurations of occupations. The factor g{n~p} is given by

g{n~p} =


1 indistinguishable particles (fermions and bosons) ,

∏
~p

1

n~p!
classical particles (Boltzmann) .

(2.53)

Each many-particle quantum state for indistinguishable particles includes all permutations
through the total symmetrization (bosons) or antisymmetrization (fermions) of the wavefunc-
tion. For fermions we find that for each state |ψ~p〉 the occupation number is n~p = 0, 1 and for
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bosons n~p = 0, 1, 2, . . . . Thus, calculating the partition function we obtain for fermions/bosons,

Z =
∑

n~p1 ,n~p2 ,...

[{
ze−βε~p1

}n~p1 {
ze−βε~p2

}n~p2 · · · ]

=
∏
~p

∑
n~p

(
ze−βε~p

)n~p
=



∏
~p

(
1 + ze−βε~p

)
fermions

∏
~p

1

1− ze−βε~p bosons

(2.54)

with z = eβµ as the fugacity.3

From the partition function we arrive at the equation of state

pV

kBT
= −βΩ(T, V, µ) =



∑
~p

ln
(

1 + ze−βε~p
)

fermions ,

−
∑
~p

ln
(

1− ze−βε~p
)

bosons ,

(2.56)

and the particle number

N = z
∂

∂z
lnZ =



∑
~p

1

eβε~pz−1 + 1
fermions ,

∑
~p

1

eβε~pz−1 − 1
bosons .

(2.57)

These equations can be used to determine the chemical potential when N is fixed. The occupa-
tion number of a state is also easily obtained,

〈n~p〉 =
1

Z

∏
~p′ 6=~p

∑
n~p′

(
ze−βε~p′

)n~p′∑
n~p

n~p (ze−βε~p)n~p

=

∑
n~p
n~p (ze−βε~p)n~p∑
n~p

(ze−βε~p)n~p
= −kBT

∂

∂ε~p
lnZ =


1

z−1eβε~p + 1
fermions ,

1

z−1eβε~p − 1
bosons .

(2.58)

These correspond to the Fermi-Dirac and the Bose-Einstein distribution, respectively.

3 Classical particles: The partition function is given by

Z =
∑

n~p1
,n~p2

,...

[
1

n~p1 !

{
ze−βε~p1

}n~p1 1

n~p2 !

{
ze−βε~p2

}n~p2 · · · ] =

∞∑
N=0

zN
1

N !

∑
~p

e−βε~p


N

=

∞∑
N=0

zNZ
(class)
N ,

(2.55)
which corresponds to the usual partition function of independent classical particles within the grand canonical
ensemble.
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Eventually we compare the grand potential and the internal energy. Using (2.56) we obtain

Ω = ∓kBT
∑
~p

ln
(

1± ze−βε~p
)

= ∓kBT
∫
dε g(ε) ln

(
1± ze−βε

)

= ∓V kBT
1

8π2

(
2m

~2

)3/2 ∫ ∞
0

dε ε1/2 ln(1± ze−βε)

= −2

3
V

1

8π2

(
2m

~2

)3/2 ∫ ∞
0

dε
ε3/2

z−1eβε ± 1
,

(2.59)

where the plus (minus) sign corresponds to fermions (bosons). For the second equality we
performed an integration by parts. We have also introduced the density of states

g(ε) =
∑
~p

δ(ε− ε~p) = V
1

8π2

(
2m

~2

)3/2

ε1/2 , (2.60)

for the energy integration. Now we consider the internal energy

U =
∑
~p

〈n~p〉ε~p = V
1

8π2

(
2m

~2

)3/2 ∫ ∞
0

dε
ε3/2

z−1eβε ± 1
. (2.61)

Thus from Ω = −pV we obtain the general relation

U =
3

2
pV . (2.62)

Note that we did not so far include the spin s of the particles in our considerations. This gives
an additional factor 2s+ 1 to Ω and U .

2.6 Properties of Fermi gas

We consider now fermions of spin s, i.e. there are 2s+ 1 different species. The equation of state
and the equation for the particle number of the Fermi gas are given by

p

kBT
=

4π

h3
(2s+ 1)

∫ ∞
0

dp p2 ln
(

1 + ze−βε~p
)
,

1

v
=
N

V
=

4π

h3
(2s+ 1)

∫ ∞
0

dp p2 1

z−1eβε~p + 1
,

(2.63)

where we used the relation
∑

~p = V
h3

∫
d3p. We rewrite these equations introducing special

functions of z,
p

kBT
=

2s+ 1

λ3
f5/2(z)

1

v
=

2s+ 1

λ3
f3/2(z)

(2.64)
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where λ = h/
√

2πmkBT is the thermal wavelength. These functions are defined as4

f5/2(z) =
4√
π

∫ ∞
0

dx x2 ln(1 + ze−x
2
) = −

∞∑
l=1

(−1)l
zl

l5/2

f3/2(z) = z
∂

∂z
f5/2(z) = −

∞∑
l=1

(−1)l
zl

l3/2
.

(2.66)

For the following it will also be important to consider the asymptotic behavior of these functions.
For z � 1 we may use the expansion just given. For z � 1 we find5

f5/2(z) ≈ 8

15
√
π

(ln z)5/2

[
1 +

5π2

8(ln z)2
+ · · ·

]

f3/2(z) =
4

3
√
π

(ln z)3/2

[
1 +

π2

8(ln z)2
+ · · ·

]
.

(2.70)

2.6.1 High-temperature and low-density limit

Low density (high temperature) implies λ3 � v = V/N and z = eβµ � 1 . We can use now
(2.64)

λ3

v
= (2s+1)

{
z − z2

23/2
+ · · ·

}
⇒ z =

λ3

v

1

2s+ 1
+

1

23/2(2s+ 1)2

(
λ3

v

)2

+· · · . (2.71)

This allows us to replace z in the equation of state 6,

p

kBT
≈ 2s+ 1

λ3

{
z − z2

25/2

}
≈ N

V

{
1 +

N

25/2(2s+ 1)

λ3

V

}
. (2.73)

4Expansion of f5/2(z):

4√
π

∫ ∞
0

dx x2 ln(1 + ze−x
2

) = − 4√
π

∫ ∞
0

dx

∞∑
l=1

x2(−1)l
zle−lx

2

l
= −

∞∑
l=1

(−1)l
zl

l5/2
. (2.65)

5Derivation of the large-z-expansion: Use ν = µ/kBT = ln z and rewrite

f5/2(z) =
2√
π

∫ ∞
0

dy y1/2 ln(1 + eν−y) =
8

15
√
π

∫ ∞
−ν

dy′(y′ + ν)5/2 ey
′

(1 + ey′)2
, (2.67)

where the second equation is obtained by twice integrating by parts. More over we extend the lower integration
boundary to −∞, at the expense of a small error of order e−ν = 1/z. We now expand (y′ + ν)5/2 assuming ν
large and find

f5/2(z) =
8

15
√
π

∫ +∞

−∞
dy′
[
ν5/2 +

5

2
ν3/2y′ +

15

8
ν1/2y′

2
+ · · ·

]
ey

′

(1 + ey′)2

=
8

15
√
π

[
I0ν

5/2 +
5

2
I1ν

3/2 +
15

8
I2ν

1/2 + · · ·
] (2.68)

where

In =

∫ +∞

−∞
dy

yney

(1 + ey)2
⇒ I0 = 1, I1 = 0, I2 =

π2

3
, . . . . (2.69)

Note that all In = 0 for n odd. It is easy to obtain f3/2(z) by taking the derivative.
6Note that the lowest order expansion reproduces the chemical potential of the classical ideal gas, as given in

Eq.(1.51) and (1.77):

z = eβµ ≈ N

V
λ3 ⇒ µ = −kBT ln

{
V

N

(
2πmkBT

h2

)3/2
}
. (2.72)
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The second term represents the first quantum correction to the classical limit of the ideal gas.
This allows us also to calculate the isothermal compressibility,

κT = − 1

V

(
∂V

∂p

)
T,N

=
V

NkBT

1

1 + λ3N
23/2V (2s+1)

. (2.74)

The quantum correction suppresses the compressibility, as a consequence of Pauli’s exclusion
principle, i.e. fermions avoid each other. The occupation numbers is approximatively given by

〈n~p〉 ≈
λ3

v

1

2s+ 1
e−βε~p =

Nh3

V (2πmkBT )3/2
e−βε~p (2.75)

corresponding to the Maxwell-Boltzmann distribution. With the general relation (2.62) we
obtain immediately the internal energy and the heat capacity

U ≈ 3

2
NkBT

{
1 +

Nλ3

25/2(2s+ 1)V

}
and CV =

3

2
NkB

{
1− Nλ3

27/2(2s+ 1)V

}
, (2.76)

including the first quantum corrections.

2.6.2 Low-temperature and high-density limit: degenerate Fermi gas

At low temperature we reach the ”quantum limit” λ3 � v = V/N , which implies large fugacity z.
First we consider the zero-temperature situation. The occupation numbers follow a step function

〈n~p〉 = Θ(µ− ε~p) =


1 , ε~p < µ ,

0 , ε~p > µ .
(2.77)

The fermions occupy states within a sphere in momentum space, the Fermi sphere (Fig.2.2).
The particle density n is

n =
N

V
=

2s+ 1

h3

∫
d3p〈n~p〉 =

2s+ 1

h3

4π

3
p3
F =

(2s+ 1)k3
F

6π2
(2.78)

where pF is the Fermi momentum (ε~pF = µ(T = 0) = εF ), isotropic, and kF = pF /~ is the Fermi
wavevector. The groundstate energy is

U0 =
2s+ 1

h3
V

∫
d3pε~p〈n~p〉 =

3

10
(2s+ 1)NεF (2.79)

where εF denotes the Fermi energy. The zero-point pressure is obtained through (2.56),

p0 =
2

3

U0

V
=

1

5
(2s+ 1)

N

V
εF . (2.80)

In contrast to the classical ideal gas, a Fermi gas has finite zero-point pressure which is again
a consequence of the Pauli principle and is responsible for the stability of metals, neutron stars
etc.

Next we turn to finite temperatures for which the occupation number broadens the step at pF .
We use now (2.70, 2.78) to obtain the relation(

εF
kBT

)3/2

=
3

4

√
πλ3

2s+ 1

N

V
=

(
µ

kBT

)3/2

+
π2

8

(
µ

kBT

)−1/2

+ · · · , (2.81)
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Figure 2.2: Fermi sphere of occupied single particle states. Fermi radius pF .

which at constant density n = N/V can be solved for the chemical potential,

µ(T ) = εF

(
1− π2

12

(
kBT

εF

)2

+ · · ·
)
, (2.82)

and analogously we obtain for the pressure,

p(T ) = p0

(
1 +

5π2

12

(
kBT

εF

)2

+ · · ·
)
. (2.83)

Again we derive the internal energy from the relation (2.56)

U =
3

2
pV = U0

(
1 +

5π2

12

(
kBT

εF

)2

+ · · ·
)
, (2.84)

which also leads to the heat capacity for fixed N

CN = kBN
π2

4
(2s+ 1)

kBT

εF
+ · · · , (2.85)

see Fig.2.3. This is the famous linear temperature dependence of the heat capacity, which can
be well observed for electrons in simple metals. Obviously now the third law of thermodynamics

is satisfied, CN
T→0−→ 0. Also the entropy goes to zero linearly in T .

quantum

classic

quantum

classic

kBT

3
5
NǫF

U

0
0

3
2
NkBT

kBT0

3
2
NkB

CV

0

Figure 2.3: The internal energy U and the heat capacity CV in the quantum situation compared
with the classical situation.
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2.6.3 Spin-1/2 Fermions in a magnetic field

We consider now the magnetic response of spin s = 1/2 fermions in a magnetic field (ideal
paramagnetic gas). The Hamiltonian has to be extended by a Zeeman term. Taking the field
along the z-axis this reads,

HZ = −gµB
~

N∑
i=1

sziH (2.86)

with g = 2 as gyromagnetic ratio and µB the Bohr magneton. This can be absorbed into a
spin-dependent fugacity,7

z± = eβµ±βµBH , (2.90)

such that the density of fermions is given by

n =
N

V
=

1

v
=

1

λ3

{
f3/2(z+) + f3/2(z−)

}
= n+ + n− (2.91)

and the magnetization

m =
M

V
= µB(n+ − n−) =

µB
λ3

{
f3/2(z+)− f3/2(z−)

}
. (2.92)

Let us now calculation the spin susceptibility for zero magnetic field, given by

χ =
∂m

∂H

∣∣∣∣
H=0

=
µ2
B

λ3kBT
2z
∂f3/2(z)

∂z

∣∣∣∣
H=0

=
2µ2

B

λ3kBT
f1/2(z) (2.93)

with z = eβµ. We may now again consider limiting cases.

High-temperature limit: We replace z � 1 in Eq.(2.93) using Eq.(2.71) with n = 1/v and find

χ =
µ2
Bn

kBT

{
1− λ3n

25/2

}
. (2.94)

The first term is the result for particles with spin and has a Curie like behavior and the second
term is the first quantum correction reducing the susceptibility.

Low-temperature limit: Taking only the lowest order for z � 1 we obtain,

χ =
µ2
B

λ3kBT

4√
π

(ln z)1/2 =
µ2
B

λ3kBT

4√
π

(
εF
kBT

)1/2

= µ2
B

3n

2εF
. (2.95)

This is the famous Pauli spin susceptibility for a Fermi gas, which is temperature independent.

7We calculate the grand canonical partition function

Z =
∏
~p

∑
n~p

(
ze−βε~p+βµBH

)n~p
∑

n~p

(
ze−βε~p−βµBH

)n~p =
∏
~p

∏
σ=+,−

∑
n~p

(
zσe
−βε~p

)n~p
(2.87)

where zσ is defined as in Eq.(2.90). The grand canonical potential is given by

Ω = −kBT lnZ = −kBT
λ3

{
f5/2(z+) + f5/2(z−)

}
(2.88)

from which we determine the magnetization

m = − 1

V

∂Ω

∂H
=
kBT

λ3

∑
σ

∂

∂H
f5/2(zσ) =

kBT

λ3

∑
σ

∂zσ
∂H

∂

∂z
f5/2(z)

∣∣∣∣
z=zσ

=
µB
λ3

∑
σ

σzσ
∂

∂z
f5/2(z)

∣∣∣∣
z=zσ

=
µB
λ3

∑
σ

σf3/2(zσ)

(2.89)

corresponding to Eq.(2.92).
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2.7 Bose gas

There are two situations for Bosons: (1) a system with well-defined particle number, e.g. bosonic
atoms, 4He, ... ; (2) Bosons which results as modes of harmonic oscillators (no fixed particle
number), e.g. photons, phonons, magnons, etc..

2.7.1 Bosonic atoms

We consider Bosons without spin (S = 0) for which 4He is a good example. Analogously to the
fermions we introduce functions of z to express the equation of state and the particle number,

p

kBT
=

1

λ3
g5/2(z) =

1

λ3

∞∑
l=1

zl

l5/2

1

v
=
N

V
=

1

λ3
g3/2(z) =

1

λ3

∞∑
l=1

zl

l3/2
.

(2.96)

For small z both functions grow linearly from zero and g3/2(z) has a divergent derivative for
z → 1. We concentrate on the range 0 < z ≤ 1, such that µ(T ) ≤ 0. For z = 1 we obtain

g3/2(1) =
∑
l

1

l3/2
= ζ(3/2) ≈ 2.612 and g5/2(1) =

∑
l

1

l5/2
= ζ(5/2) ≈ 1.342 (2.97)

where ζ(x) is Riemann’s ζ-function (see Fig.2.4).

g
5/2

g
3/2

Figure 2.4: Functions g3/2(z) and g5/2(z).

2.7.2 High-temperature and low-density limit

It is easy to see that (like the fermions) the bosons behave in this limit as a classical ideal gas.
An intriguing aspect occurs, however, in the quantum corrections. For the pressure we find

p(T ) =
N

V
kBT

{
1− N

25/2

λ3

V
+ · · ·

}
. (2.98)

The quantum correction reduces the classical ideal gas pressure and yields the compressibility

κT = − 1

V

(
∂V

∂p

)
T,N

=
V

NkBT

1

1− λ3N
23/2V

. (2.99)
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In contrast to the fermions where the quantum nature of the particles diminishes the compress-
ibility, here the compressibility is enhanced. Actually, in this approximation the compressibility
even diverges if

23/2 =
N

V
λ3 , (2.100)

i.e. at low enough temperature or high enough density. We will now see that this indeed indicates
an instability of the Bose gas.

2.7.3 Low-temperature and high-density limit: Bose-Einstein condensation

Let us now consider Eq. (2.96) carefully. The function g3/2(z) is monotonically increasing with

z. If T is lowered, λ ∝ T−1/2 increases, such that z has to increase too in order to satisfy (2.96).
Therefore µ approaches the singular point at 0 (z = 1). The critical point is determined by

g3/2(1) = ζ(3/2) =
N

V
λ3 ⇒


Tc =

h2

2πkBm[ζ(3/2)V/N ]2/3
,

Vc =
N

ζ(3/2)

h3

(2πmkBT )3/2
.

(2.101)

This defines a critical temperature Tc and critical volume Vc below which a new state of the
Bose gas occurs. Note that this equation is qualitatively very similar to (2.100) and even
quantitatively not so far (ζ(3/2) ≈ 2.612↔ 23/2 ≈ 2.85) . The question arises what happens for
T < Tc or V < Vc. Actually the problem occurring in (2.96) and (2.101) arises in the step

N =
∑
~p

1

eβ(ε~p−µ) − 1
→ V

h3

∫
d3p

1

eβ(ε~p−µ) − 1
. (2.102)

The integral does not count the occupation of the state ~p = 0, because the momentum distribu-
tion function entering the integral,

ρ(p) =
p2

eβ(ε~p−µ) − 1
⇒ ρ(0) = 0 . (2.103)

This is fine as long as the occupation of the ’~p = 0’-state (single-particle groundstate) is vanish-
ingly small compared to N . However, for T < Tc (V < Vc) the occupation becomes macroscopic,
〈n~p=0〉/N > 0 and we cannot neglect this contribution in the calculation ofN (see Fig.2.5). Thus,
the correct density is

N

V
=

1

λ3
g3/2(z) + n0(T ) = nn(T ) + n0(T ) (2.104)

with n0(T ) denoting the density of bosons in the single-particle groundstate (~p = 0). These
particles form a condensate, the Bose-Einstein condensate. What happens at Tc is a phase
transition. We encounter here a ”two-fluid” system for which the total particle density split
into a condensed fraction n0 and a normal fraction nn. From (2.104) we find the temperature
dependence of n0 (see Fig.2.5),

n0(T ) =
N

V

[
1−

(
T

Tc

)3/2
]
. (2.105)

Next we also determine the equation of state,

p =


kBT

λ3
g5/2(z) , V > Vc

kBT

λ3
g5/2(1) , V < Vc

. (2.106)
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Figure 2.5: Occupation: Left panel: A macroscopic fraction of particle occupy the momentum
p = 0-state for T < Tc. Right panel: Temperature dependence of the condensate fraction.

We now consider the compressibility for V > Vc . For this purpose we first determine

∂V

∂z
= −Nλ3

g′3/2(z)

g3/2(z)2
, (2.107)

and consider

∂p

∂V
=
kBT

λ3
g′5/2(z)

∂z

∂V
⇒ κT =

Nλ6

V kBTg3/2(z)2

g′3/2(z)

g′5/2(z)
, (2.108)

where we use the notation g′n(z) = dgn(z)/dz. As anticipated earlier the compressibility diverges
at the transition V → Vc (or T → Tc), since the derivative g′3/2(z) → ∞ for z → 1. In the

condensed phase the pressure is independent of V as is obvious from (2.106). Therefore the
condensed phase is infinitely compressible, i.e. it does not resist to compression.
Some further thermodynamic quantities can be derived. First we consider the entropy S from
the grand canonical potential

S(T, V, µ) = −
(
∂Ω

∂T

)
V,µ

=

(
∂pV

∂T

)
V,µ

=


NkB

(
5v

2λ3
g5/2(z)− ln z

)
, T > Tc ,

NkB
5

2

g5/2(1)

g3/2(1)

(
T

Tc

)3/2

, T < Tc ,

(2.109)

where we used (2.96).8 For the heat capacity at fixed particle number N we find from the

8Calculation of the temperature derivatives: (1) Fixed chemical potential:

∂

∂T

V kBT

λ3
g5/2(z) =

5V kB
λ3

g5/2(z) +
V kBT

λ3

g3/2(z)

z

∂z

∂T︸ ︷︷ ︸
= −kB V

λ3
g3/2(z)βµ = −NkB ln z

(2.110)

where we used ∂
∂z
g5/2 = g3/2/z.

(2) Fixed particle number: we use

g3/2(z) =
N

V
λ3 ⇒ dg3/2

dT
=
g1/2(z)

z

dz

dT
= −3

2

N

V

λ3

T
(2.111)

which leads to the relation
dg5/2

dT
=
g3/2(z)

z

dz

dT
= −9

4

g3/2(z)

g1/2(z)

Nλ3

V
. (2.112)

This leads to the expression for the heat capacity.
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internal energy U = 3
2pV ,

CV =

(
∂U

∂T

)
V,N

=


NkB

(
15v

4λ3
g5/2(z)− 9

4

g3/2(z)

g1/2(z)

)
, T > Tc ,

NkB
15

4

g5/2(1)

g3/2(1)

(
T

Tc

)3/2

, T < Tc .

(2.113)
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V

NkB

Tc

3/2

C

Figure 2.6: Heat capacity: CV has a cusp at the transition and vanishes as T 3/2 towards
zero-temperature. In the high-temperature limit Cv approaches 3NkB/2 which corresponds to
the equipartition law of a mono-atomic gas.

In accordance with the third law of thermodynamics both the entropy and the heat capacity go
to zero in the zero-temperature limit. The entropy for T < Tc can be viewed as

S

N
= s

(
T

Tc

)3/2

=
nn(T )

n
s with s =

5

2
kB
g5/2(1)

g3/2(1)
(2.114)

where s is the entropy per normal particle (specific entropy), i.e. a non-vanishing contribution
to the entropy is only provided by the normal fraction (two-fluid model). The heat capacity has
a cusp at T = Tc.

BEC

c
v

p

T

isothermal

p

T

transition line

transition line

v (T)

Figure 2.7: Phase diagrams; left panel: p-v-diagram; the isothermal lines reach the transition
line with zero-slope, i.e. the compressibility diverges. Right panel: p-T -diagram; the condensed
phase corresponds to the transition line, there is no accessible space above the transition line.

We consider now the phase diagram of various state variable.
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(1) p-v-diagram: phase transition line

p0v
5/3 =

h2

2πm

g5/2(1)

[g3/2(1)]5/3
, (2.115)

(2) p-T -diagram: phase transition line

p0 =
kBT

λ3
g5/2(1) ∝ T 5/2 (2.116)

which is the vapor pressure (constant for T < Tc) (see Fig.2.7). We use this line to determine
the latent heat l per particle via the Clausius-Clapeyron relation,

dp0

dT
=

l

T∆v
with l = T∆s . (2.117)

The condensate takes no specific volume compared to the normal fraction. Thus, ∆v = vc.
Therefore we obtain

l = Tvc
dp0

dT
= Tvc

5

2

kBg5/2(1)

λ3
= T

5

2
kB
g5/2(1)

g3/2(1)
(2.118)

where we used the relation λ3 = vcg3/2(1). Note that this is consistent with our result on
the specific entropy s. The condensed phase has no specific entropy such that ∆s = s and,
consequently, l = T∆s using (2.114).

Examples of the Bose-Einstein condensates is the quantum fluid 4He which shows a condensation
below Tλ ≈ 2.18K into a superfluid phase. We will discuss this in more detail in Chapt. 6. A
further very modern example are ultracold atoms in optical traps, e.g. 87 Rb (37 electrons +
87 nucleons = 124 Fermions → Boson). For 2000 atoms in the trap the critical temperature to
Bose-Einstein condensation is as low as 170 nK (for the measured momentum distribution see
Fig.2.8).

Figure 2.8: Velocity distribution of Rb-atoms: Left panel: T > Tc; middle panel: T ∼ Tc ;
right panel T � Tc. A peak at the center develops corresponding to the fraction of particles
with ”zero-velocity” and at the same time the fraction of particles with finite velocity shrinks.
(Source: http://www.nist.gov/public affairs/gallery/bosein.htm)

2.8 Photons and phonons

We consider now classes of Bose gases whose particle numbers is not conserved. They are derived
as normal modes of harmonic oscillators. Thus we first consider the statistical physics of the
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harmonic oscillator. The most simple example is the one-dimensional harmonic oscillator whose
spectrum is given by

εn = ~ω
(
n+

1

2

)
with n = 0, 1, 2, . . . (2.119)

and the eigenstates |n〉.9 The quantum number n is considered as the occupation number of
the oscillator mode. We analyze this within the canonical ensemble formulation with a given
temperature T . The partition function reads

Z = tre−βH =
∞∑
n=0

〈n|e−βH|n〉 =
∞∑
n=0

e−βεn = e−β~ω/2
∞∑
n=0

e−β~ωn =
e−β~ω/2

1− e−β~ω . (2.123)

The internal energy is obtained through

U = −∂ lnZ

∂β
=

1

2
~ω +

~ω
eβ~ω − 1

. (2.124)

The heat capacity is

C =
dU

dT
= kB

(
~ω

2kBT

)2 1

sinh2(β~ω/2)
, (2.125)

with the limiting properties

C =


kB kBT � ~ω

kB

(
~ω
kBT

)2

e−β~ω kBT � ~ω .
(2.126)

In the high-temperature limit the heat capacity approaches the equipartition law of a one-
dimensional classical harmonic oscillator. The mean quantum number is given by

〈n〉 =
1

Z

∞∑
n=0

ne−βεn =
1

eβ~ω − 1
. (2.127)

This corresponds to the Bose-Einstein distribution function. Thus we interpret n as a number
of bosons occupying the mode ω.

9Harmonic oscillator with the Hamiltonian

H =
P̂ 2

2
+
ω2

2
Q̂2 = ~ω

(
a†a+

1

2

)
(2.120)

with a and a† as the lowering and raising operators, respectively,

Q̂ =

√
~

2ω
(a+ a†)

P̂ = −iω
√

~
2ω

(a− a†)

 ⇒ [a, a†] = 1 ⇔ [Q̂, P̂ ] = i~ (2.121)

The stationary states |n〉 are defined by H|n〉 = εn|n〉 and obey

a|n〉 =
√
n|n− 1〉 and a†|n〉 =

√
n+ 1|n+ 1〉 . (2.122)

We can interpret a† and a as creation and annihilation operator for a particle of energy ~ω. In the language of
second quantization the commutation relation of a† and a corresponds to that of bosons.
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2.8.1 Blackbody radiation - photons

Electromagnetic radiation in a cavity is a good example of a discrete set of independent harmonic
oscillators. Consider a cubic cavity of edge length L. The wave equation is expressed in terms
of the vector potential (

1

c2

∂2

∂t2
− ~∇2

)
~A = 0 (2.128)

and the electric and magnetic field are then

~E = −1

c

∂ ~A

∂t
and ~B = ~∇× ~A , (2.129)

where we used the Coulomb gauge ~∇ · ~A = 0 and φ = 0. This can be solved by a plane wave,

~A(~r, t) =
1√
V

∑
~k,λ

{
A~kλ~e~kλe

i~k·~r−iωt +A∗~kλ~e
∗
~kλ
e−i

~k·~r+iωt
}

with


ω = ω~k = c|~k| ,

~e~kλ · ~k = 0 ,
(2.130)

i.e. a linear dispersion relation and a transverse polarization ~e~kλ (λ: polarization index). As-
suming for simplicity periodic boundary conditions in the cube we obtain the quantization of
the wavevector,

~k =
2π

L
(nx, ny, nz) with ni = 0,±1,±2, . . . (2.131)

Each of the parameter set (~k, λ) denotes a mode representing an independent harmonic oscillator.
These oscillators can be quantized again in the standard way.10 The states of a mode differ by
energy quanta ~ω~k. The occupation number n~kλ is interpreted as the number of photons in this
mode.
The partition function is then derived from that of a harmonic oscillator

Z =
∏
~k,λ

e−β~ω~k/2

1− e−β~ω~k
=
∏
~k

(
e−β~ω~k/2

1− e−β~ω~k

)2

(2.135)

where the exponent 2 originates from the two polarization directions. The internal energy follows
from

U(T ) = −∂ lnZ

∂β
= 2

∑
~k

~ω~k
eβ~ω~k − 1

=

∫
dωD(ω)

~ω
eβ~ω − 1

= V

∫
dωu(ω, T ) (2.136)

where we have neglected the zero point motion term (irrelevant constant). The density of modes
in (2.136) is denoted as

D(ω) =
∑
~k,λ

δ(ω − ω~k) =
2V

(2π)3
4π

∫
dk k2δ(ω − ck) = V

ω2

π2c3
(2.137)

10Canonical quantization of the radiation field: Introduce the variables

Q~kλ =
1√
4πc

(
A~kλ +A∗~kλ

)
and P~kλ =

iω~k√
4πc

(
A~kλ −A

∗
~kλ

)
(2.132)

which leads to the following expression for the Hamiltonian

H =

∫
d3r

~E2 + ~B2

8π
=
∑
~k,λ

ω~k
2πc

∣∣A~kλ∣∣2 =
1

2

∑
~k,λ

(
P 2
~kλ

+ ω2
~k
Q2
~kλ

)
. (2.133)

This is the Hamiltonian of a harmonic oscillator for each mode which we can quantize and obtain the new form

H =
∑
~k,λ

~ω~k

(
a†~kλa~kλ +

1

2

)
=
∑
~k,λ

~ω~k

(
n~kλ +

1

2

)
(2.134)

where A~kλ → a~kλ annihilates and A∗~kλ → a†~kλ creates a photon in the mode (~k, λ).
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which leads to the spectral energy density

u(ω, T ) =
ω2

π2c3

~ω
eβ~ω − 1

, (2.138)

which is the famous Planck formula (Fig.2.9). There are two limits

u(ω, T ) ≈


kBT

ω2

π2c3
~ω � kBT Rayleigh-Jeans-law

~ω3

π2c3
e−β~ω ~ω � kBT Wien’s law

(2.139)

whereby the Rayleigh-Jeans law corresponds to the classical limit. The maximum for given T
follows Wien’s displacement law,

~ω0 = 2.82kBT . (2.140)

The total internal energy density leads to the Stefan-Boltzmann law

U

V
=

∫
dωu(ω, T ) =

π2

15

(kBT )4

(~c)3
∝ T 4 . (2.141)

The energy current density of a blackbody is defined as

U

V
c =

energy

area · time
. (2.142)

Thus the emission power of electromagnetic radiation per unit area for the surface of a blackbody
is defined by

Pem =
U

V
c

1

4π

∫ ′
dΩ~k

~k · ~n
|~k|

=
U

V
c

1

4π

∫ ′
dΩ~k cos θ =

Uc

4V
=
π2

60

(kBT )4

~3c2
= σT 4 (2.143)

where for the current density the component perpendicular to the surface counts (~n: surface
normal vector). Note that the integral

∫ ′
dΩ~k only extends over the hemisphere with cos θ > 0.

Rayleigh−Jeans
Planck

B
h     /k  Tω

Wien

Figure 2.9: Spectral density of black body radiation.

This blackbody radiation plays an important role for the energy budget of the earth. The sun
can be considered a blackbody emitting an energy current at the temperature of T ≈ 6000K.
This delivers an energy supply of 1.37kW/m2 to the earth. The earth, on the other hand, has
to emit radiation back to the universe in order not to heat up arbitrarily. The earth is not a
black body but a ”gray” body as it is strongly reflecting in certain parts of the spectrum. A
further example of blackbody radiation is the cosmic background radiation at a temperature
2.73 K which originates from the big bang.
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2.8.2 Phonons in a solid

We consider Debye’s theory of the lattice vibration and their influence on the thermodynamics of
a solid. A solid consists of atoms which form a lattice. They interact with each other through a
harmonic potential. Let us assume that the solid consists of NA atoms arranged in a cube of edge
length L, i.e. there are 3NA degrees of freedom of motion. For our purpose it is convenient and
sufficient to approximate this solid as a homogeneous isotropic elastic medium whose vibration
are described by the following equations of motion:

1

c2
l

∂2~u

∂t2
− ~∇(~∇ · ~u) = 0 longitudinal sound mode ,

1

c2
t

∂2~u

∂t2
− ~∇2~u = 0 transversal sound mode .

(2.144)

There are two independent transversal (~k · ~u = 0) and one longitudinal (~k × ~u = 0) sound
mode. These equation can be solved by plane waves and yield linear dispersion analogous to
the electromagnetic waves:

ω
(l)
~k

= cl|~k| and ω
(t)
~k

= ct|~k| . (2.145)

The density of states is obtained analogously using periodic boundary conditions for the waves,

D(ω) =
V ω2

2π2

(
1

c3
l

+
2

c3
t

)
. (2.146)

A difference occurs due to the finite number of degrees of freedom. In the end we get 3NA

modes. Thus there must be a maximal value of ω and |~k|. We take the sum

3NA =
∑
|~k|≤kD

3 =
3V

(2π)3
4π

∫ kD

0
dk k2 =

V k3
D

2π2
⇒ kD =

(
6π2NA

V

)1/3

(2.147)

and define in this way the Debye wave vector kD and the Debye frequency ωD = ceffkD where

3

c3
eff

=

(
1

c3
l

+
2

c3
t

)
. (2.148)

The internal energy is obtained again in the same way as for the electromagnetic radiation apart
from the limit on the frequency integration,

U(T )

V
=

∫ ωD

0
dω u(ω, T ) . (2.149)

We consider first the limit of small temperatures kBT � kBθD = ~ωD (θD: Debye temperature).
The internal energy is given by

U(T ) = V
(kBT )4

(2π~)3

3

c3
eff

4π

∫ ∞
0

dx
x3

ex − 1︸ ︷︷ ︸
= π4/15

= V
π2(kBT )4

10~3c3
eff

=
3π4kBT

5

(
T

θD

)3

NA (2.150)

and correspondingly the low-temperature heat capacity is

CV =
12π4

5
NAkB

(
T

θD

)3

, (2.151)
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Figure 2.10: Density of states of phonons. Left panel: Debye model; right panel: more realistic
spectrum. Note that the low frequency part in both cases follows an ω2 law and leads to the T 3-
behavior of the heat capacity at low temperature. This is a consequence of the linear dispersion
which is almost independent of the lattice structure and coupling.

the famous Debye law. On the other hand, at high temperatures (T � θD) we use

1

eβ~ω − 1
≈ 1

β~ω
− 1

2
+
β~ω
12

. (2.152)

This yields for the internal energy

U(T ) =
3V

2π2c3
eff

∫ ωD

0
dω

(
ω2kBT −

~ω3

2
+

~2ω4

12kBT

)
+ · · ·

= 3NAkBT

{
1− 3

8

~ωD
kBT

+
1

20

(
~ωD
kBT

)2
}

+ · · ·
(2.153)

and leads to the heat capacity

CV = 3NAkB

{
1− 1

20

θ2
D

T 2

}
+ · · · . (2.154)

In the high-temperature limit the heat capacity approaches the value of the equipartition law
for 3NA harmonic oscillators (Fig.2.11).

The Debye temperature lies around room temperature usually. However, there also notable
exception such as lead (Pb) with θD = 88K or diamond with θD = 1860K.

2.9 Diatomic molecules

We now investigate the problem of the diatomic molecules (made out of N atoms) which are
bound by a two-particle interaction potential V (r) =

∑
i<j Vij(r) with Vij(r) = v(|~ri − ~rj |).

A good approximation for the binding potential is the Lenard-Jones potential composed of an
attractive and a ’hard-core’ repulsive part,

v(r) = 4ε

[(
r̃

r

)12

−
(
r̃

r

)6
]

(2.155)

with ε as the potential depth and r0 = 21/6r̃ as the minimal point, see Fig.2.12 . Quantum
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Figure 2.11: Heat capacity: Low-temperature behavior follows a T 3-law. At high-temperature
the universal Dulong-Petit law recovers, which is a classical result of the equipartition law for
particles in a harmonic potential.
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Figure 2.12: Lenard-Jones potential.

mechanical aspects appear in the low-temperature regime kBT � ε (ε: depth of the Lenard-Jones
potential). Under this condition we consider the Lenard-Jones potential around its minimum as
a harmonic potential. Ignoring for the moment the motion of the center of mass, the Hamiltonian
can be restricted to the relative coordinates r and relative momenta ~p,

H =
~p2

2m∗
+ v(r) =

~p2

2m∗
+A(r − r0)2 − ε ≈ p2

r

2m∗
+

~L2

2m∗r2
0

+A(r − r0)2 − ε (2.156)

where the reduced mass is given by m∗ = m/2 and pr is radial momentum along the axis of
the molecule bond. The motion separates into radial vibrational part which corresponds to a
one-dimensional harmonic oscillator and the rotational motion. The two independent spectra
are given by

Evibn = ~ω
(
n+

1

2

)
and Erotl =

~2l(l + 1)

2m∗r2
0

(2.157)

with ω =
√

2A/m∗.
Let us now analyze the partition function of the different degrees of freedom. The translational
degree of freedom (center of mass motion) corresponds to the motion of a particle of mass 2m
in three dimensions. At low temperatures this has to be treated as a bosonic quantum liquid in
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the case that the atoms are identical (not only chemically but also as an isotope, same mass m),

Ztrans =
∏
~p

1

1− ze−β~p2/4m
. (2.158)

Next we have the vibrational part and the rotational part which we want to consider more
carefully,

Zvib =

(
e−β~ω/2

1− e−β~ω

)N/2
(2.159)

and

Zrot =

( ∞∑
l=0

(2l + 1)e−βl(l+1)/Irot

)N/2
(2.160)

where Irot = 2m∗r2
0/~2. Note that per angular momentum quantum number l there are 2l + 1

degenerate states. Since we know the behavior of Ztrans and Zvib already from the previous
sections, we address now only the rotational part. The partition function cannot be expressed
in closed form. Thus we examine only the limiting behaviors. As a characteristic energy scale
we take kBθrot = 2/Irot. For T � θrot we obtain

Zrot ≈
(∫ ∞

0
dl (2l + 1)e−βl(l+1)/Irot

)N/2
=

(
−IrotkBT

∫ ∞
0

dl
d

dl
e−βl(l+1)/Irot

)N/2

= (IrotkBT )N/2 =

(
2
T

θrot

)N/2
.

(2.161)

We may expand further in β/Irot
11 and find

Zrot ≈
(

2
T

θrot
+

1

3
+
θrot
30T

+ · · ·
)N/2

. (2.163)

For T � θrot,

Zrot ≈
(

1 + 3e−β2/Irot + · · ·
)N/2

. (2.164)

There is a hierarchy of temperatures in this system, Tc � θrot � θvib � Tdis, where Tc is
the critical temperature for the Bose-Einstein condensation of the molecules, kBθvib = ~ω and
kBTdis is the molecule dissociation temperature (∼ binding energy). We consider in the different
regimes the behavior of the heat capacity per molecule, C(T ) = dU/dT (see Fig.2.13,

2C(T )

N
=



3

2
kB + 3kB

(
θrot
T

)2

e−θrot/T Tc � T � θrot

3

2
kB + kB +

kB
180

(
θrot
T

)2

+ kB

(
θvib
2T

)2

e−θvib/T θrot � T � θvib

3

2
kB + kB + kB θvib � T � Tdis

3kB Tdis � T .

(2.165)

11We use the Euler-MacLaurin sum,

∞∑
l=0

f(l) =

∫ ∞
0

dlf(l) +
1

2
f(0) +

∞∑
k=1

(−1)kBk
(2k)!

f (2k−1)(0) +R∞ , (2.162)

with Bk the Bernoulli numbers B1 = 1/6, B2 = 1/30, .... and R∞ is a small correction.
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Figure 2.13: Schematic behavior of heat capacity of a diatomic molecule.

Note that due to the vibrational modes the heat capacity goes through maxima when molecules
are formed. Also the rotational modes are responsible for a non-monotonic behavior. Upon
lowering temperature it looses gradually in magnitude due to the quantum mechanical freezing
out of degrees of freedom.
For the hydrogen molecule H2 the energy scales are Tdis ∼ 50000K, θvib ∼ 2000K and θrot ∼
85K. 12 There is no Bose-Einstein condensation for H2, because it solidifies at 14K.

12 Note that due to the fact that the nuclear spins of the H-atom is 1/2, there is a subtlety about the degeneracies.
Actually, as identical Fermions their wave function has to be totally antisymmetric under exchange. If the two
spins form a spin singlet then the orbital part has to have even parity, i.e. l = 0, 2, 4, . . . (called ”para-hydrogen”),
while for the spin triplet configuration odd parity is required, i.e. l = 1, 3, 5, . . . (called ”ortho-hydrogen”). As
a consequence in the partition function (2.160) the summands of odd l should have a prefactor 3. This does not
affect the heat capacity at temperatures T � θrot which is the classical limit of the rotator. But there is a (minor)
correction at lower temperature such that

2C

N
≈ 3

2
kB + 9kB

(
θrot
T

)2

e−θrot/T (2.166)

for Tc � T � θrot.
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Chapter 3

Identical Quantum Particles -
Formalism of Second Quantization

Here we introduce the formalism of second quantization which is a convenient technical tool
discussing many-body quantum systems. It is indispensable in quantum field theory as well as
in solid state physics. We distinguish between fermions (half-integer spins) and bosons (integer
spins) which behave quite differently, as we have seen in the previous chapter. This behavior
is implemented in their many-body wave functions. While in the previous chapter we could
circumvent to deal with this aspect as we considered independent indistinguishable quantum
particles, it is unavoidable to implement a more careful analysis once interactions between the
particles appear.

3.1 Many-body wave functions and particle statistics

Quantum mechanical systems of many identical particles are described by Hamiltonians which
are formulated in such a way that they are invariant under exchange (permutation) of particle
degrees of freedom (coordinate, momentum, spin etc). These particles are indistinguishable,
since in quantum mechanics it is impossible to follow the trajectories of particles under gen-
eral conditions, unlike in classical mechanics. Permutations play indeed an important role in
characterising quantum particles. We introduce the many-body wave function of N particles,

ψ(~r 1, s1; ~r 2, s2; . . . ; ~r N , sN ) (3.1)

where each particle is labeled by the coordinate ~r and spin s. In the following we will use for
this the short-hand notation ψ(1, . . . , N). Analogously we define many-body operators,

Â(1, . . . , N) = A( ~̂r1, ~̂p1, ~̂S1; . . . ; ~̂rN , ~̂pN , ~̂Sn) (3.2)

with ~̂rj , ~̂pj and ~̂Sj being the operators for position, momentum and spin of particle j. Note
that the Hamiltonian H belongs to these operators too.
We introduce the transposition (exchange) operator P̂ij which is an element of the permutation
group of N elements and exchanges the particle i and j (1 ≤ i, j ≤ N),

P̂ijψ(1, . . . , i, . . . , j, . . . , N) = ψ(1, . . . , j, . . . , i, . . . , N) ,

P̂ijÂ(1, . . . , i, . . . , j, . . . , N) = Â(1, . . . , j, . . . , i, . . . , N) .

(3.3)

Note that (P̂ij)
−1 = P̂ij . As it is invariant under particle exchange, the Hamiltonian commutes

with P̂ij ,
[H, P̂ij ] = 0 (3.4)
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and, consequently, any combination of several transpositions, i.e. all elements of the permutation
group SN , commute with H. Hence, eigenstates of H have the property

H|ψ〉 = E|ψ〉 ⇒ HP̂ij |ψ〉 = P̂ijH|ψ〉 = EP̂ij |ψ〉 , (3.5)

where we define the wave function as

ψ(1, . . . , N) = 〈1, . . . , N |ψ〉 . (3.6)

We distinguish now between fermions and bosons through their behavior under transpositions
P̂ij ,

ψ(1, . . . , i, . . . , j, . . . , N) =


+ψ(1, . . . , j, . . . , i, . . . , N) Bosons ,

−ψ(1, . . . , j, . . . , i, . . . , N) Fermions .
(3.7)

This means that bosonic wave functions are completely symmetric under exchange of particles,
while fermionic wave functions are completely antisymmetric1. Note that the antisymmetric
wave functions prevents two fermions from having the same quantum numbers. If (~r i, si) and
(~r j , sj) are identical, then we find

ψ(1, . . . , i, . . . , i, . . . , N) = −ψ(1, . . . , i, . . . , i, . . . , N) = 0 , (3.8)

which implies the Pauli exclusion principle.

3.2 Independent, indistinguishable particles

We consider N identical particles in a potential V which are not interacting among each other.
The Hamiltonian is then given by

H =

N∑
i=1

Hi with Hi =
~̂p2
i

2m
+ V ( ~̂ri) . (3.9)

The states of each particle form an independent Hilbert space {ψν} and we can find the stationary
states

Hiψν(~r i, si) = ενψν(~r i, si) . (3.10)

These single-particle wave functions are renormalised, i.e.∑
s

∫
d3r |ψ(~r , s)|2 = 1 . (3.11)

We may now construct a many-body wave function as a product wave function with the corre-
sponding exchange property.
For bosons we write

〈~r 1, s1; . . . , ~r N , sN |ΨB〉 = ΨB(1, . . . , N) =
∑
P̂∈SN

P̂ψν1(~r 1, s1) · · ·ψνN (~r N , sN ) (3.12)

and for fermions

〈~r 1, s1; . . . , ~r N , sN |ΨF 〉 = ΨF (1, . . . , N) =
∑
P̂∈SN

sgn(P̂ )P̂ψν1(~r 1, s1) · · · , ψνN (~r N , sN ) (3.13)

1Composite particles: Note that this property is valid also for composite particles. Any particle composed of
an even number of particles would be a Boson, e.g. 4He which contains 2 protons + 2 neutrons + 2 electrons = 6
fermions, as exchange two such particles leaves the sign of wave function unchanged. In the same way a particle
with an odd number of fermions is a fermions, e.g. 3He with 2 protons + 1 neutron + 2 electrons = 5 fermions.

49



where the operator P̂ permutes the state indices νi of the wave functions and sgn(P̂ ) is the
sign of the permutation P̂ which is +1 (−1) if P̂ is composed of an even (odd) number of
transpositions. Interestingly the fermionic wave function can be represented as a determinant,
the so-called Slater determinant,

ΨF (1, . . . , N) = Det

 ψµ1(1) · · · ψµ1(N)
...

...
ψµN (1) · · · ψµN (N)

 . (3.14)

Obviously the determinant vanishes if two rows or columns are identical, enforcing the Pauli
principle. These wave functions are not renormalized so that

〈ΨB|ΨB〉 = N !nν1 ! · · ·nνN ! ,

〈ΨF |ΨF 〉 = N ! ,
(3.15)

where nνj denotes the number of particles in the stationary single particle state labeled by νj .
For fermions it is nνj = 0, 1 only.

3.3 Second Quantization Formalism

It is in principle possible to investigate many-body states using many-body wave functions.
However, we will introduce here a formalism which is in many respects much more convenient
and efficient. It is based on the operators which ”create” or ”annihilate” particles and act on
states in the Fock space F which is an extended space of states combining Hilbert space Qn of
different particle numbers n,

F =
∞⊕
n=0

Qn . (3.16)

Note that the name ”second quantization” does not imply a new quantum mechanics.
We can express a many-body state of independent particles in the particle occupation number
representations,

|nν1 , nν2 , . . .〉 (3.17)

which is a state in F whose particle number is given by N = nν1 + nν2 + · · · .

3.3.1 Creation- and annihilation operators

We define operators âν and â†ν which connect Hilbertspaces of different particle number,

âν : Qn → Qn−1 and â†ν : Qn → Qn+1 . (3.18)

The first we call annihilation and the second creation operator whose action is best understood
in the particle number or occupation representation.

Bosons: Let us first consider bosons which, for simplicity, do not possess a spin. The two
operators have to following property,

âν |nν1 , nν2 , . . . , nν , . . .〉 =
√
nν |nν1 , nν2 , . . . , nν − 1, . . .〉 ,

â†ν |nν1 , nν2 , . . . , nν , . . .〉 =
√
nν + 1|nν1 , nν2 , . . . , nν + 1, . . .〉 ,

(3.19)

and
〈nν1 , nν2 , . . . , nν , . . . |â†ν =

√
nν〈nν1 , nν2 , . . . , nν − 1, . . . | ,

〈nν1 , nν2 , . . . , nν , . . . |âν =
√
nν + 1〈nν1 , nν2 , . . . , nν + 1, . . . | .

(3.20)
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It is obvious that

âν |nν1 , nν2 , . . . , nν = 0, . . .〉 = 0 and 〈nν1 , nν2 , . . . , nν = 0, . . . |â†ν = 0 . (3.21)

The operators satisfy the following commutation relations,

[âν , â
†
ν′ ] = δνν′ and [âν , âν′ ] = [â†ν , â

†
ν′ ] = 0 . (3.22)

Note that these relations correspond to those of the lowering and raising operators of a harmonic
oscillator. Indeed we have seen previously that the excitation spectrum of a harmonic oscillator
obeys bosonic statistics.
The creation operators can also be used to construct a state from the vacuum, denoted as
|0〉, where there are no particles, such that âν |0〉 = 0. A general state in occupation number
representation can be written as,

|nν1 , nν2 , . . . , nν , . . .〉 =
· · · (â†ν)nν · · · (â†ν2)nν2 (â†ν1)nν1√

nν1 !nν2 ! · · ·
|0〉 . (3.23)

The number operator is defined as

n̂ν = â†ν âν with n̂ν |nν1 , nν2 , . . . , nν , . . .〉 = nν |nν1 , nν2 , . . . , nν , . . .〉 (3.24)

and the total number of particles is obtain through the operator

N̂ =
∑
i

n̂νi . (3.25)

Knowing the spectrum of the Hamiltonian of independent particles as given in Eq.(3.10) we may
express the Hamiltonian as

H =
∑
ν

εν â
†
ν âν =

∑
ν

εν n̂ν . (3.26)

Fermions: Now we turn to fermions with spin 1/2 (half-integer spin). Again the single-particle
state shall be labelled by ν including the spin index for ↑ and ↓. Analogously to the case of
bosons we introduce operators â†ν and âν which obey anti-commutation rules,

{âν , â†ν′} = δνν′ and {âν , âν′} = {â†ν , â†ν′} = 0 , (3.27)

where {. . .} is defined as {Â, B̂} = ÂB̂ + B̂Â. In particular this implies that

â†ν â
†
ν = 0 and âν âν = 0 (3.28)

such that nν = 0, 1, i.e. each single-particle state labelled by ν can only be occupied by at most
one particle, because

â†ν | . . . , nν = 1, . . .〉 = â†ν â
†
ν | . . . , nν = 0, . . .〉 = 0 . (3.29)

A general state may be written as

|nν1 , nν2 , . . . , nν , . . .〉 = · · · (â†ν)nν · · · (â†ν2
)nν2 (â†ν1

)nν1 |0〉 (3.30)

which restricts nν to 0 or 1. The order of the creation operators plays an important role as the
exchange of two operators yields a minus sign. We consider an example here,

|n1, n2, n3, n4〉 = |1, 1, 1, 1〉 = â†4â
†
3â
†
2â
†
1 |0〉 . (3.31)
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Removing now one particle yields

â2|1, 1, 1, 1〉 = â2[â†4â
†
3â
†
2â
†
1] |0〉 = â†4â

†
3â2â

†
2â
†
1 |0〉 = â†4â

†
3(1− â†2â2)â†1 |0〉

= â†4â
†
3â
†
1 |0〉 = |1, 1, 0, 1〉

(3.32)

and now analogously

â3|1, 1, 1, 1〉 = â3[â†4â
†
3â
†
2â
†
1] |0〉 = −â†4â3â

†
3â
†
2â
†
1 |0〉 = −â†4(1− â†3â3)â†2â

†
1 |0〉

= −â†4â†2â†1 |0〉 = −|1, 0, 1, 1〉 .
(3.33)

Clearly the order of the operators is important and should not be ignored when dealing with
fermions.

3.3.2 Field operators

We consider now independent free particles whose states are characterized by momentum ~p = ~~k
and spin s with an energy ε~k = ~2 ~k 2/2m. The wave function has a plane wave shape,

ψ~k =
1√
Ω
ei
~k ·~r with ~k =

2π

L
(nx, ny, nz) , (3.34)

where we used periodic boundary conditions in a cube of edge length L (volume Ω = L3). On
this basis we write field operators

Ψ̂ s(~r ) =
1√
Ω

∑
~k

ei
~k ·~r â~k s and Ψ̂ †s(~r ) =

1√
Ω

∑
~k

e−i
~k ·~r â†~k s

(3.35)

and the inverse,

â†~k
=

∫
d3r

ei
~k ·~r
√

Ω
Ψ̂ †(~r ) und â~k =

∫
d3r

e−i
~k ·~r
√

Ω
Ψ̂ (~r ) (3.36)

Also these operators Ψ̂ s(~r ) and Ψ̂ †s(~r ) act as annihilation or creation operators, respectively,
in the sense,

Ψ̂ s(~r )†|0〉 = |~r , s〉 and φs(~r ) = 〈~r , s|φ〉 = 〈0| Ψ̂ s(~r )|φ〉 . (3.37)

Moreover we have the condition

Ψ̂ s(~r )|0〉 = 0 and 〈0| Ψ̂ †s(~r ) = 0 . (3.38)

The field operators also satisfy (anti-)commuation relations,

Ψ̂ s(~r ) Ψ̂ †s′(~r
′)∓ Ψ̂ †s′(~r

′) Ψ̂ s(~r ) =
1

Ω

∑
~k ,~k ′

ei
~k ·~r−i~k ′·~r ′ (â~k sâ

†
~k ′s′
∓ â†~k ′s′ â~k s)︸ ︷︷ ︸

= δ~k ~k ′δss′

= δ(~r − ~r ′)δss′

(3.39)
and analogously

Ψ̂ s(~r ) Ψ̂ s′(~r
′)∓ Ψ̂ s′(~r

′) Ψ̂ s(~r ) = 0 and Ψ̂ †s(~r ) Ψ̂ †s′(~r
′)∓ Ψ̂ †s′(~r

′) Ψ̂ †s(~r ) = 0 (3.40)

for bosons (−) and fermions (+). Taking these relations it becomes also clear that

〈~r ′, s′|~r , s〉 = 〈0| Ψ̂ s′(~r
′) Ψ̂ s(~r )†|0〉

= 〈0|δ(~r − ~r ′)δss′ |0〉 ∓ 〈0| Ψ̂ s(~r )† Ψ̂ s′(~r
′)|0〉︸ ︷︷ ︸

=0

= δ(~r − ~r ′)δss′ .
(3.41)
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Applying a field-operator to a N -particle state yields,

Ψ̂ †s(~r )|~r 1, s1; . . . ; ~r N , sN 〉 =
√
N + 1|~r 1, s1; . . . ; ~r N , sN ; ~r , s〉 , (3.42)

such that

|~r 1, s1; ~r 2, s2; . . . ; ~r N , sN 〉 =
1√
N !

Ψ̂ †sN (~r N ) · · · Ψ̂ †s1(~r 1)|0〉 . (3.43)

Note that particle statistics leads to the following relation under particle exchange,

|~r 1, s1; ~r 2, s2; . . . ; ~r N , sN 〉 = ±|~r 2, s2; ~r 1, s1; . . . ; ~r N , sN 〉 (3.44)

where + is for bosons and − is for fermions. The renormalisation of the real space states have
to be understood within the projection to occupation number states, yielding many-body wave
functions analogous to those introduced Eqs.(3.12, 3.13),

Φ(1, . . . , N) = 〈~r 1, s1; . . . , ~r N , sN |n~k 1,s′1
, n~k 2,s′2

, . . . , n~kN ,s′N
〉 . (3.45)

Taking care of the symmetry / antisymmetry of the many-body wave function we recover the
renormalization behavior in Eqs.(3.42, 3.43).

3.4 Observables in second quantization

It is possible to express Hermitian operators in the second quantization language. We will show
this explicitly for the density operator by calculating matrix elements. The particle density
operator is given by

ρ̂ (~r ) =
N∑
i=1

δ(~r − ~̂r i) . (3.46)

Now we take two states |φ〉, |φ′〉 ∈ QN with the fixed particle number N and examine the matrix
element

〈φ′| ρ̂ (~r )|φ〉 =

∫
d3r1 · · · d3rN 〈φ′|~r 1, . . . , ~r N 〉〈~r 1, . . . , ~r N |

∑
i

δ(~r − ~̂r i)|φ〉

=

∫
d3r1 · · · d3rN

∑
i

δ(~r − ~r i)〈φ′|~r 1, . . . , ~r N 〉〈~r 1, . . . , ~r N |φ〉

= N

∫
d3r1 · · · d3rN−1〈φ′|~r 1, . . . , ~r N−1, ~r 〉〈~r 1, . . . , ~r N−1, ~r |φ〉 ,

(3.47)

where we suppress spin indices for the time being. Here we used in the last equality that we
can relabel the coordinate variables and permute the particles. Since we have the product of
two states under the same perturbation, fermion sign changes do not appear and N identical
integrals follow. We claim now that the density operator can also be written as

ρ̂ (~r ) = Ψ̂ †(~r ) Ψ̂ (~r ), (3.48)

which leads to

〈φ′| Ψ̂ †(~r ) Ψ̂ (~r )|φ〉 =

∫
d3r1 · · · d3rN−1〈φ′| Ψ̂ †(~r )|~r 1, . . . , ~r N−1〉〈~r 1, . . . , ~r N−1| Ψ̂ (~r )|φ〉

= N

∫
d3r1 · · · d3rN−1〈φ′|~r 1, . . . , ~r N−1, ~r 〉〈~r 1, . . . , ~r N−1, ~r |φ〉

(3.49)
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which is obviously identical to Eq.(3.47).
According to Eq.(3.26) the kinetic energy can be expressed as

Hkin =
∑
~k

~2 ~k 2

2m
â†~k
â~k =

∑
~k

~2 ~k 2

2m
n̂~k (3.50)

which, using Eq.(3.36), may also be expressed in field operator language as

T̂ =
1

2mΩ

∑
~k

∫
d3rd3r′

(
~ ~∇ ei~k ·~r

)(
~ ~∇ ′e−i~k ·~r ′

)
Ψ̂ †(~r ) Ψ̂ (~r ′)

=
~2

2m

∫
d3r ( ~∇ Ψ̂ †(~r )) · ( ~∇ Ψ̂ (~r )).

(3.51)

Note the formal similarity with the expectation value of the kinetic energy using single-particle
wave functions, ~2

2m

∫
d3r ~∇ϕ∗(~r ) · ~∇ϕ(~r ) . In an analogous way we represent the potential

energy,

Ĥ pot =

∫
d3rU(~r ) Ψ̂ †(~r ) Ψ̂ (~r ) =

∫
d3rU(~r ) ρ̂ (~r ) . (3.52)

Beside the particle density operator ρ̂(~r ) also the current density operators can be expressed
by field operators,

~̂J (~r ) =
~

2mi

(
Ψ̂ †(~r )( ~∇ Ψ̂ (~r ))− ( ~∇ Ψ̂ †(~r )) Ψ̂ (~r )

)
(3.53)

and the spin density operator for spin-1/2 fermions (writing spin indices again),

~̂S (~r ) =
~
2

∑
ss′

Ψ̂ †s(~r )~σ ss′ Ψ̂ s′(~r ), (3.54)

where ~σ ss′ are the Pauli matrices. In momentum space the operators read,

ρ̂ ~q =

∫
d3re−i ~q ·~r ρ̂ (~r ) =

∑
~k ,s

â†~k ,s
â~k+ ~q ,s

(3.55)

~̂S ~q =
~
2

∑
~k ,s,s′

â†~k ,s
~σ ss′ â~k+ ~q ,s′ (3.56)

~̂J ~q =
~
m

∑
~k ,s

(
~k +

~q

2

)
â†~k ,s

â~k+ ~q ,s
. (3.57)

Finally we turn to the genuine many-body feature of particle-particle interaction,

Ĥ int =
1

2

∑
s,s′

∫
d3r d3r′ Ψ̂ †s(~r ) Ψ̂ †s′(~r

′)V (~r − ~r ′) Ψ̂ s′(~r
′) Ψ̂ s(~r )

=
1

2Ω

∑
~k ,~k ′ ~q

∑
s,s′

V ~q â
†
~k+ ~q ,s

â†~k ′− ~q ,s′
â~k ′,s′ â~k ,s,

(3.58)

where the factor 1/2 corrects for double counting and

V (~r ) =
1

Ω

∑
~q

V ~q e
i ~q ·~r . (3.59)

Note that the momentum space representation has the simple straightforward interpretation that
two particles with momentum ~~k and ~~k ′ are scattered into states with momentum ~(~k + ~q )
and ~(~k ′ − ~q ), respectively, by transferring the momentum ~ ~q .
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3.5 Equation of motion

For simplicity we discuss here again a system of independent free quantum particles described
by the Hamiltonian

H =
∑
~k

ε~k â
†
~k
â~k (3.60)

where we suppress again the spin index. We turn now to the Heisenberg representation of time
dependent operators,

â~k (t) = eiHt/~â~k e
−iHt/~ . (3.61)

Thus, we formulate the equation of motion for this operator,

i~
d

dt
â~k = −[H, â~k ] = −

∑
~k ′

ε~k ′ [â
†
~k ′
â~k ′ , â~k ]

= −
∑
~k ′

ε~k ′



â†~k ′
[â~k ′ , â~k ]︸ ︷︷ ︸

=0

+ [â†~k ′
, â~k ]︸ ︷︷ ︸

=−δ~k ,~k ′

â~k ′ for bosons

â†~k ′
{â~k ′ , â~k }︸ ︷︷ ︸

=0

−{â†~k ′ , â~k }︸ ︷︷ ︸
=δ~k ,~k ′

â~k ′ for fermions

=
∑
~k ′

ε~k ′ â~k ′δ~k ,~k ′ = ε~k â~k ,

(3.62)

and analogously

i~
d

dt
â†~k

= −[H, â†~k ] = −ε~k â
†
~k
. (3.63)

A further important relation in the context of statistical physics is

e−βHâ†~k
eβH = e−βε~k â†~k

. (3.64)

Analogously we find for the number operator N̂ =
∑

~k
â†~k
â~k ,

eβµN̂ â†~k
e−βµN̂ = eβµâ†~k

. (3.65)

Both relations are easily proven by examining the action of this operator on a eigenstate of the
Hamiltonian |Φ〉 = |n~k 1

, . . . , n~k , . . .〉,

e−βHâ†~k
eβH|Φ〉 = eβEe−βHâ†~k

|Φ〉 =
√
n~k + 1eβEe−βH|n~k 1

, . . . , n~k + 1, . . .〉

=
√
n~k + 1eβ(E−E′)|n~k 1

, . . . , n~k + 1, . . .〉 = eβ(E−E′)â†~k
|Φ〉

(3.66)

where E =
∑

~k ′ ε~k ′n~k ′ and E′ =
∑

~k ′ ε~k ′n~k ′ + ε~k such that E − E′ = −ε~k . Note that for

fermions the operation of â†~k
on |Φ〉 is only finite, if n~k = 0 otherwise we have a zero. Still

the relation remains true for both types of quantum particles. The analogous proof applies to
Eq.(3.65).

Fermi-Dirac and Bose-Einstein distribution: Let us look at the thermal average,

〈n̂~k 〉 = 〈â†~k â~k 〉 =
tr{e−βH′ â†~k â~k }

tre−βH′
, (3.67)
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where we use the Hamiltonian H′ = H − µN̂ . We can rearrange the numerator of (3.67) using
Eqs.(3.64) and (3.65),

tr{e−βH′ â†~k â~k } = tr{e−βH′ â†~k e
βH′e−βH

′
â~k } = e−β(ε~k−µ)tr{â†~k e

−βH′ â~k }

= e−β(ε~k−µ)tr{e−βH′ â~k â
†
~k
} = e−β(ε~k−µ)tr{e−βH′ [1± â†~k â~k ]} ,

(3.68)

where ’+’ and ’−’ stand for bosons and fermions, respectively. Inserting this into Eq.(3.67) we
find,

〈n̂~k 〉 = e−β(ε~k−µ)(1± 〈n̂~k 〉) ⇒ 〈n̂~k 〉 =


1

eβ(ε~k−µ) − 1
bosons

1

eβ(ε~k−µ) + 1
fermions

(3.69)

which corresponds to the standard Bose-Einstein and Fermi-Dirac distribution.

3.6 Correlation functions

Independent classical particles do not have any correlation among each other. This is different
for quantum particles. The second quantization language is very suitable for the formulation of
correlation functions and to show that fermion and bose gases behave rather differently.

3.6.1 Fermions

First let us write the ground state of a free Fermi gas of spin-1/2 fermions as we have introduced
it already in Sect.2.6.2. Starting from the vacuum |0〉 we fill successively all low lying states
with a fermion of both spins s until all fermions are placed. This defines the Fermi sphere in
k-space with the radius kF , the Fermi wave vector. The ground state is then,

|Φ0〉 =

|~k |≤kF∏
~k

∏
s=↑,↓

â†~k s
|0〉 (3.70)

and n~k = 〈Φ0|n̂~k |Φ0〉 = Θ(kF − |~k |) is a step function with n̂~k =
∑

s â
†
~k s
â~k s.

First we formulate the one-particle correlation function in real space using field operators,

n

2
gs(~r − ~r ′) = 〈Φ0| Ψ̂ †s(~r ) Ψ̂ s(~r

′)|Φ0〉 , (3.71)

which measure the probability amplitude to be able to insert a Fermion at place ~r after having
removed one at ~r ′ with the same spin s. We evaluate this expression by going to k-space,

n

2
gs(~r − ~r ′) =

1

Ω

∑
~k ,~k ′

e−i
~k ·~r+i~k ′·~r ′ 〈Φ0| â †~k s â ~k ′s|Φ0〉︸ ︷︷ ︸

= n~k sδ~k ,~k ′

=

∫
|~k |≤kF

d3k

(2π)3
e−i

~k ·(~r−~r ′)

=
1

(2π)2

∫ kF

0
dk k2

∫ +1

−1
d cos θ eik|~r−~r

′| cos θ =
1

2π2|~r − ~r ′|

∫ kF

0
dk k sin(k|~r − ~r ′|)

=
3n

2

sinx− x cosx

x3

∣∣∣∣
x=kF |~r−~r ′|

.

(3.72)
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Note the limits: gs(~r → 0) = n/2 and gs(~r → ∞) = 0 where gs(~r − ~r ′) corresponds to the
overlap of the two states √

2

n
Ψ̂ s(~r )|Φ0〉 and

√
2

n
Ψ̂ s(~r

′)|Φ0〉 . (3.73)

Next we turn to the pair correlation function which we define as(n
2

)2
gss′(~r − ~r ′) = 〈Φ0| Ψ̂ †s(~r ) Ψ̂ †s′(~r

′) Ψ̂ s′(~r
′) Ψ̂ s(~r )|Φ0〉 (3.74)

being the probability to be able to pick two fermions at the different places, ~r and ~r ′, with the
spins s and s′, respectively. Again we switch to the more convenient k-space,(n

2

)2
gss′(~r − ~r ′) =

1

Ω2

∑
~k ,~k ′, ~q , ~q ′

e−i(
~k−~k ′)·~r e−i( ~q− ~q

′)·~r ′〈Φ0| â †~k s â
†
~q s′ â ~q ′s′ â ~k ′s|Φ0〉 . (3.75)

Note that the expectation bracket only remains finite, if every particle annihilated is created by
these operators again, otherwise we get zero.
We start with the simpler case s 6= s′ which implies that in Eq.(3.75) the wave vectors satisfy
~k = ~k ′ and ~q = ~q ′. This leads to(n

2

)2
gss′(~r − ~r ′) =

1

Ω2

∑
~k , ~q

〈Φ0| n̂ ~k s
n̂ ~q s′ |Φ0〉 =

(n
2

)2
, (3.76)

such that gss′(~r − ~r ′) = 1 independent of position. Fermions of different spin are uncorrelated.
Now we consider s = s′ where the expectation value in Eq.(3.75) has to be rearranged carefully,

〈Φ0| â †~k s â
†
~q s â ~q ′s â ~k ′s|Φ0〉 = δ~k ~k ′δ ~q ~q ′〈Φ0| â †~k s â

†
~q s â ~q s â ~k s|Φ0〉

+δ~k ~q ′δ ~q ~k ′〈Φ0| â †~k s â
†
~q s â ~k s â ~q s|Φ0〉

= (δ~k ~k ′δ ~q ~q ′ − δ~k ~q ′δ ~q ~k ′)〈Φ0| â †~k s â ~k s â
†
~q s â ~q s|Φ0〉

= (δ~k ~k ′δ ~q ~q ′ − δ~k ~q ′δ ~q ~k ′)n~k sn ~q s .

(3.77)

From this it follows straightforwardly,(n
2

)2
gss(~r − ~r ′) =

1

Ω2

∑
~k , ~q

(
1− e−i(~k− ~q )·(~r−~r ′)

)
n~k sn ~q s =

(n
2

)2
[1− gs(~r − ~r ′)2], (3.78)

and we can write,

gss(~r − ~r ′) = 1− 9(sinx− x cosx)2

x6

∣∣∣∣
x=kF |~r−~r ′|

. (3.79)

In Fig.3.1 we see that the equal-spin correlation function goes to zero as the two positions
approach which is called the exchange hole with a radius of the order of k−1

F . On long distances
there is no correlation apart from weak ripples of the wave length k−1

F . The probability to find
another fermion around the position of a fermion at ~r corresponds to

g(~r ) =
1

2
[g↑↑(~r ) + g↑↓(~r )]. (3.80)

57



20 4 6 8

.

1.0

0.8

0.6

0.4

0.2

0.0
kF r

gss

864 10 12

0.99

1.0

Figure 3.1: The equal-spin pair correlation function for fermions.

The density depletion around such a fermion is then,

n
∫
d3r (g(~r )− 1) = −n

2

∫
d3r {gs(~r )}2 = − 2

n

∫
d3r

1

Ω2

∑
~k ,~k ′

n~k sn~k ′se
i(~k−~k ′)·~r

= − 2

nΩ

∑
~k

n~k s = −1,

(3.81)

which means that the exchange hole expels one fermion such that each fermion ”defends” a
given volume against other fermions of the same spin.

3.6.2 Bosons

We consider a general occupation number state for free spinless bosons (S = 0),

|Φ〉 = |n~k 0
, n~k 1

, . . .〉 = · · · ( â †~k 1
)
n~k 1 ( â †~k 0

)
n~k 0 |0〉 . (3.82)

The ground state would be the state with all bosons occupying the lowest-energy single-particle
state. For such a state |Φ〉 the one-particle correlation function looks similar to the fermionic
case,

〈Φ| Ψ̂ †(~r ) Ψ̂ (~r ′)|Φ〉 =
1

Ω

∑
~k ,~k ′

e−i
~k ·~r+i~k ′·~r ′ 〈Φ| â †~k â ~k ′ |Φ〉︸ ︷︷ ︸

n~k δ~k ~k ′

=
1

Ω

∑
~k

n~k e
−~k ·(~r−~r ′), (3.83)

which in the limit ~r ′ → ~r approaches the constant density n and vanishes at very large distances.
The pair correlation functions is given by

n2g(~r − ~r ′) = 〈Φ| Ψ̂ †(~r ) Ψ̂ †(~r ′) Ψ̂ (~r ′) Ψ̂ (~r )|Φ〉

=
1

Ω2

∑
~k ,~k ′, ~q , ~q ′

e−i(
~k−~k ′)·~r−i( ~q− ~q ′)·~r ′〈Φ| â †~k â

†
~q â ~q ′ â ~k ′ |Φ〉 ,

(3.84)

where we have to evaluate the expectation value again

〈Φ| â †~k â
†
~q â ~q ′ â ~k ′ |Φ〉

= (1− δ~k ~q )
{
δ~k ~k ′δ ~q ~q ′ + δ~k ~q ′δ ~q ~k ′

}
〈Φ| â †~k â

†
~q â ~q â ~k |Φ〉︸ ︷︷ ︸

= n~k n ~q

+δ~k ~q δ~k ~k ′δ ~q ~q ′ 〈Φ| â
†
~k
â †~k

â ~k â ~k |Φ〉︸ ︷︷ ︸
= n~k (n~k − 1)

.

(3.85)
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This leads to

n2g(~r − ~r ′) =
1

Ω2

∑
~k , ~q

(1− δ~k ~q )
(

1 + e−i(
~k− ~q )·(~r−~r ′)

)
n~k n ~q +

∑
~k

n~k (n~k − 1)



=
1

Ω2

∑
~k , ~q

n~k n ~q −
∑
~k

n2
~k
−
∑
~k

n~k +

∣∣∣∣∣∣
∑
~k

e−i
~k ·(~r−~r ′)n~k

∣∣∣∣∣∣
2 

= n2 +

∣∣∣∣∣∣ 1

Ω

∑
~k

e−i
~k ·(~r−~r ′)n~k

∣∣∣∣∣∣
2

− 1

Ω2

∑
~k

n~k (n~k + 1) .

(3.86)

Let us now consider two cases. (1) All particles are in the same momentum state n~k = Nδ~k ,~k 0

which, for a Bose-Einstein condensate, is the ground state ~k 0 = 0. In this case,

n2g(~r − ~r ′) = 2n2 − 1

Ω2
N(N + 1) =

N(N − 1)

Ω2
, (3.87)

no correlation is observed. The probability to pick the first particle is n = N/Ω and a second
one (N − 1)/Ω (≈ n for large N). (2) We broaden the distribution into a Gaussian

n~k =
(2π)3n

(A
√
π)3

e−(~k−~k 0)2/A2
, (3.88)

which corresponds to the classical Maxwell-Boltzmann distribution, if we writeA2 = 2mkBT/~2 =
4π/λ2 (λ: thermal wave length). Then the correlation function is calculated as follows,

n2g(~r − ~r ′) = n2 +

∣∣∣∣∣∣∣∣∣
∫

d3k

(2π)3
e−i

~k ·(~r−~r ′)n~k︸ ︷︷ ︸
ne−A2(~r−~r ′)2/4e−i

~k 0(~r−~r ′)

∣∣∣∣∣∣∣∣∣
2

+O
(

1

Ω

)

= n2
(

1 + e−A
2(~r−~r ′)2/2

)
+O

(
1

Ω

)
.

(3.89)

The probability of finding two bosons at the same position is twice as large as for long distances,
see Fig. 3.2 . Thus, in contrast to fermions, bosons like to cluster together.
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1.0

4
r

g

Figure 3.2: The pair correlation function for bosons.
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3.7 Selected applications

We consider here three examples applying second quantization to statistical physics systems.

3.7.1 Spin susceptibility

We calculate the spin susceptibility of spin-1/2 fermions using the fluctuation-dissipation rela-
tion.

χ =
1

ΩkBT

{
〈M̂2

z 〉 − 〈M̂z〉2
}
, (3.90)

where

M̂z =
gµB
~

∫
d3r Ŝ z(~r ) = µB

∑
~k

∑
ss′

â†~k s
σzss′ â~k s′ = µB

∑
~k ,s

sâ†~k s
â~k s (3.91)

using Sect.3.4. Moreover, g = 2 and s = ±1. First we calculate the magnetization in zero
magnetic field,

〈M̂z〉 = µB
∑
~k ,s

s〈â†~k sâ~k s〉 = µB
∑
~k ,s

sn~k = 0 . (3.92)

Now we turn to
〈M̂2

z 〉 = µ2
B

∑
~k ,s

∑
~k ′,s′

ss′〈â†~k sâ~k sâ
†
~k ′s′

â~k ′s′〉 , (3.93)

which we determine by applying the scheme used in Sect.3.5 to calculate the Fermi-Dirac dis-
tribution. Thus, we write

〈â†~k sâ~k sâ
†
~k ′s′

â~k ′s′〉 =
1

Z
tr
{
e−βH

′
â†~k s

â~k sâ
†
~k ′s′

â~k ′s′

}
=
e−β(ε~k−µ)

Z
tr
{
e−βH

′
â~k sâ

†
~k ′s′

â~k ′s′ â
†
~k s

}
=
e−β(ε~k−µ)

Z

[
tr
{
e−βH

′
â~k sâ

†
~k ′s′

}
δ~k ~k ′δss′ + tr

{
e−βH

′
â~k sâ

†
~k s
â†~k ′s′

â~k ′s′

}]
= e−β(ε~k−µ)

{(
1− 〈â†~k sâ~k s〉

)
δ~k ~k ′δss′ + 〈â

†
~k ′s′

â~k ′s′〉
}

−e−β(ε~k−µ)〈â†~k sâ~k sâ
†
~k ′s′

â~k ′s′〉
(3.94)

which leads straightforwardly to

〈â†~k sâ~k sâ
†
~k ′s′

â~k ′s′〉 = 〈â†~k sâ~k s〉
(

1− 〈â†~k sâ~k s〉
)
δ~k ~k ′δss′ + 〈â

†
~k s
â~k s〉〈â

†
~k ′s′

â~k ′s′〉 . (3.95)

We now insert this result into Eq.(3.93) and obtain

〈M̂2
z 〉 = 2µ2

B

∑
~k

〈â†~k sâ~k s〉
(

1− 〈â†~k sâ~k s〉
)

= 2µ2
B

∑
~k

n~k s(1− n~k s)

= 2µ2
B

∑
~k

1

4 cosh2(β(ε~k − µ)/2)
,

(3.96)

where the second term cancels due to the spin summation. In the low-temperature limit this is
confined to a narrow region (∼ kBT ) around the Fermi energy, such that we approximate

〈M̂2
z 〉 ≈ µ2

BΩ

∫ +∞

−∞
dεN(εF )

1

4 cosh2(βε/2)
= Ωµ2

BkBTN(εF ) , (3.97)
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where the density of states is defined as

N(ε) =
1

Ω

∑
~k ,s

δ(ε− ε~k ) . (3.98)

Then the spin susceptibility is given as the Pauli susceptibility,

χ = µ2
BN(εF ) = µ2

B

3n

2εF
, (3.99)

where the expression with the density of states at εF is general and the second equality is valid for
free fermions. The Pauli susceptibility is independent of temperature, because only N(εF )kBT
fermions can be spin polarised (thermal softening of the Fermi sea). Thus, the factor (kBT )−1

is compensated by the shrinking density of polarisable spins as temperature decreases.2

3.7.2 Bose-Einstein condensate and coherent states

Our aim here is to characterise the Bose-Einstein condensate further beyond what we did in
the last chapter. Here, we consider the concepts of both the off-diagonal long-range order and
the order parameter for the condensate. We start with the discussion of the single-particle
correlation function for a homogeneous gas of spin-0 bosons,

g(~r − ~r ′) = 〈 Ψ̂ †(~r ) Ψ̂ (~r ′)〉 =
1

Ω

∑
~k ,~k ′

〈â†~k â~k ′〉e
i(~k ′·~r ′−~k ·~r ) =

1

Ω

∑
~k

〈n̂~k 〉e
−i~k ·(~r−~r ′) , (3.103)

where 〈n̂~k 〉 is the Bose-Einstein distribution. For independent free bosons we may write

g( ~R ) =

∫
d3k

(2π)3

e−i
~k · ~R

eβ(ε~k−µ) − 1
, (3.104)

with ε~k = ~2 ~k 2/2m and ~R = ~r − ~r ′. Let us look at the two limits ~R → 0 and ~R →∞. For
the first limit we may expand

g( ~R ) =

∫
d3k

(2π)3

1 + i~k · ~R − (~k · ~R )2/2 + · · ·
eβ(ε~k−µ) − 1

= n

(
1−

~R 2

6
〈~k 2〉+ · · ·

)
, (3.105)

where n = N/Ω is the particle density and

〈~k 2〉 ∼ 4π

λ2
(3.106)

where λ = (2πmkBT/h
2)1/2 is the thermal wave length providing the characteristic length scale.

The correlation falls off quadratically for finite, but small ~R . For the long-distance limit we

2Classical limit: The classical limit can be discussed using the Maxwell-Boltzmann distribution function,

n~k s =
nλ3

2
e−k

2λ2/4π , (3.100)

with λ as the thermal wavelength. Inserting into Eq.(3.96) we obtain

〈M̂2
z 〉 = 2µ2

BΩ

∫
d3k

(2π)3
n~k s(1−n~k s) = 2µ2

BΩ

∫
d3k

(2π)3

{
nλ3

2
e−k

2λ2/4π − n2λ6

4
e−k

2λ2/2π

}
= µ2

BΩn

(
1− λ3n

25/2

)
,

(3.101)
which using Eq.(3.90) leads to the susceptibility found earlier in Eq.(2.94).

χ =
µ2
Bn

kBT

(
1− λ3n

25/2

)
(3.102)

The factor 1− n~k s in Eq.(3.96) introduces the quantum correction in the second term.
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note that only the small wave vectors contribute to the integral so that we may expand the
integrand in the following way,

g( ~R ) ≈
∫

d3k

(2π)3

e−i
~k · ~R

β(ε~k − µ)
=

2mkBT

~2

∫
d3k

(2π)3

e−i
~k · ~R

~k 2 + k2
0

(3.107)

where k2
0 = −2mµ

~2 > 0. This form we know from the Yukawa potential,

g( ~R ) ≈ mkBT

(2π)4~2

e−k0| ~R |

| ~R |
=

e−k0| ~R |

(2π)3λ2| ~R |
. (3.108)

The single-particle correlation function decays exponentially for large distances (Fig.3.3). This
behavior is valid for T > Tc where µ < 0.

g(~R)

~R

T > Tc

T < Tc

n

n0

Figure 3.3: Schematic behavior of the single-particle correlation function in the normal(T > Tc)
and the Bose-Einstein condensed phase (T < Tc). n is the overall particle density and n0 the
density of condensed particles.

For T < Tc the chemical potential lies at the lowest single-particle state, i.e. µ = 0, such that
k0 = 0. The short-distance behavior is still described by Eq.(3.105). For the long-distance
behavior we conclude from Eq.(3.108) that the correlation function goes to zero like | ~R |−1.
However, this is not true, since our integral approach neglects the macroscopic occupation of
the ~k = 0 state. Thus, we should use

〈n̂~k 〉 = n0δ(~k ) +
1

(2π)3

1

eβ(ε~k−µ) − 1
, (3.109)

such that for | ~R | → ∞,

g( ~R ) = n0 +
1

(2π)3λ2| ~R |
. (3.110)

The correlation function approaches a finite value on long distances in the presence of a Bose-
Einstein condensate (Fig.3.3).

Bogolyubov approximation:

We consider this now from the view point of the field operator for free bosons,

Ψ̂ (~r ) =
1√
Ω

∑
~k

â~k e
i~k ·~r =

â0√
Ω

+
1√
Ω

∑
~k 6=0

â~k e
i~k ·~r . (3.111)
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The correlation function in Eq.(3.110) suggests the following approximation: â0 → a0 =
√
N0.

For a Bose-Einstein condensate we may replace the operator â0 simply by a complex number,
such that

Ψ̂ (~r )→ Ψ̂ (~r ) = ψ0(~r ) + δ Ψ̂ (~r ) , (3.112)

with ψ0(~r ) =
√
n0e

iφ, where φ is an arbitrary phase and n0 = N0/Ω. In a uniform system
this phase does not affect the physical properties. This so-called Bogolyubov approximation is,
of course, incompatible with the occupation number representation. On the other hand, it is
possible for a condensate state whose particle number is not fixed. Indeed a state incorporating
this property is a coherent state.

Coherent state:

We introduce a coherent state as an eigenstate of the annihilation operator âν of a bosonic state
of energy εν . Let us call this state |Ψα〉 with

âν |Ψα〉 = α|Ψα〉 , (3.113)

with α a complex number. Such a state is given by

|Ψα〉 = e−|α|
2/2
∑
Nν

αNν√
Nν !
|Nν〉; , (3.114)

with âν |Nν〉 =
√
Nν |Nν − 1〉. The expectation value for n̂ν = â†ν âν is

〈n̂ν〉 = 〈Ψα|â†ν âν |Ψα〉 = 〈Ψα|α∗α|Ψα〉 = α∗α = |α|2 (3.115)

and the variance is

〈n̂2
ν〉−〈n̂ν〉2 = 〈â†ν âν â†ν âν〉−|α|4 = 〈â†ν âν〉+〈â†ν â†ν âν âν〉−|α|4 = |α|2 + |α|4−|α|4 = |α|2 (3.116)

such that
〈n̂2
ν〉 − 〈n̂ν〉2
〈n̂ν〉2

=
1

|α|2 =
1

〈n̂ν〉
. (3.117)

Taking now the ~k = 0 state as coherent we identify

â0|Ψ〉 = α0|Ψ〉 =
√
N0e

iφ|Ψ〉 . (3.118)

In this spirit we find that the mean value is

〈 Ψ̂ (~r )〉 = ψ0(~r ) , (3.119)

which does not vanish for the condensed state. Note, however, 〈â~k 〉 = 0, if ~k 6= 0. The finite

value of 〈â0〉 requires states of different number of particles in the ~k = 0 state for the matrix
elements making up this mean value. This is an element of spontaneous symmetry breaking.
The condensate can be considered as a reservoir with on average N0 � 1 particles, to which we
can add or from which we can remove particles without changing the properties of the system.
The coherent state satisfies this condition. We also can define an order parameter characterizing
the condensate, the condensate wavefunction of Eq.(3.119),

ψ0(~r ) = |ψ0(~r )|eiφ(~r ) =
√
n0e

iφ . (3.120)

Spontaneous symmetry breaking occurs via the (arbitrary) choice of the phase of the condensate
wave function.
The number of particles and the phase φ are conjugate in the sense that a state with fixed
particle number has no definite phase (also no order parameter like Eq.(3.120)) and a state
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with fixed phase has no definite particle number. 3 First we consider the wave function of the
coherent state in the number representation,

ΨN = 〈N |Ψα〉 = e−|α|
2/2 α

N

√
N !

(3.125)

with α =
√
N0e

iφ0 . Thus, the probability for the particle number N is given by

PN = |ΨN |2 = eN0
NN

0

N !
≈ 1√

2πN0
e−(N−N0)2/2N0 (3.126)

for large N0. On the other hand, projecting into the phase representation,

Ψφ = 〈φ|Ψα〉 =

∞∑
N=0

〈φ|N〉〈N |Ψα〉 =
e−|α|

2/2

√
2π

∞∑
N=0

αNe−iφN√
N !

≈ 1√
2π

∫ ∞
0

dN
e−(N−N0)2/4N0

(2πN0)1/4
e−iN(φ−φ0) =

(
N0

2π

)1/4

e−(φ−φ0)2N0/4

(3.127)

such that

Pφ = |〈φ|Ψα〉|2 ≈
√
N0

2π
e−(φ−φ0)2N0/2 . (3.128)

The Gaussian approximation is in both representations only valid, if N0 � 1. The coherent state

is neither an eigenstate of N̂ nor eiφ̂. But for both the distributions are well localized around
the corresponding mean values, N0 and φ0. The uncertainty relation is obtained by considering
the deviations from the mean values,

∆φ2 = 〈Ψα|(φ̂− φ0)2|Ψα〉 =
1

N0

∆N2 = 〈Ψα|(N̂ −N0)2|Ψα〉 = N0

 ⇒ ∆N ∆φ = 1 , (3.129)

compatible with a commutation relation of the form [N̂ , φ̂] = i.

3Phase and number operator eigenstates: The define the number operator and the phase operator and their
corresponding eigenstates.

N̂ |N〉 = N |N〉 and eiφ̂|φ〉 = eiφ|φ〉 (3.121)

where the two states are connected by the Fourier transform

|φ〉 =
1√
2π

∞∑
N=0

eiNφ|N〉 with 〈N |φ〉 =
eiNφ√

2π
(3.122)

analogous to the relation between real and momentum space states. In this context care has to be taken to ensure
that the states |φ〉 form an orthogonal complete set of the Hilbert space. A way to construct this is to start with
an finite Hilbert space {|N〉} assuming that 0 ≤ N ≤ L − 1 � 1. Then we can restrict ourselves to a discrete
set of phases φ = φk = 2πk/L with k = 0, . . . , L − 1 (analog to wave vectors in a finite system with periodic
boundary conditions). Now it is easy to see that

〈φk|φk′〉 = δk,k′ . (3.123)

Keeping this in mind we take the limit L→∞.
Based on this above operators can be represented as

N̂ =
∞∑
N=0

N |N〉〈N | and eiφ̂ =
∞∑
N=0

|N〉〈N + 1| ; . (3.124)

Thus for both N̂ and eiφ̂ the coherent state does not represent an eigenstate, but rather the best localized in
either basis.
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3.7.3 Phonons in an elastic medium

We consider here vibrations of an elastic media using a simplified model of longitudinal waves
only. As in Sect.2.8.2 we describe deformation of the elastic medium by means of the displace-
ment field ~u (~r , t). The kinetic and elastic energy are then given by

Ekin =
ρm
2

∫
d3r

(
∂ ~u (~r , t)

∂t

)2

and Eel =
λ

2

∫
d3r( ~∇ · ~u (~r , t))2 , (3.130)

where ρm is the mass density of the medium and λ denotes the elastic modulus. Note that we
use a simplified elastic term which is only based on density fluctuations, corresponding to ~∇ · ~u ,
and does not include the contributions of shear distortion. This two energies are now combined
to the Lagrange functional L[ ~u ] = Ekin − Eel, whose variation with respect to ~u (~r , t) yields
the wave equation,

1

c2
l

∂2

∂t2
~u − ~∇ ( ~∇ · ~u ) = 0 , (3.131)

for longitudinal waves with the sound velocity cl =
√
λ/ρm. The general solution can be

represented as a superposition of plane waves,

~u (~r , t) =
1√
Ω

∑
~k

~e ~k

(
q~k (t)ei

~k ·~r + q~k (t)∗e−i
~k ·~r
)
, (3.132)

with polarization vector ~e ~k = ~k /|~k | and the amplitudes q~k (t) satisfy the equation,

d2

dt2
q~k + ω2

~k
q~k = 0 , (3.133)

with the frequency ω~k = cl|~k | = clk. We may rewrite the energy, E = Ekin + Eel, in terms of
q~k ,

E =
∑
~k

ρmω
2
~k

[
q~k (t)q∗~k (t) + q~k (t)∗q~k (t)

]
. (3.134)

which we express in a symmetrized form. Now we introduce new variables

Q~k
=
√
ρm(q~k + q∗~k ) and P~k =

d

dt
Q~k

= −iω~k
√
ρm(q~k − q

∗
~k

) , (3.135)

leading to the energy

E =
1

2

∑
~k

(
P 2
~k

+ ω2
~k
Q2
~k

)
. (3.136)

This corresponds to a set of independent harmonic oscillators labelled by the wave vectors ~k ,
as we have seen in Sect.2.8. We now turn to the step of canonical quantization replacing the
variables (P~k , Q~k

)→ ( P̂ ~k
, Q̂ ~k

) which satisfy the standard commutation relation,

[ Q̂ ~k
, P̂ ~k ′ ] = i~δ~k ,~k ′ . (3.137)

This can be reexpressed in terms of lowering and raising operators,

b̂~k =
1√

2~ω~k

(
ω~k Q̂ ~k

+ i P̂ ~k

)
,

b̂†~k
=

1√
2~ω~k

(
ω~k Q̂ ~k

− i P̂ ~k

)
,

(3.138)
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which obey the following commutation relations due to Eq.(3.137),

[b̂~k , b̂
†
~k ′

] = δ~k ,~k ′ , [b̂~k , b̂~k ′ ] = [b̂†~k
, b̂†~k ′

] = 0 . (3.139)

Therefore b̂†~k
and b̂~k can be viewed as creation and annihilation operators, respectively, for

bosonic particles, called phonons. The Hamiltonian can be now written as

H =
∑
~k

~ω~k

(
b̂†~k
b̂~k +

1

2

)
=
∑
~k

~ω~k

(
n̂~k +

1

2

)
(3.140)

whose eigenstates are given in the occupation number representation, |n~k 1
, n~k 2

, . . .〉.
We can now also introduce the corresponding field operator using Eq.(3.132),

~̂u (~r ) =
1√
Ω

∑
~k

~e ~k

√
~

2ρmω~k

[
b̂~k e

i~k ·~r + b̂†~k
e−i

~k ·~r
]

(3.141)

which is not an eigen operator for the occupation number states. Actually the thermal mean
value of the field vanishes 〈 ~̂u (~r )〉 = 0.

Correlation function:

The correlation function is given by

g(~r − ~r ′) = 〈 ~̂u (~r ) · ~̂u (~r ′)〉 − 〈 ~̂u (~r )〉 · 〈 ~̂u (~r ′)〉 = 〈 ~u (~r ) · ~u (~r ′)〉

=
1

Ω

∑
~k ,~k ′

~~e ~k · ~e ~k ′
2ρm
√
ω~k ω~k ′

〈[
b̂~k e

i~k ·~r + b̂†~k
e−i

~k ·~r
] [
b̂~k ′e

i~k ′·~r ′ + b̂†~k ′
e−i

~k ′·~r ′
]〉

.

(3.142)
Note that

〈b̂†~k b̂~k ′〉 = 〈n̂~k 〉δ~k ,~k ′ , 〈b̂~k b̂
†
~k ′
〉 =

{
1 + 〈n̂~k 〉

}
δ~k ,~k ′ , 〈b̂

†
~k
b̂†~k ′
〉 = 〈b̂~k b̂~k ′〉 = 0 , (3.143)

such that

g(~r − ~r ′) =
~

2ρmΩ

∑
~k

1

ω~k

{(
1 + 〈n̂~k 〉

)
ei
~k ·(~r−~r ′) + 〈n̂~k 〉e

−i~k ·(~r−~r ′)
}

=
~

(2π)2ρmcl

∫
dk

sin(k|~r − ~r ′|)
|~r − ~r ′|

(
1 + 2〈n̂~k 〉

)
,

(3.144)

where we turn the ~k -sum into an integral and performed the angular integration4. With 〈n̂~k 〉 =

(eβ~ωk − 1)−1 and abbreviating ~R = ~r − ~r ′, we obtain

g( ~R ) =
~

(2π)2ρmclR

∫ kD

0
dk sin kR coth

(
β~clk

2

)
, (3.146)

where we include the cut-off at the Debye wave vector to account for the finite number of degrees
of freedom. Note kD ∼ π/a with a being the lattice constant. We focus on length scales much

4Angular integral:∫
dΩ~k e

±i~k ·~r =

∫ 2π

0

dφ

∫ +1

−1

d cos θe±ikr cos θ = 2π
e±ikr cos θ

±ikr

∣∣∣∣cos θ=+1

cos θ=−1

= 4π
sin(kr)

kr
. (3.145)
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larger than the lattice constant, we consider the limit kDR� 1, for which we rewrite the above
expression to

g(R) ≈ ~
(2π)2ρmclR2

∫ kDR→∞

0
dy sin y coth(γy)︸ ︷︷ ︸
= h(γ)

with γ =
θD

2TkDR
, (3.147)

where we find

h(γ) = lim
η→0+

∫ ∞
0

dy sin y coth(γy)e−ηy =


π

2γ
, γ � 1 ,

1 , γ � 1 .

(3.148)

This leads to

g(R) ≈ kBΘD

(2π)2λkD
×


R−2 T � T ∗(R)

πT

ΘD
kDR

−1 T � T ∗(R)

(3.149)

where the Debye temperature is defined by kBΘD = ~clkD and T ∗(R) = ΘD/2kDR.

Melting:

Next we consider the local fluctuations of the displacement field, i.e. ~r → ~r ′, leading to

〈 ~u (~r )2〉 =
~

(2π)2ρmcl

∫ kD

0
dk k coth

(
β~clk

2

)
=


kDkBT

2π2λ
T � ΘD ,

kDkBΘD

8π2λ
T � ΘD ,

(3.150)

which are at high (low) temperature thermal (quantum) fluctuations. As ~u denotes the deviation
of the position of an atom from its equilibrium position, we can apply Lindemann’s criterion for
melting of the systems. We introduce the lattice constant a with kD ≈ π/a. If 〈 ~u 2〉 is a sizeable
fraction of a2 then a crystal would melt. Thus we define the Lindemann number Lm with

Lm =
〈 ~u 2〉
a2

=
kBT

2πλa3
⇒ kBTm = 2πλa3Lm = 2πρma

3c2
lLm = 2πMic

2
lLm , (3.151)

where Mi = ρma
3 is the atomic mass per unit cell. Note that usually Lm ≈ 0.1 give a reasonable

estimate for a melting temperature Tm.

Coherent state:

We introduce the following coherent phonon state,

|Φ ~Q 〉 = e−|ũ|
2/2

∞∑
n=0

(ũb†~Q
)n

√
n!
|0〉 (3.152)

with ũ = |ũ|e−iϕ and ~Q a finite wave vector. Now we consider the expectation value of ~̂u (~r ),

〈Φ ~Q | ~̂u (~r )|Φ ~Q 〉 =

√
~

2Ωρmω ~Q

~Q

| ~Q |
2|ũ| cos( ~Q · ~r − ϕ) . (3.153)

The coherent state describes a density wave state, where |ũ| determines the amplitude and ϕ
the global shift of the wave. The density modulation is obtained by ~∇ · ~u (~r ) = δρ(~r )/ρ.
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The density wave state may be interpreted as the Bose-Einstein condensation of phonons with
wave vector ~Q , which yields an obvious breaking of the translational symmetry and the phase
(0 ≤ ϕ < 2π) leads to all degenerate states, one of which has to be chosen spontaneously by the
system.

~k

~k0 ~k + ~k0�~k � ~k0

~k

~k0

~k

~k0

~k

~k0

~k + ~k0
�~k � ~k0

b̂~k b̂~k0 b̂�~k�~k0 b̂~k b̂~k0 b̂
†
~k+~k0

b̂~k+~k0 b̂
†
~k
b̂†
~k0 b̂†

~k
b̂†
~k0 b̂

†
�~k�~k0

Figure 3.4: Diagrams of the three-phonon coupling terms. Arrows entering the circle denote
annihilation and arrows leaving the circle denote creation of phonons.

Anharmonic elastic energy - phonon-phonon interaction:

In order to illustrate the emergence of interaction terms we consider a straightforward extension
of the elastic energy in Eq.(3.130), restricting to density-density coupling, i.e.

E′el =
C ′

3

∫
d3r( ~∇ · ~u )3 . (3.154)

We turn now to the quantized version inserting ~̂u (~r ) of Eq.(3.141),

H′el =
C

3

(
~

2ρmΩ

)3/2 ∑
~k ,~k ′

(~e ~k · ~k )(~e ~k ′ · ~k ′)(~e ~k+~k ′ · (~k + ~k ′))(
ω~k ω~k ′ω~k+~k ′

)1/2

×
{
b̂~k b̂~k ′ b̂−~k−~k ′ + 3 b̂~k b̂~k ′ b̂

†
~k+~k ′

+ 3 b̂~k+~k ′ b̂
†
~k
b̂†~k ′

+ b̂†~k
b̂†~k ′

b̂†
−~k−~k ′

}

=
C

3

(
~

2ρmclΩ

)3/2 ∑
~k ,~k ′

(
|~k | |~k ′| |~k + ~k ′|

)1/2

×
{
b̂~k b̂~k ′ b̂−~k−~k ′ + 3 b̂~k b̂~k ′ b̂

†
~k+~k ′

+ 3 b̂~k+~k ′ b̂
†
~k
b̂†~k ′

+ b̂†~k
b̂†~k ′

b̂†
−~k−~k ′

}
.

(3.155)
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This interaction term can be interpreted as ”scattering” processes involving three phonons. The
expression contains three types of processes:

b̂~k b̂~k ′ b̂−~k−~k ′ 3 phonons are annihilated ,

b̂~k b̂~k ′ b̂
†
~k+~k ′

2 phonons are annihilated and 1 phonon is created ,

b̂~k+~k ′ b̂
†
~k
b̂†~k ′

1 phonon is annihilated and 2 phonon are created ,

b̂†~k
b̂†~k ′

b̂†
−~k−~k ′

3 phonons are created .

(3.156)

Note that in all processes the momentum is conserved, but the phonon number is not conserved.
As shown in Fig.3.4, these processes can also be represented as diagrams, so-called Feynman
diagrams.
Usually interaction terms are difficult to handle. But various approximative techniques are
available.
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Chapter 4

One-dimensional systems of
interacting degrees of freedom

So far we considered almost exclusively ideal systems of non-interacting degrees of freedom,
which we could treat with reasonable effort. Systems with interactions are considerably more
complex to handle and in most cases no exact analytical discussion is possible. Notably in one
spatial dimension we find a number of models which can be treated exactly and give us some
interesting new aspects. Here we consider two classical systems, the spin chain and the lattice
gas in one-dimension. Note, however, that in principle there are exact solutions also for quantum
spin chains and other one-dimensional quantum models whose statistical physics, nevertheless,
is rather complex to address.

4.1 Classical spin chain

We consider here a chain of spins (magnetic moments) {~si} which are represented by freely
rotating vectors of fixed length S. They interact with each other via nearest-neighbor coupling
in the following way:

H(~si) = J
N∑
i=1

~si · ~si+1 (4.1)

where J is the coupling strength. Note that this model has a global spin rotation symmetry,
i.e. the Hamiltonian remains invariant, if we rotate all the spin in the same way. It is known as
the Heisenberg Hamiltonian. For J < 0 the spins tend to align parallel (ferromagnetic) and for
J > 0 they tend to be antiparallel, alternating (antiferromagnetic). We require that the chain
is open and occupied by N + 1 spins (N bonds).

4.1.1 Thermodynamics

First we tackle the thermodynamics of the system using the canonical ensemble. Interestingly
the topology of the coupling allows to calculate the partition function exactly.1 We consider the
spins as vectors of fixed length whose degree of freedom is the angular orientation and we write
the partition function as

Z =

∫
dΩ1 · · · dΩN+1 e

−βJ
∑
i ~si·~si+1 , (4.2)

which decays into a product form, if we consider the reference polar axis (”z-axis”) for the spin ~si
given by the direction of the spin ~si+1 (θi is defined as the angle between ~si and ~si+1). Therefore

1We follow here M.E. Fisher, American Journal of Physics 32, 343 (1964).
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J > 0

J

ferromagnetic antiferromagnetic

J < 0

Figure 4.1: Spin chain: Coupling J between spins of arbitrary orientation. J < 0: ferromagnetic
alignment preferred; J > 0: antiferromagnetic alignment preferred.

we may write

Z =

N∏
i=1

{∫
e−βJ~si·~si+1dΩi

}∫
dΩN+1 =

N∏
i=1

{∫
e−βJS

2 cos θidΩi

}∫
dΩN+1

= 4π

{
2π

∫ +1

−1
dxe−βJS

2x

}N
= 4π

{
4π

sinh(βJS2)

βJS2

}N (4.3)

which looks similar to the expression obtained for the classical ideal paramagnet (see Sect.2.4.2).
We may actually consider each spin being subject to a Zeeman field induced via the coupling
by the neighboring spins, a feature which we will use later in the context of the mean field
approximation. It is interesting to see that Z does not depend on the sign of J . Thus, the
thermodynamics is the same for a ferromagnetic and an antiferromagnetic chain.
Easily we can determine the free and the internal energy,

F (T,N) = NkBT ln(βJS2)−NkBT ln
{

sinh(βJS2)
}
−NkBT ln 4π ,

U(T,N) = NkBT −NJS2 coth(βJS2) .

(4.4)

In the low-temperature limit, βJS2 � 1, the internal energy approaches the ground state energy,
U → −N |J |S2, i.e. all spins are parallel (J < 0) or alternating (J > 0). The heat capacity is
obtained through the derivative of U with respect to T ,

C = NkB

{
1−

(
βJS2

sinh(βJS2)

)2
}

(4.5)

with a similar form as for the ideal paramagnet. Note, that C → NkB in the zero-temperature
limit and, consequently, the third law of thermodynamic is not satisfied (see Fig.4.2).

4.1.2 Correlation function

We now discuss the correlation among the spins along the chain. Due to the spin-spin interaction,
a spin influences the orientation of other spins over larger distances. We define the correlation
function

Γl = 〈~si · ~si+l〉 = 〈sxi sxi+l〉+ 〈syi s
y
i+l〉 = 〈szi szi+l〉 = 3〈szi szi+l〉

=
3

Z

∫
dΩ1 · · · dΩN+1S

2 cos Θi cos Θi+le
−βJS2

∑
i cos θi .

(4.6)
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where Θi is the angle of spin i with respect to the general z-axis (e.g. along the chain). We can
perform all integrations for the spin ~sj with j < i and j > i+ l which can be decomposed into
the same product form as discussed above. The remaining integrals are now

Γl = 3S2

(
βJS2

4π sinh(βJS2)

)l+1 ∫
dΩi cos Θie

−βJS2 cos θi

×
∫
dΩi+1e

−βJS2 cos θi+1 · · ·
∫
dΩi+l cos Θi+l

(4.7)

Taking again the direction of spin ~s i+1 as the reference for the spin ~s i we find the relation2

cos Θi = cos Θi+1 cos θi + sin Θi+1 sin θi cosφi . (4.10)

Inserting this we notice that the averages 〈cos θi〉 6= 0 and 〈sin θi cosφi〉 = 0. Thus

Γl = 3S2

(
βJS2

4π sinh(βJS2)

)l+1 ∫
dΩi cos θie

−βJS2 cos θi

×
∫
dΩi+1 cos Θi+1e

−βJS2 cos θi+1 · · ·
∫
dΩi+l cos Θi+l

= Γl−1
βJS2

4π sinh(βJS2)

∫
dΩi cos θie

−βJS2 cos θi = Γl−1u(βJS2)

(4.11)

with

u(x) =
1

x
− cothx . (4.12)

If we take into account that Γl=0 = S2 we find

Γl = S2
[
u(βJS2)

]l
= S2e−l/ξ(−sign(J))l with ξ−1 = − ln{|u(βJS2)|} . (4.13)

Note that 0 < |u| < 1 for all finite temperatures and couplings. The correlation function decays
exponentially for all finite temperature and allows us to introduce a characteristic length scale,
the correlation length ξ:

ξ(T ) =


[ln(3kBT/|J |S2)]−1 kBT � |J |S2

|J |S2

kBT
kBT � |J |S2

(4.14)

For large temperature the correlation length shrinks rather slowly to zero and in the zero-
temperature limit it diverges indicating an infinitely extending correlation at T = 0. Indeed we
find for T = 0 that u→ 1 such that

Γl(T = 0) = S2(−signJ)l (4.15)

for all l. This means that the spins order either ferromagnetically for J < 0 or antiferromag-
netically for J > 0 at T = 0. However, for any finite temperature we find Γl → 0 for l → ∞.

2Consider ~s1 and ~s2 and take ŷ′ ⊥ ẑ, ~s2 with |ŷ′| = |ẑ| = 1:

~s1 = ~s2 cos θ1 + (ŷ′ × ~s2) sin θ1 cosφ1 + ŷ′S sin θ1 sinφ1 (4.8)

and multiply by ẑ:
ẑ · ~s1︸ ︷︷ ︸

=S cos Θ1

= cos θ1 ẑ · ~s2︸ ︷︷ ︸
=S cos Θ2

+ŷ′ · (~s2 × ẑ)︸ ︷︷ ︸
=ŷ′S sin Θ2

sin θ1 cosφ1 . (4.9)

72



χ

ferromagnetic

antiferromagnetic

a)

1
/
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Figure 4.2: Thermodynamic properties of spin chain: a) heat capacity: saturates at low temper-
ature to NkB like the potential energy of a two-dimensional harmonic oscillator; b) Susceptibility
plotted inversely: ferromagnetic case show divergence at T = 0 and antiferromagnetic case ap-
proaches non-monotonically a finite value at T = 0. Extrapolations from high-temperature
region cut horizontal axis at positive (ferromagnetic) and negative (antiferromagnetic) axis,
indicating effective energy scales for the corresponding correlations.

4.1.3 Susceptibility

Finally we want to study the susceptibility by assuming a coupling to the magnetic field of the
form

H′ = H− g
N+1∑
i=1

~si · ~H . (4.16)

Since it is impossible to use the above scheme to calculate the partition function for H′ with a
finite magnetic field, we will use the relation derived earlier (1.126) based on the fluctuations
of the magnetization, which does not require the knowledge of the partition function at finite
fields. In this way we obtain the susceptibility in the zero-field limit (linear response). The
magnetic moment is give by ~m = g

∑N+1
i=1 ~s i. Thus, the susceptibility per spin is given by

χzz =
1

NkBT

{
〈m2

z〉 − 〈mz〉2
}

=
g2

NkBT

N+1∑
i=1

N+1∑
j=1

{
〈szi szj 〉 − 〈szi 〉〈szj 〉

}
. (4.17)

The second term on the right hand side vanishes, since 〈szi 〉 = 0 for all i in zero magnetic field.
For the first term we can use our result for the correlation function. In the limit of very large
N we obtain

χzz =
g2

3NkBT

N+1∑
i=1

N+1∑
j=1

Γ|i−j| ≈
g2

3NkBT

N∑
i=1

(
Γl=0 + 2S2

∞∑
l=1

ul

)

=
g2

3kBT
S2

(
1 +

2u

1− u

)
=

g2S2

3kBT

1 + u(βJS2)

1− u(βJS2)
.

(4.18)

Here we use that for large systems (N → ∞) the corrections due to boundary contributions is
negligible. This susceptibility at high temperature (kBT � |J |S2) follows the Curie behavior

χzz =
g2S2

3kBT
(4.19)
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irrespective of the sign of J . For the antiferromagnetic coupling χzz goes through a maximum at
kBTmax ≈ 0.238JS2 to a finite zero-temperature value. On the other hand, in the ferromagnetic
case χzz diverges at low temperatures

χzz =
g2S2

3

2|J |S2

(kBT )2
, (4.20)

more strongly than the Curie 1/T behavior.
Let us now also look at the first lowest order correction in the high-temperature limit,

1

χzz
≈ 3kBT

g2S2

(
1 +

2JS2

3kBT

)
=

3kB
g2S2

(T −ΘW ) ⇒ χzz =
C

T −ΘW
(4.21)

where ΘW = −2JS2/3kB defines the so-called Weiss temperature. Thus the extrapolation
from the high-temperature limit of 1/χzz allows to determine ΘW from the intersection on the
temperature axis and consequently the sign and magnitude of the J (see dashed lines in Fig.
4.2).
The Weiss temperature indicates the relevant energy scale of interaction among the spins. How-
ever, it does not imply that we would find a phase transition to a long-range ordered state (see
Sect.4.3). As our discussion in this section shows, there is no ordering at any finite temperature.

4.2 Interacting lattice gas

We consider a simple model of a gas of hard-core particles which occupy sites on a lattice.3

”Hard-core” means that it is not allowed to place two or more particles on the same site,
i.e. there is an infinite repulsive onsite interaction or the Pauli principle is in action. We
introduce nearest-neighbor interaction and neglect the kinetic energy. Then the Hamiltonian
can be formulated as

H = V

L∑
i=1

nini+1 − µ
L+1∑
i=1

(
ni −

1

2

)
(4.22)

where the lattice has L+1 sites and the coupling strength V for the interaction can be attractive
(V < 0) or repulsive (V > 0). The chemical potential is introduced because we do not want to
fix the particle number, but work within a grand-canonical ensemble which makes the problem
more easy to solve. The variables ni can only take the values 0 and 1 due to the hard-core
constraint. We assume periodic boundary conditions such that i = L + 1 → i = 1 . The
particles may represent spinless (or spin polarized) fermions or hard-core bosons. The statistics
of the particles cannot be determined, since on a chain they cannot pass each other. In the given
form the Hamiltonian describes also classical particles.

4.2.1 Transfer matrix method

Let us immediately determine the partition function,

Z =
∑
{ni}

e−βH . (4.23)

We introduce the 2× 2-matrix (transfer matrix) for the bonds (i, i+ 1),

Pni,ni+1 = e−β[V nini+1−µ(ni+ni+1−1)/2]

⇒ P̂ =

 P00 P01

P10 P11

 =

 e−βµ/2 1

1 e−βV+βµ/2

 .

(4.24)

3In the exercise we will show the connection of the lattice gas model to the Ising spin model. The corresponding
discussion will make the similarity of the two systems clear.
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When we have one bond with periodic boundary condition it is obvious that the partition
function is given by four terms

Z2 =
∑
n1,n2

e−βH(n1,n2) =
∑
n1,n2

Pn1,n2Pn2,n1 = tr{P̂ 2}

= P00P00 + P01P10 + P10P01 + P11P11 = e−βµ + 1 + 1 + e−2βV+βµ

(4.25)

This allows us to rewrite the sum in the partition function as

Z =
∑
n1=0,1

∑
n2=0,1

· · ·
∑

nL=0,1

Pn1,n2Pn2,n3 · · ·PNL−1,nLPnL,n1 = tr{P̂L} =
∑
n1=0,1

PLn1,n1
, (4.26)

where we performed the matrix multiplication. Interestingly, we have now to analyse PL which
can easily be done in the eigenbasis of the matrix P̂ . For the trace we actually only need the
eigenvalues,

λ± = e−βV/2 cosh

(
β
V − µ

2

)
±
√
e−βV sinh2

(
β
V − µ

2

)
+ 1 (4.27)

and
Z = λL+ + λL− ≈ λL+ for L� 1 . (4.28)

Then the grand canonical potential and internal energy are given by

Ω(T, µ) = −kBT lnλL+ = −LkBT ln

[
e−βV/2 cosh

(
β
V − µ

2

)
+

√
e−βV sinh2

(
β
V − µ

2

)
+ 1

]
.

(4.29)
The particle number and the isothermal compressibility of the system can then be calculated
easily,

N = L〈ni〉 =
L

2
−
(
∂Ω

∂µ

)
T

and κT =
L

N2

(
∂N

∂µ

)
T

. (4.30)

We start with the high-temperature limit (kBT � |µ|, |V |) where we obtain the following ex-
pansion,

N ≈ L

2

{
1− β

2
(V − µ) +

β2V

4
(V − µ) + · · ·

}
. (4.31)

In this limit it is equally probable to find or not to find a particle on a site (N → L/2). The
particle number increases (decreases) upon lowering temperature, if V is attractive, V < 0,
(repulsive, V > 0), or the chemical potential is positive (negative). The compressibility for
µ = 0 is then given by

κT ≈
1

2kBT

(
1− βV

2
+ · · ·

)
(4.32)

which is enhanced (reduced) for attractive (repulsive) interaction V , as we would expect simply
by noticing that it is easier to add particles, if they attract each other than when they repel
each other.
At low temperatures we obtain for the particle number with µ = 0,

N =
L

2

1 +
e−βV/2 sinh(βV/2)√
1 + e−βV sinh2(βV/2)

→


L

2

(
1 +

1√
5

)
V > 0 ,

L V < 0 ,

(4.33)

where the case V > 0 yields a partial filling optimizing the free energy for a given chemical
potential. On the other hand, V < 0 tends towards complete filling. The compressibility
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remains in both cases finite,

κT =


1

kBT

55/2

(1 +
√

5)2
V > 0 ,

1

4kBT
V < 0 .

(4.34)

Case µ = V

Analogously to the case of the classical spin chain also the one-dimensional lattice gas does
not show a phase transition at finite temperature. However, obvious trends towards order are
visible. It is interesting to consider this system for a special value of the chemical potential,
namely µ = V where we have no bias concerning the particle number. This choice looks ”fine-
tuned”, as the particle number at all temperatures and V is fixed to N = L/2. It is also
particularly easy to follow the calculations through, which gives the compressibility,

κT =
1

2kBT
e−βV/2 (4.35)

which indicates that for low temperatures the compressibility goes to zero for V > 0 showing
that repulsive interaction yields an incompressible (crystalline) state of particles (one particle
every second site). On the other hand, attractive interaction yields a diverging compressibility,
indicating that the gas tends to get strongly compressible, i.e. it goes towards a ”liquid” phase
with much reduced effective volume per particle.
We may consider this also from the point of view of the fluctuation-dissipation theorem which
connects the response function κT with the fluctuations of the particle number,

〈N2〉 − 〈N〉2 =
kBT 〈N〉2

L
κT (T ) ∝ Le−βV/2 . (4.36)

The message of this relation is that for the repulsive case the particle number fluctuations go
rapidly to zero for kT < |V |, as expected, if the system ”solidifies” with the particle density
n = N/L = 1/2. On the other hand, for attractive interaction the fluctuations strongly increase
in the same low-temperature regime for the given density (n = 1/2) at finite temperature,
indicating that particles can be further ”condensed”.

4.2.2 Correlation function

The transfer matrix method is also very convenient to obtain the correlation function,

Γl = 〈nini+l〉 − 〈ni〉〈ni+l〉 . (4.37)

We consider first

〈ni〉 =
1

Z
∑

n1,...,nL

Pn1,n2Pn2,n3 · · ·Pni−1,niniPni,ni+1 · PnL,n1

=
1

Z tr
{
P̂ i−1ŵP̂L−i

}
=

1

Z tr
{
ŵP̂L

} (4.38)

with ŵ defined as wn,n′ = nδn,n′ . Let us transform this to the basis in which P̂ is diagonal
through the unitary transformation

Û P̂ Û−1 =

(
λ+ 0
0 λ−

)
= P̂ ′ and Û ŵÛ−1 =

(
w′00 w′01

w′10 w′11

)
= ŵ′ . (4.39)
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This leads to

〈ni〉 =
1

Z tr
{
ŵ′P̂ ′

}
=
w′00λ

L
+ + w′11λ

L
−

λL+ + λL−
−→ w′00 . (4.40)

In the same way we treat now

〈nini+l〉 =
1

Z tr
{
P̂ iŵP̂ lŵP̂L−i−l

}
=

1

Z tr
{
ŵP̂ lŵP̂L−l

}
=

1

Z tr
{
ŵ′(P̂ ′)lŵ′(P̂ ′)L−l

}

=
w′200λ

L
+ + w′01w

′
10(λl+λ

L−l
− + λl−λ

L−l
+ ) + w′211λ

L
−

λL+ + λL−
−→ w′

2
00 + w′01w

′
10

(
λ−
λ+

)l
.

(4.41)
The correlation function is given by

Γl = w′01w
′
10

(
λ−
λ+

)l
= n2e−l/ξ[sign(λ−/λ+)]l (4.42)

where we identify Γl=0 with n2 and the correlation length

ξ =
1

ln |λ+/λ−|
. (4.43)

For V > 0 the correlation function shows alternating sign due to the trend to charge density
modulation. In the special case µ = V we obtain

Γl =
1

2
(tanh(βV/4))l and ξ =

1

ln | coth(βV/4)| . (4.44)

In the zero-temperature limit ξ diverges, but is finite for any T > 0.

It is important that both the thermodynamics as well as the correlation functions are determined
through the eigenvalues of the transfer matrix P̂ .

4.3 Long-range order versus disorder

We find in the one-dimensional spin chain no phase transition to any long-range ordered state at
finite temperatures. The term ”long-range order” is easiest understood through the correlation
function. We consider here again the example of a spin chain. The correlation function has the
property,

Γ̃l = 〈~s i · ~s i+l〉 − 〈~s i〉 · 〈~s i+l〉 l→∞−→ 0 (4.45)

which is true for a spin system with or without order. By rewriting

lim
l→∞
〈~s i · ~s i+l〉 = 〈~s i〉 · 〈~s i+l〉 , (4.46)

we see that the left hand side is finite only with a finite mean value of 〈~s i〉. Note that for the
classical spin chain only at T = 0 long-range order is realized. All spins are parallel for J < 0
(ferromagnet) or alternating for J > 0 (antiferromagnet) such that

〈~s i〉 =


ẑS J < 0

ẑ(−1)iS J > 0
(4.47)

assuming that the spin align parallel to the z-axis (ẑ is the unit vector along the z-axis). Natu-
rally the limit in Eq.(4.46) is then finite. 4 Also the lattice gas in one dimension does not show
long-range order except at T = 0.

4Previously we encountered long-range order in a Bose-Einstein condensate looking at the correlation function
in Eqs.(3.103) and (3.110). Extending the correlation function to

g̃( ~R ) = 〈 Ψ̂ †(~r ) Ψ̂ (~r + ~R )〉 − 〈 Ψ̂ †(~r )〉〈 Ψ̂ (~r + ~R )〉 , (4.48)
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Interestingly, in the case of quantum systems quantum phase transitions can destroy long-
range order even at T = 0. An important example is the antiferromagnetic spin chain with a
Heisenberg Hamiltonian. In contrast the ferromagnetic Heisenberg chain has an ordered ground
state with all spins aligned, because the state with all spins parallel is an eigenstate of the total

spin operator, ~̂Stot =
∑N+1

i=1 ~̂si and ~̂Stot commutes with the Hamiltonian, since it has full spin
rotation symmetry as in the classical case (N + 1: number of spins on the chain),

|ΨFM〉 = | ↑↑↑ · · · 〉 ⇒ Ŝztot|ΨFM〉 = (N + 1)~s|ΨFM〉 . (4.50)

In case of the antiferromagnetic chain the (classical) state with alternating spins |Ψ cAF 〉 =
| ↑↓↑↓ · · · 〉, is not an eigenstate of the quantum Heisenberg Hamiltonian and consequently not
the ground state of the quantum antiferromagnetic chain.
Our discussion of the melting transition in Sect. 3.7.3 is suitable to shed some light on the
problem of quantum fluctuation. Also a crystal lattice of atoms is a long-range ordered state.
Considering the melting transition based on the Lindemann criterion for the displacement fields,
we tackle the stability of the lattice from the ordered side. Thus, we use again the language
of the elastic medium as in Sect.3.7.3 and rewrite the fluctuation of the displacement field in
Eq.(3.150),

〈 ~u (~r )2〉 =
~
ρm

∫
dDk

(2π)D
1

ω~k
coth

(
β~clk

2

)
(4.51)

with D, the dimension. For D = 1 we find

〈u2〉 =
~

2πρncl

∫ kD

0
dk

1

k
coth

(
β~clk

2

)
T→0−→ ~

2πρncl

∫ kD

0
dk

1

k
. (4.52)

This integral diverges even at T = 0 and, thus, exceeds the Lindemann criterion in Eq.(3.151),
Lm � 〈u2〉/a2. At T = 0 only quantum fluctuations can destroy long range order. We call
this also quantum melting of the lattice. For D ≥ 2 we find a converging integral at T = 0.
Nevertheless, also here quantum melting is possible, if the lattice is ”soft” enough, i.e. the
elastic modulus is small enough. Note that He is such a case, as we will discuss later. At zero
temperature He is solid only under pressure which leads to an increase of the elastic modulus λ,
i.e. under pressure the lattice becomes stiffer.
At finite temperature also in two-dimensions an ordered atomic lattice is not stable,

〈 ~u (~r )2〉 =
~

2πρmcl

∫ kD

0
dk coth

(
β~clk

2

)
(4.53)

which diverges at the lower integral boundary due to the fact that for k → 0 we expand
coth(β~clk/2) ≈ 2kBT/~clk yielding a logarithmic divergence. That two-dimensional are rather
subtle can be seen for the case of graphene, a single layer of graphite (honeycomb lattice of
carbon) which is stable.

we find that always lim ~R→∞ g̃( ~R ) = 0, since with the Bogolyubov approximation,

lim
~R→∞

〈 Ψ̂ †(~r ) Ψ̂ (~r + ~R )〉 = lim
~R→∞

〈 Ψ̂ †(~r )〉〈 Ψ̂ (~r + ~R )〉 = lim
~R→∞

ψ∗0(~r )ψ0(~r + ~R ) = n0 (4.49)

for T < Tc and a constant phase φ of ψ0(~r ).
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Chapter 5

Phase transitions

Phase transitions in macroscopic systems are ubiquitous in nature and represent a highly impor-
tant topic in statistical physics and thermodynamics. Phase transitions define a change of state
of a system upon changing external parameters. In many cases this kind of change is obvious,
e.g. transition between liquid and gas or between paramagnetic and ferromagnetic phase, and
in most cases it is accompanied by anomalies in measurable macroscopic quantities.
In the previous chapter we have seen a phase transition, the Bose-Einstein condensation. This
transition is special in the sense that it occurs for non-interacting particles. Generally, phase
transitions require an interaction favoring an ordered phase. Then the phase transition occurs as
a competition between the internal energy (or enthalpy) which is lowered by the order and the
entropy which at finite temperature favors disorder. The relevant thermodynamic potentials to
describe phase transitions are the Helmholtz free energy F (T, V,N) and the Gibbs free energy
G(T, p,N),

F = U − TS and G = H − TS . (5.1)

These potentials show anomalies (singularities) at the phase transition.

5.1 Ehrenfest classification of phase transitions

The type of singularity in the thermodynamic potential defines the order of the phase transition.
According to Ehrenfest classification we call a phase transition occurring at a critical temperature
Tc (different phase for T > Tc and T < Tc) to be of nth order, if the following properties hold:(

∂mG

∂Tm

)
p

∣∣∣∣∣
T=Tc+

=

(
∂mG

∂Tm

)
p

∣∣∣∣∣
T=Tc−

and

(
∂mG

∂pm

)
T=Tc+

=

(
∂mG

∂pm

)
T=Tc−

(5.2)

for m ≤ n− 1, and(
∂nG

∂Tn

)
p

∣∣∣∣∣
T=Tc+

6=
(
∂nG

∂Tn

)
p

∣∣∣∣∣
T=Tc−

and

(
∂nG

∂pn

)
T=Tc+

6=
(
∂nG

∂pn

)
T=Tc−

(5.3)

The same definition is used for the free energy. In practice this classification is rarely used
beyond n = 2.

n = 1: A discontinuity is found in the entropy and in the volume:

S = −
(
∂G

∂T

)
p

and V =

(
∂G

∂p

)
T

(5.4)

The discontinuity of the entropy is experimentally the latent heat. The change in volume is
connected with the difference in the density of the substance. A well-known example is the
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transition between the liquid and the gas phase, for which the former is much denser than the
latter and accordingly takes a much smaller volume.

n = 2: The discontinuities are not in the first derivatives but in the second derivatives of the
Helmholtz free energy or Gibbs free energy, i.e. in the response functions. Some such quantities
are the heat capacity, the compressibility or the thermal expansion coefficient:

Cp = −T
(
∂2G

∂T 2

)
p

, κT = − 1

V

(
∂2G

∂p2

)
T

, α =
1

V

(
∂2G

∂T∂p

)
(5.5)

As we will see later, second order phase transitions are usually connected with spontaneous
symmetry breaking and can be associated with the continuous growth of an order parameter.
Such transitions show also interesting fluctuation features which lead to the so-called critical
phenomena and universal behavior at the phase transition.

Ehrenfest relations: Interesting relations between various discontinuities at the phase transition
exist. They are generally known at Ehrenfest relations. We consider first a first-order transition
such as the gas-liquid transition. The phase boundary line in the p-T -phase diagram describes
the relation between temperature and vapor pressure in the case of liquid-gas transition. For
the differentials of the Gibbs free energy in the two phases, the following equality holds:

dGl = dGg ⇒ −SldT + Vldp = −SgdT + Vgdp . (5.6)

This allows us to get from the vapor pressure curve (p(T ) at the phase boundary in the p-T -
plane) the relation

dp

dT
=
Sg − Sl
Vg − Vl

=
L

T∆V
(5.7)

where L = T (Sg − Sl) is the latent heat and ∆V = Vg − Vl is the change of the volume. This
relation is known as the Clausius-Clapeyron equation.
If the transition is of second order then the both the entropy and the volume are continuous
through the transition between two phase A and B:

SA(T, p) = SB(T, p) and VA(T, p) = VB(T, p) , (5.8)

which yields the relations through the equality of their differentials,

dSA =

(
∂SA
∂T

)
p

dT +

(
∂SA
∂p

)
T

dp =

(
∂SB
∂T

)
p

dT +

(
∂SB
∂p

)
T

dp = dSB ,

dVA =

(
∂VA
∂T

)
p

dT +

(
∂VA
∂p

)
T

dp =

(
∂VB
∂T

)
p

dT +

(
∂VB
∂p

)
T

dp = dVB .

(5.9)

We now use the Maxwell relation(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

= −V α (5.10)

and obtain

dp

dT
= −

(
∂SB
∂T

)
p
−
(
∂SA
∂T

)
p(

∂SB
∂p

)
T
−
(
∂SA
∂p

)
T

=
∆Cp
TV∆α

(5.11)

and analogously

dp

dT
= −

(
∂VB
∂T

)
p
−
(
∂VA
∂T

)
p(

∂VB
∂p

)
T
−
(
∂VA
∂p

)
T

=
∆α

∆κT
. (5.12)

Various other relations exist and are of experimental importance.
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5.2 Phase transition in the Ising model

The Ising model is the simplest model of a magnetic system. We consider magnetic moments
or spins with two possible states, si = ±s (Ising spins). Sitting on a lattice they interact with
their nearest neighbors (analogously to the spin chain in the Chapter 3). We write the model
Hamiltonian as

H = −J
∑
〈i,j〉

sisj −
∑
i

siH . (5.13)

The sum
∑
〈i,j〉 denotes summation over nearest neighbors on the lattice, counting each bond

only once. J is the coupling constant which we assume to be positive. The second term
corresponds to a Zeeman term due to an external magnetic field. The Ising spins are classical
variables, unlike quantum spins ~s whose different components do not commute with each other.
Ising spins represent only one component of a quantum spin.
The interaction favors the parallel alignment of all spins such that this model describes a fer-
romagnetic system. The ferromagnetic phase is characterized by a finite uniform mean value
〈si〉 = m 6= 0, the magnetization, even in the absence of an external magnetic field.

5.2.1 Mean field approximation

The analysis of many coupled degrees of freedom is in general not simple. For the Ising model we
have exact solutions for the one- and two-dimensional case. For three dimensions only numerical
simulations or approximative calculations are possible. One rather frequently used method is
the so-called mean field approximation. In the lattice model we can consider each spin si as
being coupled to the reservoir of its neighboring spins. These neighboring spins act then like
a fluctuating field on the spin. In case of order they form a net directed field on si, a mean
field. Since this conditions applies to all spins equally, the scheme can be closed by having a
self-consistency in the mean field.
Let us now tackle the problem in a more systematic way. We rewrite the spin for each site

si = 〈si〉+ (si − 〈si〉) = m+ (si −m) = m+ δsi (5.14)

and insert it into the Hamiltonian, where we approximate 〈si〉 = m uniformly.

H = −J
∑
〈i,j〉

{m+ (si −m)} {m+ (sj −m)} −
∑
i

siH

= −J
∑
〈i,j〉

{
m2 +m(si −m) +m(sj −m) + δsiδsj

}
−
∑
i

siH

= −J
∑
i

(
zmsi −

z

2
m2
)
−
∑
i

siH − J
∑
〈i,j〉

δsiδsj .

(5.15)

Here z is the number of nearest neighbors (for a hypercubic lattice in d dimensions z = 2d). In
the mean field approximation we neglect the last term assuming that it is small. This means
that the fluctuations around the mean value would be small,

Eij =
〈δsiδsj〉
〈si〉〈sj〉

=
〈δsiδsj〉
m2

� 1 , (5.16)

to guarantee the validity of this approximation. We will see later that this condition is not
satisfied very near the phase transition and that its violation is the basis for so-called critical
phenomena. We now write the mean field Hamiltonian

Hmf = −
∑
i

siheff +NJ
z

2
m2 with heff = Jzm+H , (5.17)
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which has the form of an ideal paramagnet in a magnetic field heff . It is easy to calculate the
partition function and the free energy as a function of the parameter m,

ZN (T,m,H) = e−βJzm
2N/2 {2 cosh(βsheff)}N (5.18)

and
F (T,H,m) = −kBT lnZN = NJ

z

2
m2 −NkBT ln {2 cosh(βsheff)} . (5.19)

The equilibrium condition is reached when we find the minimum of F for given T and H. To
this end we minimize F with respect to m as the only free variable,

0 =
∂F

∂m
= NJzm−NJzs tanh(βsheff) . (5.20)

This equation is equivalent to the self-consistence equation for the mean value of si:

m = 〈si〉 =
e−βJzm

2N/2

ZN

∑
{sj}

sie
∑N
i′=1 si′heff =

∑
si=±s sie

βsiheff∑
si=±s e

βsiheff
= s tanh(βsheff) = − 1

N

(
∂F

∂H

)
T,m

(5.21)
This is a non-linear equation whose solution determines m and eventually through the free
energy all thermodynamic properties. 1

5.2.2 Instability of the paramagnetic phase

The disordered phase above a certain critical temperature Tc is called paramagnetic phase. For
this phase we consider first the magnetic susceptibility χ(T ) at zero magnetic field, which is
obtained from

χ(T ) = N
d〈si〉
dH

∣∣∣∣
H=0

= − d2F

dH2

∣∣∣∣
H=0

= − d

dH

{
∂F

∂H
+
∂F

∂m

∂m

∂H

}∣∣∣∣
H=0

= − d

dH

∂F

∂H

∣∣∣∣
H=0

(5.26)

1Variational approach: Consider the Ising model (5.13) without magnetic field. We now determine the free
energy on a variational level assuming a distribution ofN independent spin with a net magnetizationM = N+−N−
(N = N+ +N−). The probability that a certain spin is ”+s” or ”-s” is given by w± = 1

2
(1± m̃) with m̃ = M/N .

There are

ω(M) =
N ![

1
2
(N +M)

]
!
[

1
2
(N −M)

]
!
. (5.22)

configurations corresponding to a given M . We may now determine the free energy as F = U − TS = 〈H〉M −
kBT lnω(M) in the following way:

U = 〈H〉M = −J
∑
〈i,j〉

〈sisj〉 = −JNzs
2

2
(w+w+ + w−w− − w+w− − w−w+) = −JNzs

2

2
m̃2 (5.23)

where we use for 〈sisj〉 simply the configurational average for pairs of completely independent spins for given
M , i.e. w+w+ + w−w− (w+w− + w+w−) is the probability that neighboring spins are parallel (antiparallel).
In this approach there is no correlation between the neighboring spins. For the entropy term we use Stirling
approximation and keep only extensive terms,

TS = kBT lnω(M) ≈ NkBT
[
ln 2− 1

2
(1 + m̃) ln(1 + m̃)− 1

2
(1− m̃) ln(1− m̃)

]
. (5.24)

Thus, we have expressed the free energy by a variational phase represented by independent spins whose variational
parameter is the mean moment m = 〈s〉 = s(w+ − w−) = sm̃. We minimize F with respect to m̃,

0 =
∂F

∂m̃
= −Jzs2Nm̃+

NkBT

2
ln

(
1 + m̃

1− m̃

)
⇒ m̃ = tanh

(
Jzs2m̃

kBT

)
(5.25)

which corresponds to Eq.(5.21) in the absence of a magnetic field. Thus, this variational approach and mean field
are equivalent and give the same thermodynamic properties. As we will see, the mean field approach is more
easily improved. In many cases similar variational calculations of the free energy based on independent degrees
of freedom yield thermodynamics equivalent to a mean field approach.
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where we used the equilibrium condition (5.20). Thus we obtain

χ(T ) = N
dm

dH

∣∣∣∣
H=0

= Ns
d

dH
tanh [β(Jzsm(H) + sH)]

∣∣∣∣
H=0

=
Ns

kBT

{
Jzs

dm

dH

∣∣∣∣
H=0

+ s

}
=

s

kBT
Jzsχ(T ) +

Ns2

kBT
.

(5.27)

where we used that for a paramagnet m(H = 0) = 0. This leads to the susceptibility

T = T
c

T < Tc

T > T
c

m

m

Figure 5.1: Graphical solution of the self-consistence equation (5.21). The crossing points of the
straight line and the step-like function gives the solution. There is only one solution at m = 0
for T ≥ Tc and three solutions for T < Tc.

χ(T ) =
Ns2

kBT − Jzs2
(5.28)

which is modified compared to that of the ideal paramagnet. If kBT → Jzs2 from above χ(T )
is singular. We define this as the critical temperature

Tc =
Jzs2

kB
. (5.29)

As the system approaches T = Tc it becomes more and more easy to polarize its spin by a tiny
magnetic field. This indicates an instability of the system which we now analyze in terms of
the self-consistence equation (5.21) in the absence of a magnetic field. Looking at Fig. 5.1 we
find that indeed the critical temperature Tc plays an important role in separating two types of
solutions of equations (5.21). For T ≥ Tc there is one single solution at m = 0 and for T < Tc
there are three solutions including m = 0,m(T ),−m(T ). The physically relevant solution is
then the one with finite value of m, as we will show below. It is obvious that below T = Tc
the mean field m grows continuously from zero to a finite value. In order to see which of the
solutions is a minimum of the free energy we expand F in m assuming that m and H are small.

F (T,H,m) ≈ NJz
[
m2

2
− kBT

Jz

{
(βsheff)2

2
− (βsheff)4

12

}]
−NkBT ln 2 (5.30)
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For H = 0 we find

F (T,H = 0,m) ≈ F0(T ) +NJz

[(
1− Tc

T

)
m2

2
+

1

12s2

(
Tc
T

)3

m4

]

≈ F0(T ) +NJz

[(
T

Tc
− 1

)
m2

2
+

m4

12s2

] (5.31)

where for the last step we took into account that our expansion is only valid for T ≈ Tc.
Moreover, F0 = −NkBT ln 2. This form of the free energy expansion is the famous Landau
theory of a continuous phase transition.

m

c

T = T
c

T > Tc

F

T < T

Figure 5.2: Landau free energy: T > Tc: 2nd-order term is positive and minimum of F at
m = 0; T = Tc, 2nd vanishes and free energy minimum at m = 0 becomes very shallow; T < Tc:
2nd-order term is negative and minimum of F is at finite value of m, bounded by the 4th-order
term.

It is obvious that for T > Tc the minimum lies at m = 0. For T < Tc the coefficient of the
m2-term (2nd-order) changes sign and a finite value of m minimizes F (see Fig. 5.2). The
minimization leads to

m(T ) =

 ±s
√

3τ T < Tc

0 T ≥ Tc
(5.32)

with τ = 1− T/Tc as a short-hand notation. There are two degenerate minima and the system
chooses spontaneously one of the two (spontaneous symmetry breaking).
Next we analyze the behavior of the free energy and other thermodynamic quantities around
the phase transition. The temperature dependence of the free energy and the entropy is given
by

F (T ) = F0(T )− 3NkBTcτ
2

4
Θ(τ) and S(T ) = −∂F (T )

∂T
= NkB ln 2− 3NkBτ

2
Θ(τ) ,

(5.33)
and eventually we obtain for the heat capacity,

C

T
=
∂S

∂T
=

3NkB
2Tc

Θ(τ) + C0 (5.34)

where C0 is zero in the present approximation for H = 0. While the free energy and the entropy
are continuous through the transition, the heat capacity shows a jump indicating the release of
entropy through ordering. Thus, we conclude that this phase transition is of second order.
Within mean field approximation the region close to Tc is described by the Landau expansion.
However, taking the solution of the complete mean field equations leads to the thermodynamic
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Figure 5.3: Thermodynamic quantities within mean field theory. Free energy, entropy and heat
capacity.

behavior for the whole temperature range as shown in Fig. 5.3. Note that in this mean field
approximation the entropy is NkB ln 2 in the paramagnetic phase, the maximal value the entropy
can reach.

5.2.3 Phase diagram

So far we have concentrated on the situation without magnetic field. In this case the phase
transition goes to one of two degenerate ordered phases. Either the moments order to m = +|m|
or m = −|m|. An applied magnetic field lifts the degeneracy by introducing a bias for one of the
two states. The order with m parallel to the field is preferred energetically. In a finite field the
transition turns into a crossover, since there is already a moment m for temperatures above Tc.
This is also reflected in the thermodynamic properties which show broad features around Tc and
not anymore the sharp transition, e.g. the heat capacity is turned into a broadened anomaly
(see Fig. 5.4).

0 0.5 1 1.5
T / Tc

0

0.5

1

1.5

m
(T

,H
) 

/ s

0 0.5 1 1.5
T / Tc

0

0.5

1

1.5

C
T

c / 
N

k B
T

Figure 5.4: Ising system in a finite magnetic field: (left panel) Magnetization as a function of
temperature in a fixed magnetic field (solid line) and in zero field (dashed line); (right panel)
heat capacity for a fixed magnetic field. In a magnetic field no sharp transition exists.

Next we turn to the behavior of the magnetization m as a function of the magnetic field and
temperature (illustrated in Fig. 5.5 and 5.6). At H = 0 going from high to low temperatures
the slope of m(H)|H=0 is linear and diverges as we approach Tc. This reflects the diverging
susceptibility as a critical behavior.
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Figure 5.5: Magnetization as a function of magnetic field for different temperatures.

For all temperatures T > Tc m(H) is a single-valued function in Fig. 5.5 . Below Tc, however,
m(H) is triply valued as a solution of the self-consistence equation. The part with dm/dH > 0
is stable or metastable representing local minima of the free energy. The part of dm/dH < 0
corresponds to a local maximum of the free energy and is unstable. Considering for T < Tc the
magnetic field running from negative to positive values, we find for H < 0 the state with m < 0
has lowest free energy. At H = 0 there is a degeneracy between +|m| and −|m| as both minima
have the same energy and for H > 0, m > 0 is the lowest energy phase. Thus we encounter
a level-crossing of the free energy for the two states at H = 0 and magnetization jumps from
negative to positive direction. This represents a first-order transition, since the free energy as a
function of H is singular, i.e. it has a sharp slope change (a discontinuity in the first derivative
of F with respect to H).2

This may be visualized also in a three-dimensional graph in m, H and T (Fig. 5.6). The
shaded region appearing for T < Tc is a coexistence region of two degenerate phases. As m is
changed in this region, the fraction of the two degenerate finite magnetization phases is changed
continuously following a Maxwell construction.

m(q) = q|m(H = 0, T )|+ (1− q){−|m(H = 0, T )|} = (2q − 1)|m(H = 0, T )| (5.35)

where q can change continuously with 0 ≤ q ≤ 1. This may be viewed as domains of the two
states changing in size.
In the H-T -plane this shaded region is simply a line for the first order transition of a discontin-
uously changing magnetization.

5.3 Gaussian transformation

We analyze the mean field approximation from a different point of view, using the Gaussian
transformation. The partition function of the Ising model can be rewritten by introducing an

2Note that in reality ramping H through 0 does not necessarily lead to a sharp transition. Flipping all
magnetic moments at once is not a trivial matter. Thus the system may stay trapped in the metastable free
energy minimum for a certain range of positive H. The transition may happen through the nucleation of reversed
magnetic bubbles (domains) and the subsequent expansion of the reversed region by means of domain wall motion.
(Similar to the nucleation and expansion of droplets in undercooled vapor.) There is a certain field where the
metastable minimum becomes a saddle point and thus unstable for infinitesimally higher fields. Varying the
magnetic field periodically can lead to hysteretic loops.
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Figure 5.6: Left panel: phase diagram of ferromagnetic Ising model in (H,m, T ); right panel:
phase diagram of the liquid-gas transition in (p, V, T ). In both cases the shaded region represents
a coexistence region.

auxiliary field φi:

Z =
∑
{si}

e−
β
2

∑
i,j Jijsisj+β

∑
i siHi

=
1

(2πkBT )N/2
√
detJ

∫ +∞

−∞

(∏
i′

dφi′

)
e
β
2

∑
i,j(J

−1)ij(φi−Hi)(φj−Hj)
∏
i

∑
si=±s

eβφisi

=
1

(2πkBT )N/2
√
detJ

∫ +∞

−∞

(∏
i′

dφi′

)
e
β
2

∑
i,j(J

−1)ij(φi−Hi)(φj−Hj)+
∑
i ln[2 cosh(βsφi)]

(5.36)
where we use the N ×N -matrix

Jij =


−J (i, j) nearest neighbors

0 otherwise
(5.37)

and (J−1)ij is the inverse of Jij . We take the magnetic field as site dependent, which will be
convenient later. We used the identity∫ +∞

−∞
dφ e−

φ2

2a
+sφ = e

a
2
s2
∫ +∞

−∞
dφ e−

1
2a

(φ−sa)2
=
√

2πae
a
2
s2

⇒
∫ +∞

−∞

(∏
i

dφi

)
e−

1
2

∑
i,j φi(A

−1)ijφj+
∑
i φisi = (2π)N/2

√
detA e

1
2

∑
ij siAijsj

(5.38)

with A being a positive definite N ×N -matrix. This exact rewriting of the partition function is
called Gaussian transformation (sometimes also called Hubbard-Stratonovich transformation).3

We replaced here the discrete variable si by a continuous field φi.
We introduce the potential S(φi, Hi) and write

Z = C

∫ +∞

−∞

(∏
i′

dφi′

)
e−βS(φi,Hi) = e−βF (5.39)

3Reference: ”Field Theory, the Renormalization Group, and Critical Phenomena”, Daniel J. Amit, World
Scientific.
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with C = 1/(2πkBT )N/2
√
detJ and

S(φi, Hi) = −1

2

∑
i,j

(J−1)ij(φi −Hi)(φj −Hj)−
1

β

∑
i

ln[2 cosh(βsφi)] (5.40)

From this we can derive the mean field result by the saddle point approximation (sometimes
also called method of steepest descent) which is based on the idea that one set replaces the
auxiliary field by the value φ̄i which dominates the integral for the partition function.4 This is
analogous to discussions we had earlier when we tested the equivalence of different ensembles.
This method relies on the fact that the fluctuations of the field φi are small - something which
has to be tested. Therefore we look for the maximum of S now and approximate Z then by

Z ≈ Ce−βS(φ̄i,Hi) with 0 =
∂S

∂φi

∣∣∣∣
φi=φ̄i

= −
∑
j

(J−1)ij(φ̄j −Hj)− s tanh(βsφ̄i) (5.44)

which leads to the saddle-point equation

φ̄i = Hi − s
∑
j

Jij tanh(βsφ̄j) (5.45)

For Hi = 0 the saddle point is given by the uniform solution φ̄i = φ̄, satisfying

φ̄ = −s
∑
j

Jij tanh(βsφ̄) = Jzs tanh(βsφ̄) . (5.46)

This yields the same critical temperature for the onset of a finite solution for φ̄ as the mean field
solution. The relation to m of the mean field approximation is given by the condition

〈si〉 = kBT
∂ lnZ

∂Hi
= −dS(φ̄i, Hi)

dHi
= − ∂S

∂Hi
= −

∑
j

(J−1)ij(φ̄j −Hj) = s tanh(βsφ̄i) (5.47)

such that
m = s tanh(βsφ̄) ⇒ φ̄ = Jzm . (5.48)

The discussion of the thermodynamic properties are in this formulation analogous to the ordinary
mean field treatment and give exactly the same behavior. We are, however, now in a position
to go beyond the mean field level and, in particular, to test the validity of the mean field
approximation.

4Method of steepest descent: We consider the integral

I =

∫ b

a

eNg(x)dx (5.41)

and N � 1 and g(x) a function with a unique maximum at x = x̄ in the interval [a, b], i.e.

g(x) = g(x̄) + g′(x̄)(x− x̄) +
1

2
g′′(x̄)(x− x̄)2 + · · · . (5.42)

For the maximum, the conditions g′(x̄) = 0 and g′′(x̄) < 0 holds. We approximate the integral

I ≈ eNg(x̄)

∫ b

a

dx e−
1
2
N|g′′(x̄)|(x−x̄)2 ≈ eNg(x̄)

∫ +∞

−∞
dx e−

1
2
N|g′′(x̄)|(x−x̄)2 =

(
2π

N |g′′(x̄)|

)1/2

eNg(x̄) (5.43)

which is exact in the limit N →∞. Considering ln I we find that ln I ≈ Ng(x̄) +O(lnN).
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5.3.1 Correlation function and susceptibility

We consider first the correlation function

Γij = 〈sisj〉 − 〈si〉〈sj〉 = (kBT )2 ∂
2 lnZ

∂Hi∂Hj
≈ −kBT

d2S(φ̄i, Hi)

dHidHj
. (5.49)

With (5.47) we obtain

βΓij =
d

dHj
s tanh(βsφ̄i) = βs2 cosh−2(βsφ̄)

dφ̄i
dHj

(5.50)

which if inverted yields

Γ−1
ij =

1

s2
cosh2(βsφ̄)

dHj

dφ̄i
=

1

s2
cosh2(βsφ̄)

{
δij +

βs2Jij

cosh2(βsφ̄)

}
(5.51)

where we use (5.45)

Hj = φ̄j + s
∑
j′

Jjj′ tanh(βsφ̄j′) ⇒ dHj

dφ̄i
= δij +

βs2Jij

cosh2(βsφ̄)
. (5.52)

The following Fourier-transformations lead to a simple form for (5.51), 5

Jij =
1

N

∑
~q

J(~q)ei~q·(~ri−~rj) , Γij =
1

N

∑
~q

Γ(~q)ei~q·(~ri−~rj) , δij =
1

N

∑
~q

ei~q·(~ri−~rj) (5.57)

with

Γ(~q) =
kBTΓ0

1 + Γ0J(~q)
with Γ0 =

βs2

cosh2(βsφ̄)
= βs2

{
1− tanh2(βsφ̄)

}
= β(s2 −m2) ,

(5.58)
using (5.48). On a d-dimensional hypercubic lattice with only nearest-neighbor coupling, we
obtain for the Fourier transformed coupling strength,

J(~q) =
1

N

∑
i,j

Jije
−i~q·(~ri−~rj) = −2J

d∑
α=1

cos qαa (5.59)

with the lattice constant a. As we will see below, if we focus on the long-distance correlations
only, we can restrict ourselves to the small ~q range and we expand J(~q) as

J(~q) ≈ −Jz + Jq2a2

⇒ Γ(~q) ≈ kBT
kBT
s2−m2 − Jz + Jq2a2

≈ kBTs
2

kB(T − Tc) + Js2q2a2 + kBTm2/s2

(5.60)

5For the inversion of Γij it is important to realize that Γij = Γ(~ri − ~rj) is translation invariant. We use now
the linear equation

ai =
∑
j

Γ−1
ij bj ⇒

∑
j

Γijaj = bi . (5.53)

We perform now the Fourier transform of the second equation,

1

N

∑
i

∑
j

Γijaje
−i~q·~ri =

1

N

∑
i

∑
j

Γijaje
−i~q·(~ri−~rj)e−i~q·~rj = Γ(~q)a(~q) =

1

N

∑
i

bie
−~q·~ri = b(~q) . (5.54)

On the other hand, we find

1

N

∑
i

∑
j

Γ−1
ij bje

−i~q·~ri =
1

N

∑
i

∑
j

Γ−1
ij bje

−i~q·(~ri−~rj)e−i~q·~rj = Γ−1(~q)b(~q) =
1

N

∑
i

aie
−~q·~ri = a(~q) , (5.55)

leading to the relation

Γ−1(~q) =
1

Γ(~q)
, (5.56)

which is a convenient way to handle the inverted matrix Γ−1
ij .
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where for the last approximation, we assumed m� s as is the case in ordered phase close to Tc
and for T > Tc. This correlation function has then the famous Ornstein-Zernike form,

Γ(~q) =
A

1 + ξ2q2
(5.61)

where ξ is the correlation length, as introduced in (4.13).
First let us use this result to determine the susceptibility. For this purpose we take the earlier
derived connection of the susceptibility with the fluctuations.

χ = β
∑
i,j

{〈sisj〉 − 〈si〉〈sj〉} = β
∑
i,j

Γij = NβΓ(~q = 0) =
Ns2

kB(T − Tc) + kBTm2/s2
(5.62)

We use now the earlier mean field result for m2 = 3s2τ in (5.32) and obtain for the regime very
close to Tc the behavior,

χ(T ) =


Ns2

kB(T − Tc)
T > Tc ,

Ns2

2kB|T − Tc|
T < Tc ,

(5.63)

showing that the susceptibility is singular approaching Tc from both sides of the phase transition
with the same exponent for |τ |.
Now return to the correlation function in the paramagnetic phase (T > Tc) and represent the
correlation function in real space, where we restrict ourselves to the long-distance behavior
r → ∞. Thus we have the Fourier-transform Γ(~q). For large |~r| the phase factor ei~q·~r rapidly
oscillates for for large ~q such that in Γ(~q) only small ~q are important.
For simplicity we consider only the three-dimensional case,

Γ~r =

∫
d3q

(2π)3
Γ(~q)ei~q·~r ≈ A

4π2

∫ ∞
0

dq q2

∫
dθ sin θ

eiqr cos θ

1 + ξ2q2
=

A

4π2ir

∫ ∞
0

dq q
eiqr − e−iqr

1 + ξ2q2

=
A

4π2ir

∫ +∞

−∞
dq q

eiqr

1 + ξ2q2
=

A

4π

e−r/ξ

rξ2
=
kBT

4πJ

e−r/ξ

r
(5.64)

where we used residue calculation for the last integral and introduced the parametrization,

A =
s2

1− Tc/T
=
kBTξ

2

Ja2
and ξ2 =

Js2a2

kB(T − Tc)
. (5.65)

The general form of the correlation function for other dimensions d is

Γ~r ∝
e−r/ξ

r(d−1)/2
(5.66)

if T > Tc.
6 In all cases there is a correlation length which diverges as we approach T → Tc+.

At Tc we find

Γ~r =
kBT

Ja2

∫
ddq

(2π)d
ei~q·~r

q2
∝


ln r d = 2

r2−d d 6= 2
(5.70)

6Note that the correlation function in ~q-space

Γ(~q) =
A

1 + ξ2~q2
⇔ (1 + ξ2~q)Γ(~q) = A (5.67)

is the Fourier transform of the differential equation

Aδ(~r) = {1− ξ2~∇2}Γ~r =

{
1− 1

rd−1

∂

∂r
rd−1 ∂

∂r

}
Γ~r . (5.68)

With the ansatz Γ~r = rbe−r/ξ we obtain easily, b = (1− d)/2 as given in (5.66). At the transition point we have
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This suggests that for T → Tc+ the correlation function should rather behave as

Γ~r ∝


ln r e−r/ξ d = 2

e−r/ξ

rd−2
d 6= 2

(5.71)

which we will encounter later in the context of scaling again.
Eventually we may characterize the ordered phase (T < Tc), also through the behavior of the
correlation function, which has the property

lim
r→∞

Γ~r = 0 (5.72)

for T > Tc as well as T < Tc. In the latter case ξ plays the role of ”healing length” over which
any distortion of the mean field recovers to its uniform value 〈si〉 = m. This means now that

lim
|~ri−~rj |→∞

〈sisj〉 = 〈si〉〈sj〉 =


0 T > Tc ,

m2 T < Tc .
(5.73)

Thus in the ordered phase spins are correlated of ”infinite” distances (defined only in the ther-
modynamic limit of infinitely large systems) and are called long range ordered in contrast to
short range order which means correlations over short distances only.

5.4 Ginzburg-Landau theory

We have used the Landau expansion of the free energy above to discuss phase transitions in
the vicinity of the critical temperature where m was small. This method can be extended
to a highly convenient scheme which allows us to discuss phase transition more generally, in
particular, those of second order. Landau’s concept is based on symmetry and spontaneous
symmetry breaking. The disordered high-temperature phase has a certain symmetry which is
characterized by a group G of all symmetry operations leaving the system invariant. At the
second order phase transition a form of order appears reducing this symmetry such that the
low-temperature phase obeys a symmetry group G′ which is a subgroup of G. This change of
symmetry is called spontaneous symmetry breaking. This symmetry lowering is described by
the appearance of an order parameter, a quantity which does not possess all symmetries of the
group G.
A further important aspect emerges when long-length scale variations of the order parameter
are taken into account. This can be easily incorporated in the Ginzburg-Landau theory and
allows to discuss spatial variations of the ordered phase as well as fluctuations.

5.4.1 Ginzburg-Landau theory for the Ising model

For the Ising model of the previous section we can identify m as the order parameter. The order
parameter m is not invariant under time reversal symmetry K̂,

K̂m = −m . (5.74)

ξ−1 = 0 such that the differential equation has then the form,

~∇2Γ~r = Ãδ(~r) ⇒ Γ~r ∝


r d = 1
ln r d = 2

r2−d d ≥ 3
, (5.69)

as given in (5.70).
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The two states with positive and negative m are degenerate. The relevant symmetry group
above the phase transition is

G = G×K (5.75)

with G as the space group of the lattice (simple cubic) and K, the group {E, K̂} (E denotes
the identity operation). As for the space group we consider the magnetic moment here detached
from the crystal lattice rotations such that G remains untouched through the transition so that
the corresponding subgroup is

G′ = G ⊂ G (5.76)

The degeneracy of the ordered phase is given by the order of G/G′ which is 2 in our case.
The Ginzburg-Landau free energy functional has in d dimensions the general form

F [m;H,T ] = F0(H,T ) +

∫
ddr

{
A

2
m(~r)2 +

B

4
m(~r)4 −H(~r)m(~r) +

κ

2
[~∇m(~r)]2

}

= F0(H,T ) +

∫
ddr f(m, ~∇m;H,T )

(5.77)

where we choose the coefficients according to the expansion done in (5.31) as

A =
Jz

ad

(
T

Tc
− 1

)
= −Jz

ad
τ and B =

Jz

3s2ad
. (5.78)

Here a is the lattice constant. We have introduced the spatial continuum limit for the order
parameter m which is based on the procedure of coarse graining. We take a block of sites with
the volume Ldb with Lb much larger than the lattice constant a and define

m(~r) =
1

Nb

∑
i∈Λb(~r)

〈si〉 with Nb =
ad

Ldb
(5.79)

and Λb(~r) is the set of sites in the block around the center position ~r. Here we assume that 〈si〉
is changing slowly in space on the length scale Lb.
Under this condition we can now also determine κ from the model Hamiltonian using the fol-
lowing consideration. The variational equation of the free energy functional is given by

0 =
δF

δm
⇒ 0 =

∂f

∂m
− ~∇ · ∂f

∂~∇m
= −κ~∇2m+Am+Bm3 −H (5.80)

Let us compare this equation with the saddle-point equation (5.45,5.46) assuming H = 0. It is
sufficient to keep only the terms of first order in m. We then take the equations (5.45,5.48) and
expand the self-consistence equation to linear order

φ̄i = φ̄(~ri) ≈ −βs2
∑
j

Jijφ̄(~rj) = βs2
∑
{~a}n.n.

Jφ̄(~ri + ~a)

= βs2J

zφ̄(~ri) +
∑
{~a}n.n.

~a · ~∇φ̄(~ri) +
1

2

∑
{~a}n.n.

∑
µ,ν=x,y...

aµaν
∂2

∂rµ∂rν
φ̄(~ri)

 .

(5.81)

The sum
∑
{~a}n.n. runs over nearest-neighbor sites. Note that the second term in the bracket

[. . . ] vanishes due to symmetry. Now using the coarse graining procedure we may replace
φ̄(~ri) = Jzm(~r) and obtain

0 = Jz

(
T

Tc
− 1

)
m(~r)− Ja2~∇2m(~r) , (5.82)
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and the comparison of coefficients leads to

κ = Ja2−d . (5.83)

We may rewrite the equation (5.82) as

0 = m− ξ2~∇2m with ξ2 =
a2kBTc

zkB(T − Tc)
=

Js2a2

kB(T − Tc)
(5.84)

where we introduced the length ξ which is exactly equal to the correlation length for T > Tc in
(5.65).

5.4.2 Critical exponents

Close to the phase transition at Tc various quantities have a specific temperature or field depen-
dence which follows powerlaws in τ = 1− T/Tc with characteristic exponents, so-called critical
exponents. We introduce here the exponents relevant for a magnetic system like the Ising model.
The heat capacity C and the susceptibility χ follow the behavior

C(T ) ∝ |τ |−α and χ(T ) ∝ |τ |−γ (5.85)

for both τ > 0 and τ < 0. Also the correlation length displays a powerlaw

ξ(T ) ∝ |τ |−ν . (5.86)

For τ > 0 (ordered phase) the magnetization grows as

m(T ) ∝ |τ |β . (5.87)

At T = Tc (τ = 0) the magnetization has the field dependence

m ∝ H1/δ (5.88)

and the correlation function has a powerlaw dependence on the distance r

Γ~r ∝
1

rd−2+η
. (5.89)

These exponents are not completely independent but are related by means of so-called scaling
laws:

• Rushbrooke scaling: α+ 2β + γ = 2

• Widom scaling: γ = β(δ − 1)

• Fisher scaling: γ = (2− η)ν

• Josephson scaling: νd = 2− α

We do not derive all relations, but restrict to Fisher’s result in order to show the basic idea. We
consider the correlation function for τ < 0 but very close to Tc. Then using (5.89) we assume
that we can write Γ~r as

Γ~r ∝
1

rd−2+η
g(r/ξ) . (5.90)

According to our previous discussion the susceptibility is given by the integral of Γ~r over space

χ ∝
∫
ddr Γ~r ∝

∫
ddr

1

rd−2+η
g(r/ξ) ∝ ξ2−η

∫
ddy

1

yd−2+η
g(y) ∝ |τ |−ν(2−η) ∝ |τ |−γ (5.91)

which leads to γ = ν(2− η).
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Let us now determine the exponents within mean field theory. The only one we have not
determined so far is δ. Using the Ginzburg-Landau equations for τ = 0 leads to

Bm3 = H ⇒ δ = 3 (5.92)

Thus the list of exponents is

α = 0 , β =
1

2
, γ = 1 δ = 3 , ν =

1

2
η = 0 (5.93)

These exponents satisfy the scaling relations apart from the Josephson scaling which depends
on the dimension d.
The critical exponents arise from the specific fluctuation (critical) behavior around a second-
order phase transition. They are determined by dimension, structure of order parameter and
coupling topology, and are consequently identical for equivalent phase transitions. Therefore,
the critical exponents incorporate universal properties.

5.4.3 Range of validity of the mean field theory - Ginzburg criterion

In Eq. (5.16) we gave a condition for the validity of the mean field approximation. The fluc-
tuations around the mean field should be small. We formulate this statement more precisely
here. In previous chapters we have found that for large systems the fluctuations are very small
compared to the mean value (e.g. energy, particle number, ...). Looking at the fluctuations of
the magnetic moments, the question arises what is the ”system size”. The natural length scale
for fluctuations here is the correlation length which we know from the correlation function Γij .
Thus, the relevant ”system size” corresponds to the volume Vξ = ξd. Looking at the ratio

Eij =
〈(si − 〈si〉)(sj − 〈sj〉)〉

〈si〉〈sj〉
⇒ EGL =

∑
j∈Λξ

Γ0j∑
j∈Λξ
〈s0〉〈sj〉

, (5.94)

where Λξ denotes the set of lattice points around 0 covered by the volume Vξ. We first look at
the numerator and use the fact that Γ~r decays on the length ξ quickly. Thus we use∫

Vξ

ddr Γ~r = fkBT
χ(T )

N
. (5.95)

where the factor f is independent of ξ and temperature and gives the fraction to which integral
limited to Vξ corresponds to the susceptibility χkBT =

∑
i,j Γij . We can estimate it by using

the scaling form of Γ~r,∫ ξ

0
dr
rd−1

rd−2
g(r/ξ) = f

∫ ∞
0

dr
rd−1

rd−2
g(r/ξ) ⇒ ξ2

∫ 1

0
dx xg(x) = fξ2

∫ ∞
0

dx xg(x) ,

(5.96)
which leads indeed to f independent of ξ and of order one. Next we consider the denominator
of EGL and we restrict to T < Tc so that we immediately find∑

j∈Vξ

〈s0〉〈sj〉 = m(T )2Nξ (5.97)

with Nξ = (ξ/a)d as the number of lattice sites within the volume Vξ. The criterion for the
mean field theory to be applicable is then given by

fkBTc
χ(T )

N
�
(
ξ

a

)d
m(T )2 ⇒ fs2

τ
� 3s2τ

(
ξ0

a

)d
τ−d/2 (5.98)
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with ξ0 as the correlation length at zero-temperature. From these we obtain the range of validity

τ
4−d

2 � f

3

(
a

ξ0

)d
(5.99)

which excludes obviously a narrow range of temperature close to Tc for dimensions d ≤ 3. For
dimensions d > 4 there is no limitations and the mean field theory including the Ginzburg-
Landau theory is valid also close to Tc. The temperature region

∆T = Tc − T ∼ Tc
{
f

3

(
a

ξ0

)d} 2
4−d

(5.100)

is called the critical region and grows with shrinking ξ0 as the number of spins in the correlation
volume Vξ becomes smaller.
One important result is the fact that the dimension dc = 4 has been identified as an upper
critical dimension. For d > dc the mean field exponents are valid. This does, however, not mean
that the mean field approximation delivers the exact thermodynamics.

5.5 Self-consistent field approximation

Fluctuation effects affect not only the critical exponents, they also alter the condition for the
instability. The mean field approximation overestimates the tendency to order by ignoring
fluctuations. The functional integral formulation based on the Gaussian transformation allows
us to tackle the discussion of fluctuation effects in a systematic way. A good insight into some
aspects of the fluctuation effects is obtained by the so-called self-consistent field approximation
which is used to analyze the instability condition. We consider the fluctuations around the mean
order parameter value by looking at the partition function in Eq.(5.39)

Z = C

∫ +∞

−∞

(∏
i

dφi

)
e−βS(φi,Hi) . (5.101)

Our aim in the following will be to examine the instability condition of the paramagnetic state
in the absence of a magnetic field, i.e. Hi = 0. Including thermal fluctuations we find that the
mean square of the field φi is finite above the transition temperature, while the simple mean
value vanishes, i.e. 〈φ2

i 〉 6= 0 while 〈φi〉 = 0.

5.5.1 Renormalization of the critical temperature

We take now advantage of the fact that in the paramagnetic phase only small values of φi are
important. Therefore, we expand to S(φi) to second order in the fields φi in the following way,

S(φ) ≈ S0 +
1

2

∑
i,j

(J−1)ijφiφj + kBT
∑
i,j

〈
∂2 ln[2 cosh(βsφi]

∂φi∂φj

〉
φiφj


= S0 +

1

2

∑
i,j

{
(J−1)ij + βs2δij

〈
1

cosh2(βsφi)

〉}
φiφj

≈ S0 +
1

2

∑
i,j

{
(J−1)ij + βs2δij(1− βs2〈φ2

i 〉
}
φiφj .

(5.102)

We take 〈φ2
i 〉 = 〈φ2〉 independent of position. Now we turn to Fourier space,

φi =
1

N

∑
~q

φ ~q e
i ~q ·~r i with φ∗~q = φ− ~q , (5.103)
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and we obtain

S(φ) = S0 +
1

2N

∑
~q

{
1

J( ~q )
+ βs2(1− β2s〈φ2〉)

}
φ ~q φ− ~q

≈ S0 −
1

2JzN

∑
~q

{
q2a2

z
+ 1− Jzs2β − Jzs4β3〈φ2〉

}
φ ~q φ− ~q

= S0 +
ad

2J2z2N

∑
~q

{
κq2 +A+ 3Bs6β3〈φ2〉

}
φ ~q φ− ~q

(5.104)

A slightly more compact form is reached by taking the relation φ ~q = Jzm ~q following Eq.(5.48)
and kBTc = Jzs2 such that

S = S0 +
ad

2N

∑
~q

{
κq2 +A+ 3B〈m2〉

}
m ~qm− ~q = S0 +

1

2

∑
~q

G−1( ~q )m ~qm− ~q (5.105)

taking the coefficients from the above Ginzburg-Landau formulation.
Now we may rewrite the partition function in this approximation as

Z ′ = Z0

∏
~q

′
∫
dm~q dm−~q exp

{
−βG−1(~q)m~qm−~q/2

}

= Z0

∏
~q

′
∫
dm′~q dm

′′
~q exp

{
−βG−1(~q)(m′~q

2
+m′′−~q

2
)/2
} (5.106)

where we used the parametrization m±~q = m′~q ± im′′~q . The product
∏′ runs only over the

half-space of ~q , e.g. { ~q | qz ≥ 0}, because the full product
∏

~q dm ~q dm− ~q would constitute a
doubling of integrals compared to

∏
i dφi. Using this we calculate the mean value

〈m2〉 =
1

Ld

∫
ddr 〈m(~r)2〉 =

1

N2

∑
~q

〈m~qm−~q〉

=
1

N2

∑
~q

〈m′~q
2

+m′′~q
2〉 =

kBT

N2

∑
~q

G(~q) =
1

Ld

∑
~q

kBT

A+ 3B〈m2〉+ κq2

(5.107)

which represents a self-consistent equation for 〈m2〉. Note that the G(~q) corresponds to a
renormalized correlation function, analogous to Γ~q in (5.60).
On the other hand, we can determine the susceptibility using the fluctuations,

χ(T ) = β
1

Ld

∫
ddr ddr′

{
〈m(~r)m(~r ′)〉 − 〈m(~r)〉〈m(~r ′)〉

}
= β〈m2

~q=0〉 = G(~q = 0) =
1

A+ 3B〈m2〉 .
(5.108)

The fact that the susceptibility diverges at the phase transition can now be used to determine
the instability temperature T ∗c which is different from the ”bare” Tc defining the zero of A. Thus
we analyze the equation

χ−1 = [A+ 3B〈m2〉] = A+
3BkBT

Ld

∑
~q

1

χ−1 + κq2
, (5.109)
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where χ−1 = 0 determines T ∗c . For the sum over ~q we have to be careful because the form we
have chosen for the expansion in small powers of q is not valid at large q. We correct for this
by introducing an upper cutoff Λ for q, which is of the order a−1, the inverse lattice constant.
Then going to integral form L−d

∑
~q →

∫
ddq/(2π)d and setting χ−1 = 0 we reach at equation

Ac = Jza−d
(
T ∗c
Tc
− 1

)
= −Jza

−d

s2

CdkBT
∗
c

(2π)d

∫ Λ

0
dq

qd−1

κq2
(5.110)

where Cd =
∫
dΩ is the surface area of a unit-sphere in d dimensions as defined in Eq.(1.39).

Thus the renormalized transition temperature is

T ∗c =
Tc

1 +
Cdz

(2π)d
(Λa)d−2

d− 2

< Tc . (5.111)

Therefore the transition temperature is reduced by the fluctuations. The dimension d = dL = 2
appears as a lower critical dimension. For dimension d < dL the integral diverges at the lower
boundary (infrared divergence) such that no finite transition temperature is possible. The
dimension dL is more subtle. Below we will comment from a different point of view on this
result.

5.5.2 Renormalized critical exponents

Now we turn to the behavior of the susceptibility at the new critical temperature. For this
purpose we rewrite (5.109) with the help of (5.110) and obtain for T → T ∗c+

χ−1 = (A−Ac) +
3BCd
(2π)d

∫ Λ

0
dq qd−1

[
kBT

χ−1 + κq2
− kBT

∗
c

κq2

]

≈ (A−Ac)−
3BCdkBT

∗
c

(2π)dκ

∫ Λ

0
dq

qd−3

1 + χκq2

= (A−Ac)−
3BCdkBT

∗
c

(2π)dκ
{κχ}(2−d)/2

∫ Λ
√
κχ

0
dx

xd−3

1 + x2
.

(5.112)

Note that κχ = ξ2. We distinguish now two cases. First choose the dimension larger than the
upper critical dimension d > dc = 4 and obtain

χ−1 ≈ (A−Ac)−
3BCdkBT

∗
c

(2π)dκ
{κχ}(2−d)/2 {Λ(κχ)1/2}d−4

d− 4

= (A−Ac)−
3BCdkBT

∗
c

(2π)dκ2

Λd−4

d− 4
χ−1 =

kB
ads2

(T − T ∗c )− Cdz
2

2(2π)d
T ∗c
Tc

(Λa)d−4

d− 4
χ−1

⇒ χ(T ) =
ads2

kB(T − T ∗c )

{
1 +

Cdz
2

2(2π)d
T ∗c
Tc

(Λa)d−4

d− 4

}−1

∝ |T − T ∗c |−1 .

(5.113)

We observe that this corresponds to the behavior found in mean field calculation. Indeed above
the critical dimension dc the mean field exponents are correct, and the only effect of fluctuations
is to renormalize certain quantities such as the critical temperature.
Next we consider d < dc = 4. In this case the integral over x in (5.112) converges and the upper
bound does not enter in the limit T → T ∗c . The integral only depends on d and is given by
Kd = Γ[(d− 2)/2]Γ[(4− d)/2]. Therefore, we obtain

χ−1 = (A−Ac)−
3BCdkBT

∗
c

(2π)dκd/2
Kdχ

(2−d)/2 . (5.114)
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Figure 5.7: Critical region.

This equation has two regimes. For large χ the second term on the right hand side is dominating
over χ−1. On the other hand, if χ is small, χ−1 is dominant. The first case applies for T very
close to T ∗c such that we arrive at the behavior

χ(T ) ∝ |T − T ∗c |−γ with γ =
2

d− 2
. (5.115)

Away from T ∗c the second case holds and we return back to the usual mean field behavior,

χ(T ) ∝ |T − T ∗c |−1 . (5.116)

The crossover happens roughly at the boundary defined by the Ginzburg criterion. It is now
also obvious that the critical exponent γ depends on the dimension. The critical dimensions
dL = 2 and dc = 4 need a special care in this discussion as the expression we have obtained do
not straightforwardly apply to them.
We can now also use this result to determine the exponent of the correlation length ν. We may
use ξ2 = κχ such that we find immediately

ν =
γ

2
. (5.117)

5.6 Long-range order - Peierls’ argument

We have seen in the previous section that the critical temperature is reduced from its mean field
value by thermal fluctuations. The lower the dimension (the coordination number) the more
severe thermal fluctuations act against order. We consider here the case of the Ising model in one
and two dimensions. In one dimension no magnetic order is possible at any finite temperature,
while in two dimensions there is a finite-temperature phase transition.

5.6.1 Absence of finite-temperature phase transition in the 1D Ising model

We consider the ground state of the ferromagnetic Ising chain. All spins are aligned. The lowest
energy excitation is a domain wall for which the spins point up on the left and down on the
right hand side of the domain wall. The energy for such a wall is 2Js2. With N spins on the
Ising chain, there would be N − 1 positions possible for this wall and would yield an entropy
S = kB ln(N − 1) accounting for the uncertainty of the configuration of the state. Therefore a
simple estimate of the free energy for the presence of a domain wall leads to

∆F = 2Js2 − kBT ln(N − 1) . (5.118)
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Taking now the thermodynamic limit N →∞ would yield for any finite temperature a negative
∆F such that the ordered phase (without domain wall) would be unfavorable.

domain
wall

Figure 5.8: Domain wall as the lowest excitation.

In the one-dimensional Ising chain long-range order exists only at zero temperature analogously
to the classical spin chain discussed earlier.

5.6.2 Long-range order in the 2D Ising model

The argument given by Peierls to proof long-range order for the 2D Ising model is also based on
domains. We consider a square lattice and assume that all spins at the boundary are pointing
up. This requirement is not relevant, if the thermodynamic limit is considered, i.e. the number
of site or spins N →∞. However, it implies that all domain walls on the lattice are closed. The
energy cost for a domain wall of the length L compared to the completely aligned configuration
is

E(L) = 2Js2L . (5.119)

Now choose a site j somewhere in the interior of the system. We define P± as the probability
that this spin sj is ±s. Thus the mean value of the spin is

〈sj〉 = s(P+ − P−) (5.120)

where in the case of long range order 〈sj〉 > 0 due to the boundary condition. Moreover the
correlation function satisfies for |i− j| → ∞,

〈sisj〉 → 〈si〉〈sj〉 = s2(P+ − P−)2 (5.121)

which is finite for the long-range ordered system, if P+ 6= P−. Thus our proof has to address
this point.
In case sj = −s we find an odd number of domain walls encircling the site j. The relative
probability that the shortest domain wall around j (closest to site j) has the length L is given
by

PL,j =
e−KL

Z

∑
L′

e−KL
′

(5.122)

where the sum
∑

L′ runs over all other domain walls and K = 2βJs2. If we consider sj = +s
this shortest domain wall is absent. Thus we may write

P+ =
1

Z

∑
L′

e−KL
′

and P− =
∑
L

g(L)e−KLP+ . (5.123)

Here g(L) is the number of domain wall shapes of length L around j.
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Figure 5.9: Domain wall configurations.

From topological point of view the domain wall should not cut itself. If we ignore this condition
and in addition the requirement that the domain wall is closed, we can derive a simple upper
bound for g(L),

g(L) < 4× 3L−1 × 1

L
× 1

2
×
(
L

4

)2

=
L2

24L
eL ln 3 , (5.124)

which can be understood as a walk of length L through the lattice. From the starting point,
we may start in 4 directions and every following step has 3 possible directions. On the contour
there are L equivalent starting points (assuming close contour) and 2 directions. Then there are
maximally (L/4)2 sites enclosed by the domain and the starting point may be shift on any of
them (for given circumference the square has the largest area among all rectangles). Therefore
we can write

P− <
∑
L≥4

L2

24L
eL(ln 3−K)P+ <

∑
L=4,6,8,...

L2

96
eL(ln 3−K) (5.125)

since P+ < 1. For sufficiently low temperature ln 3 − K = ln 3 − 2Js2β < 0 so that the sum
converges very well. By making the temperature small enough, also the condition P− <

1
2 can

be reached. With the condition P+ + P− = 1 it follows that

P+ − P− > 0 ⇒ lim
|i−j|→∞

〈sisj〉 = const. (5.126)

which means that we have long- range order at a finite temperature.
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Chapter 6

Superfluidity

Only the nobel gas Helium remains a liquid down to zero temperature at ambient pressure. After
liquefaction it is a quantum liquid which involves two isotopes, with bosonic (fermionic) character
for 4He (3He). Note that the nucleus of 4He consists of two protons and two neutrons, resulting
in a boson, while 3He has only one neutron and forms a fermionic atom. Only under pressure
eventually solidification occurs (Fig. 6.1). Both quantum liquids undergo a phase transition to
the miraculous state of superfluidity, characterized by the frictionless or dissipationless flow of
the fluid through constrictions and narrow capillaries, beside a few other amazing properties.
Considering their phase diagrams in Fig.6.1, we recognize a profound difference for the superfluid
phase between 4He (left panel) and 3He (right panel). The bosonic atoms undergo a Bose-
Einstein condensation to become a superfluid below Tλ ≈ 2.18K at ambient pressure. The
fermionic atoms, on the other hand, become superfluid only around 10−3K, when they form so-
called Cooper pairs, in many aspects resembling the superconducting phase of electrons. Here
we will discuss only the case of superfluid 4He.
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Figure 6.1: Phase diagrams of Helium. Left panel: bosonic 4He. Right panel: fermionic 3He.
Note the logarithmic temperature scale in the right panel. While 4He has one superfluid phase,
there are two, the A- and B-phase, for 3He.

6.1 Quantum liquid Helium

We consider now the quantum liquid 4He.1 The first question we ask is why Helium remains
liquid even in its ground state. A classical system of interacting particles would form a solid

1The quantum liquid 3He is a so-called Fermi liquid well described by Landau’s phenomenological theory
based on the concept of fermionic quasiparticles. This concept can be extended to other interacting fermions,
most notably to electrons in metals, as will be discussed in the course ”Solid State Theory”.
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lattice in order to minimize the potential energy, as the kinetic energy vanishes at zero temper-
ature. This is not the case when we consider quantum particles which are subject to zero-point
motion. Let us consider here a simple argument on why Helium is liquid while other noble gases
solidify.
The interaction between Helium atoms consists of two components. There is a strongly repulsive
interaction on short range, since the closed electron shells (two 1s electrons) repel each other
when the atoms come close. On long distances the atoms attract each other through the rather
weak van der Waals force. A good fit of the potential is given by2

V (r) = Ae−r/r1 −B
(r2

r

)6
(6.1)

with A = 489eV, B = 9.3× 10−5eV, r1 = 0.22 Å and r2 = 4.64 Å. Qualitatively this resembles
the Lenard-Jones potential we introduced earlier, with a negative minimum and a vanishing
potential for large distances r. It has a minimum at r0 ≈ 3Å with a potential energy V =
−7.8×10−4eV. The mean distance between Helium atoms towards zero temperature at ambient
pressure is d ≈ 4.4Å. Assuming that Helium is a solid with this lattice constant, the condition
for melting is that position fluctuations of the atoms acquire a ”considerable” fraction of the
lattice spacing d. The Lindemann criterion for melting request the mean displacement of the
atom from its equilibrium position,

∆r

d
≤ Lm with Lm ≈ 0.1 , (6.2)

such that for the solid the atom would have to be confined with a range of linear size ∆r ≈ 0.5Å.
Taking Heisenberg’s uncertainty principle, ∆r ×∆p ≈ ~ we obtain for the zero-point energy,

∆E =
∆p2

2m
≈ 1

2m

(
~

∆r

)2

≈ 8.6× 10−4eV , (6.3)

which is slightly larger than the potential depth. Thus, the Helium atoms dissociate due to
the zero-point motion. Only pressure beyond 25 bar opens the way to solidifications at low
temperatures (T < 5K). We encounter ”quantum melting” at very low temperatures, when we
lower the pressure isothermally through the critical pressure pc ∼ 25bar (see also in Sect. 3.7.3).
Classical thermally driven melting is observed for isobar increase of temperature from the solid
phase with the pressure clearly above 25 bar.

6.1.1 Superfluid phase

Around Tλ ≈ 2.17K the quantum liquid undergoes a phase transition between a normal and
superfluid phase. This transition is called ”λ-transition” due to the peculiar shape of the specific
heat as a function of temperature. (Fig.6.2). There is an obvious similarity with the specific heat
of bosons as shown in Fig.2.6, which suggest that the superfluid phase is based on Bose-Einstein
condensation. There are, however, also clear differences such as the low-temperature behavior
of the specific heat, which has a power law T 3/2 for the ideal Bose gas and T 3 for 4He. This is
connected with the difference in the excitation spectrum.
We examine here the property of a superfluid to flow frictionless. First we ask the question
whether the ideal Bose-Einstein condensate is a superfluid. For this purpose we study an ideal
Bose gas of particles flowing in a capillary tube with a velocity −~v relative to the capillary
walls. We can view the same situation in the rest frame of the superfluid, such that the tube is
moving with velocity ~v . The former inertial system we call K ′, the latter K. Then the following
relations for the momentum and energy of the superfluid hold,

K : ~P E

K ′ : ~P ′ = ~P −M ~v E′ = E − ~P · ~v +
M

2
~v 2

(6.4)

2Reference: J.C. Slater and J.G. Kirkwood, Phys. Rev. 37, 682 (1931).
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Figure 6.2: Specific heat at the superfluid transition Tλ.

where M is the total mass of all particles of the superfluid. Initially all particles have the same
velocity ~v such that ~P = 0 and E = 0 in system K (rest frame of superfluid). Let us assume one
particle scatters with the wall and transfers the momentum ~p to the wall. Such an excitation of
the superfluid costs the energy ε( ~p ), viewed in system K. For this situation we obtain E = ε( ~p )
and ~P = − ~p . Thus, the energy difference between the initial and the final state in the rest
frame of the superfluid, K ′, is given by

∆E′ = ε( ~p ) + ~p · ~v . (6.5)

The minimal energy drop is obtained by choosing ~p antiparallel to ~v , such that the superfluid
overall slows down. The scattering process can only happen, if the energy of the superfluid is
reduced, ∆E′ < 0. For an ideal Bose gas the energy of an excitation is given by ε( ~p ) = ~p 2/2m.
There is always a momentum ~p with

∆E′ =
~p 2

2m
+ ~p · ~v =

p2

2m
− vp < 0 ⇒ p < 2mv . (6.6)

Consequently the condensed ideal Bose gas is not a superfluid and is subject to friction, as we
can always find a scattering channel which slows the superfluid down by transferring momentum
to the capillary.
Real Bose gases have interaction. This leads in the superfluid phase to a different form of
elementary excitations with a linear dispersion,

ε( ~p ) = cs| ~p | = csp , (6.7)

corresponding to a sound-like excitation. Inserting this in Eq.(6.6) we find that the inequality
can only be satisfied for v ≥ cs. Therefore there is a critical velocity vc below which the fluid
flows frictionless (dissipationless).
The real excitation spectrum of the superfluid has a more complex structure as shown in Fig. 6.3.
At small energy and momentum the spectrum is linear as assumed above. However, with growing
momentum it turns non-monotonic with a local minimum around p0. This part of the spectrum
is called roton. For these two parts of ε(p) we write

ε(p) =


csp p� p0

∆ +
(p− p0)2

2m∗
p ≈ p0

(6.8)

where for 4He the parameters are

cs = 240 ms−1 ,
p0

~
= 1.9 Å

−1
,

∆

kB
= 8.7 K , m∗ = 0.16mHe . (6.9)
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The critical velocity is now given by the lowest possible excitation within Eq.(6.5), corresponding
to the dashed line in Fig.6.3,

vc ≈
ε(p0)

p0
=

∆

p0
= 60 ms−1 . (6.10)

Note that the roton minimum is a precursor of solid He. Under pressure ∆ shrinks and eventually

✏(p)

pp0

�

phonon%

roton%

vcp

Figure 6.3: Spectrum of a real superfluid with a linear sound-like behavior at low energy and
a local minimum around p0, the rotons. The dashed line (vcp) indicates the maximal velocity
of the superfluid to sustain frictionless flow, i.e. flow without generating elementary excitations
which would lead to a slow down.

reaches zero at a critical pressure where the rotons condense forming a coherent state with specific
momentum corresponding to a crystalline (hexagonal closed packed) lattice.

6.1.2 Collective excitations - Bogolyubov theory

In this section we discuss the low-energy excitations of a Bose gas of weakly interacting particles.
For this purpose we follow the theory developed by Bogolyubov. We write the Hamiltonian in
the second-quantization language for spinless bosons,

H = Hkin +Hint (6.11)

with
Hkin =

∑
~k

(ε~k − µ)â†~k
â~k

Hint =
1

2

∫
d3r d3r′ Ψ̂ †(~r ) Ψ̂ †(~r ′)V (~r − ~r ′) Ψ̂ (~r ′) Ψ̂ (~r )

(6.12)

where ε~k = ~2 ~k 2/2m and V (~r − ~r ′) = Uδ(~r − ~r ′) denotes a contact interaction, i.e. the
particles repel each other when they are on the same position. We transform the interaction
part into the occupation number representations using Eq.(3.35),

Hint =
U

2Ω

∑
~k ,~k ′, ~q

â†~k+ ~q
â†~k ′− ~q

â~k ′ â~k . (6.13)

Now we turn to the Bogolyubov approximation introduced in Sect. 3.7.2, by identifying the â†0
and â0 by

√
N0 (phase φ = 0 for simplicity). This is justified when N0 � N − N0. We can

104



then approximate the Hamiltonian by keeping only the leading terms in N0 obtained through
the following combinations of momenta:

~k , ~k ′, ~q â†~k+ ~q
â†~k ′− ~q

â~k ′ â~k
~k , ~k ′, ~q â†~k+ ~q

â†~k ′− ~q
â~k ′ â~k

~k = ~k ′ = ~q = 0 N2
0

~k = ~k ′ = 0, ~q 6= 0 N0â
†
~q â
†
− ~q

~q = −~k 6= 0, ~k ′ = 0 N0â
†
~k
â~k ~q = ~k ′ 6= 0, ~k = 0 N0â

†
~k ′
â~k ′

~k = −~k ′ = − ~q 6= 0 N0â~k â−~k ~q = ~k = 0, ~k ′ 6= 0 N0â
†
~k ′
â~k ′

~q = ~k ′ = 0, ~k 6= 0 N0â
†
~k
â~k

Terms of order N
3/2
0 do not exist and terms of order N

1/2
0 and lower in N0 are neglected.

Collecting these terms we obtain to this order,

H′ = −µN0 +
UN2

0

2Ω
+
∑
~k 6=0

{
ε~k − µ+

UN0

Ω

}
â†~k
â~k

+
UN0

2Ω

∑
~k 6=0

{
â†~k
â†
−~k

+ â−~k â~k + â†~k
â~k + â†

−~k
â−~k

}
.

(6.14)

The requirement that the total particle number remains constant at lowest temperature leads
to µ = Un0,

H′ = −N0
Un0

2
+

1

2

∑
~k 6=0

[{
ε~k + Un0

}
(â†~k

â~k + â†
−~k

â−~k ) + Un0(â†~k
â†
−~k

+ â−~k â~k )
]
. (6.15)

This Hamiltonian has a single-particle form, but does not conserve the number of particles,
as terms like â−~k â~k and â†~k

â†
−~k

describe how particles from excited states are absorbed by

the condensate and emitted from the condensate, respectively. We search a set of bosonic
annihilation and creation operators which diagonalize this Hamiltonian into a form

H′ = 1

2

∑
~k 6=0

E~k
(γ̂†~k

γ̂~k + γ̂†
−~k

γ̂−~k ) + E0 − µN0 . (6.16)

where the operators γ̂†~k
(γ̂~k ) create (annihilate) independent Bogolyubov quasiparticles. The

following Bogolyubov transformation allows us to reach this form,

â~k = γ̂~k u~k − γ̂
†
−~k

v~k and â−~k = γ̂−~k u~k − γ̂
†
~k
v~k , (6.17)

where the new operators satisfy the relation,

[γ̂~k , γ̂
†
~k

] = [γ̂−~k , γ̂
†
−~k

] = 1 ⇒ [â~k , â
†
~k

] = u2
~k
− v2

~k
= 1 . (6.18)

The diagonalization leads to

E~k
=
√
ε2~k

+ 2Un0ε~k and E0 =
1

2

∑
~k 6=0

[
E~k
− ε~k − Un0

]
−N0

Un0

2
(6.19)
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and the transformation coefficients,

u~k =
1√

1− χ2
~k

v~k =
χ~k√

1− χ2
~k


⇒


χ~k = 1 +

ε~k
Un0

−
√(

1 +
ε~k
Un0

)2

− 1

= 1 +
ε~k
Un0

− E~k

Un0
.

(6.20)

The spectrum of the elementary excitations is linear in the small momentum limit, ~k → 0,

E~k
≈ csp =

√
Un0

m
~k , (6.21)

corresponding to a phonon spectrum of compressive waves. Thus, for small ~k the Bogolyubov
quasiparticles represent phonons. In the large momentum region, ε~k � Un0 the spectrum
merges gradually with ε~k ,

E~k
≈ ε~k + Un0 (6.22)

with a shift of Un0 (see Fig.6.4). In E~k
rotons are not included as they are beyond the simple

approximation applied here. Therefore, within the Bogolyubov theory the critical velocity is
determined by the slope of the phonon spectrum, i.e. by the speed of sound,

vc = cs =

√
Un0

m
(6.23)

which is higher than the real vc discussed above. The constant E0 is the ground state energy.
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Figure 6.4: Spectrum of the Bogolyubov quasiparticles in Eqs.(6.16) and (6.19). The solid line
displays E~k

with a linear dispersion for small momenta ~p = ~~k and the dashed line shows ε~k .
There are no rotons in this simple approach.

Note that in the approximation done here the sum in E0 diverges at large ~k . This is an artefact
of taking the potential as an infinitely sharp contact interaction, i.e. U is independent of ~k . 3

3Groundstate energy: It is rather easy to see that in the large-~k limit the integrand in E0 (Eq.(6.19)) behaves
like

E~k − ε~k − Un0 → −m(Un0)2

p2
, (6.24)
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Now we turn to the condensate fraction of the interacting system. How many particles condense?
This can be straightforwardly calculated,

n0 = n− 1

Ω

∑
~k 6=0

〈â†~k â~k 〉 . (6.26)

This is advantageous when we want to calculate now mean values for which we insert the
Bogolyubov transformation in Eq.(6.17),

〈â†~k â~k 〉 = 〈(γ̂†~k u
∗
~k
− γ̂−~k v

∗
~k

)(γ̂~k u~k − γ̂
†
−~k

v~k )〉

= |u~k |
2〈γ̂†~k γ̂~k 〉+ |v~k |

2〈γ̂−~k γ̂
†
−~k
〉 − u∗~k v~k 〈γ̂

†
~k
γ̂†
−~k
〉 − u~k v

∗
~k
〈γ̂−~k γ̂~k 〉 .

(6.27)

Then we use the fact that the Bogolyubov quasiparticles are independent, described by the
Hamiltonian in Eq.(6.16),

〈γ̂†~k γ̂~k 〉 =
1

eβE~k − 1
, 〈γ̂−~k γ̂

†
−~k
〉 = 1 + 〈γ̂†

−~k
γ̂−~k 〉 = 1 +

1

eβE~k − 1
,

〈γ̂−~k γ̂~k 〉 = 〈γ̂†~k γ̂
†
−~k
〉 = 0 .

(6.28)

Note that E~k
= E−~k . The momentum distribution of the bosons for ~k 6= 0 is obviously,

n~k = 〈â†~k â~k 〉 = (|u~k |
2 + |v~k |

2)
1

eβE~k − 1
+ |v~k |

2 =
1 + χ2

~k

1− χ2
~k

1

eβE~k − 1
+

χ2
~k

1− χ2
~k

. (6.29)

The first term vanishes at T = 0 while the second remains finite. Thus, unlike for the ideal
Bose gas for which all particles condense into the ~k = 0 state, here we have an interaction
induced reduction. Let us discuss this aspect. The zero-temperture distribution function has
the following behavior,

〈â†~k â~k 〉T=0 =
χ2
~k

1− χ2
~k

≈



√
mUn0

2~k
~k � √2mUn0

(mUn0)2

4(~k)4
~k � √2mUn0

(6.30)

which represents the depletion of the condensate due to particle-particle interaction. We calcu-
late now the total reduction of n0 at T = 0 integrating over all ~k ,

n0 = n− 1

Ω

∑
~k 6=0

χ2
~k

1− χ2
~k

= n−
∫

d3k

(2π)3

χ2
~k

1− χ2
~k

= n− 1

3π2

(
mUn0

~2

)3/2

(6.31)

which is valid only for sufficient weak interactions. This can be measured in terms of the
characteristic length ξ, defined as

~2k′2

2m
= Un0 with k′ξ = 1 ⇒ ξ2 =

~2

2mUn0
(6.32)

and leads to a divergence of the sum. A careful and more extensive analysis of the problem shows that this
singular part can be extracted such that the renormalised ground state energy is given by

E′0 =
∑
~k 6=0

[
E~k − ε~k − Un0 +

m(Un0)2

p2

]
+N0

Un0

2
= N0

Un0

2

[
1 +

16

15π2n0

(
Un0m

~2

)3/2
]
. (6.25)

The approximation for the ground state energy used here relies on the assumption that we are dealing with a
Bose gas. This is, however, not guaranteed even for weak interactions.
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which leads to the condition

3π2n�
(
mUn0

~2

)3/2

⇒ nξ3 � 1 . (6.33)

The characteristic length is much larger than the mean distance between particles.
If we apply the same scheme to a one-dimensional interacting Bose gas, we find that the integral∫

dk

2π

χ2
~k

1− χ2
~k

−→ ∞ (6.34)

diverges due to the k−1 dependence of the integrand for small k (see Eq.(6.30). This leads to the
conclusion that in one dimension quantum fluctuations destroy the Bose-Einstein condensate,
as soon as interaction is present.
The phonon spectrum determines the low-temperature behavior of the superfluid. Let us con-
sider the heat capacity as an example. For this purpose we calculate the low-temperature internal
energy through the Hamiltonian H′ in Eq.(6.16),

U = 〈H′〉 = E0−µN0+
∑
~k 6=0

E~k
〈γ̂†~k γ̂~k 〉 = E0−µN0+

∑
~k 6=0

E~k

eβE~k − 1
≈ N π2

30n

(
m

Un0~2

)3/2

(kBT )4

(6.35)
for kBT � Un0. The heat capacity is then

C =
dU

dT
= N

2π2

15n
kB

(
m

Un0~2

)3/2

(kBT )3 (6.36)

which is different from the Bose-Einstein condensate with C ∝ T 3/2.

6.1.3 Gross-Pitaevskii equations

We would like to introduce now a description of the Bose-Einstein condensate which allows
us to take also spatial variations into account. For this purpose we write the Hamiltonian of
interacting bosons entirely in the language of field operators,

H =

∫
d3r

{
~2

2m
( ~∇ Ψ̂ †(~r ))( ~∇ Ψ̂ (~r )) + [V (~r )− µ] Ψ̂ †(~r ) Ψ̂ (~r )

}

+
1

2

∫
d3r d3r′ Ψ̂ †(~r ) Ψ̂ †(~r ))Uδ(~r − ~r ′) Ψ̂ (~r ) Ψ̂ (~r )

(6.37)

where V (~r ) is a potential (shifted by the chemical potential µ) acting on the bosons which are
interacting by a contact interaction. We derive now the equation of motion for the field operator,

i~
∂

∂t
Ψ̂ (~r , t) = [ Ψ̂ (~r , t),H] =

[
−~2 ~∇ 2

2m
+ V (~r )− µ+ U Ψ̂ †(~r , t) Ψ̂ (~r , t)

]
Ψ̂ (~r , t) . (6.38)

If the external potential varies very slowly or is even constant we will replace the field operator
by the Bogolyubov approximation discussed in Sect. 3.7.2 and obtain the equation

i~
∂

∂t
ψ0(~r , t) =

(
−~2 ~∇ 2

2m
+ V (~r )− µ+ U |ψ0(~r , t)|2

)
ψ0(~r , t) , (6.39)

which is called Gross-Pitaevskii equation. This equation is obtained by variation from the energy
functional

E =

∫
d3r

[
~2

2m
| ~∇ψ0(~r )|2 + {V (~r )− µ}|ψ0(~r )|2 +

U

2
|ψ0(~r )|4

]
(6.40)
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through

i~
∂

∂t
ψ0(~r , t) =

δE

δψ0(~r , t)
. (6.41)

We have also introduced the chemical potential µ which can be absorbed in the potential V (~r ).
In the homogeneous equilibrium (time independent) phase we require that ψ0(~r ) =

√
n0 and

fix V (~r ) = 0. In order to get the right magnitude for |ψ0| we have to choose µ = Un0 as in
Eq.(6.14).

Spatial variation:

Let us consider here some properties. First we address the characteristic length scale for the
recovery of the equilibrium phase near a local perturbation. For this purpose we assume a small
deviation,

ψ0(~r ) =
√
n0 + η(~r ) , (6.42)

with |η(~r )|2 � n0. Inserted into the Gross-Pitaevskii equation (Eq.(6.39)) we obtain to linear
order in η(~r ),

− ~2

2m
~∇ 2η(~r ) + 2Un0η(~r ) = 0 (6.43)

which yields the long distance behavior around a point-like perturbation,

η(~r ) = η0
e−r/

√
2ξ

r
with ξ2 =

~2

2mUn0
(6.44)

the same length as introduced in Eq.(6.32).

V (x)

 (x)

x

µ0

Figure 6.5: Bose-Einstein condensate trapped in a harmonic potential V (x) ∝ x2. The Thomas-
Fermi approximation yields a condensate concentrated around the center of the potential well.
Note that the approximation is only justified for large condensate densities (n0ξ

3 � 1). Thus,
near the region where the condensate density vanishes a more accurate analysis shows a smoother
vanishing than the Thomas-Fermi approximation.

For very slow variations of the potential where the kinetic part (differential part) of the Gross-
Pitaevskii equation can be neglected, the solution is rather simple,

ψ(~r ) = n0

(
µ0 − V (~r )

Un0

)1/2

(6.45)

with µ0 = Un0 the chemical potential where V (~r ) = 0. This is called the Thomas-Fermi
approximation. The approximation breaks down when |ψ(~r )| approaches zero. Then the full
problem has to be solved.
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Continuity equation and currents:

We multiply now the Gross-Pitaevskii equation by ψ∗0(~r , t) and subtract the complex conjugate
of the resulting equation. From this we obtain,

∂
∂t |ψ0(~r , t)|2 = − ~

2mi
[ψ∗0(~r , t) ~∇ 2ψ0(~r , t)− ψ0(~r , t) ~∇ 2ψ∗0(~r , t)]

= − ~∇ · ~
2mi

[ψ∗0(~r , t) ~∇ψ0(~r , t)− ψ0(~r , t) ~∇ψ∗0(~r , t)]

(6.46)

which we may rewrite as

∂ρ(~r , t)

∂t
+ ~∇ ·~j (~r , t) = 0 with


ρ(~r , t) = |ψ0(~r , t)|2

~j (~r , t) =
~

2mi
[ψ∗0(~r , t) ~∇ψ0(~r , t)− ψ0(~r , t) ~∇ψ∗0(~r , t)] .

(6.47)
The current density is connected with the phase of the condensate wave function, ψ(~r ) =√
n0e

iφ(~r ) when the condensate density is constant.

~j (~r ) =
~
m
n0
~∇φ(~r ) = n0 ~v s(~r ) (6.48)

which we use also to define the superfluid velocity ~v s. The energy of the homogeneous system
(V (~r ) = 0) is then given by

E(~v s) = Ω

[
m

2
~v 2
sn0 −

Un2
0

2

]
(6.49)

with which we determine the critical velocity by E(vc) = 0, i.e. there is no energy gain in
forming a condensate. The critical current is obtained as vc =

√
Un0/m = cs as found in the

Bogolyubov theory in Eq.(6.23).

Frictionless current and quantized vortices:

An important aspect of the condensate wave function is its property to be single-valued. This
gives rise to spectacular properties, for example, for the current flow in a torus. In this multiply
connected system the phase of the wave function can show a winding of the phase under the
constraint that ψ0(~r ) has to match on a path around the torus. Thus the phase φ can only
change by an integer multiple of 2π (de Broglie condition). If we assume a regular torus the
current flow would be homogeneous with a constant velocity |~v s|. We find that the circular
integral of the velocity around the torus is quantized, because∮

~v s · d~s =
~
m

∮
~∇φ · d~s =

~
m

2πnφ (6.50)

with nφ being an integer. Thus the current j = n0vs can only take discrete values in the torus,
such that a decay of current would mean an unwinding of the phase φ. This constitutes a
frictionless flow of the superfluid as it will flow eternally.
A phase winding can occur within the superfluid also when the superfluid density forms a
singularity, a zero along a line. The solution of the Gross-Pitaevskii equations then has form

ψ0(r⊥, θ, z) =
√
n0f(r⊥)eiθnφ (6.51)

for zero line along the z-axis with (r⊥, θ) being the cylindrical coordinates perpendicular to z.
The function f(r⊥) goes to zero on the line r⊥ = 0 and recovers to 1 with the length scale ξ.
This structure represents a vortex with winding number nφ and is a topological defect in the
superfluid. This means that it cannot be simply created or destroyed, but can only enter or leave
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Figure 6.6: Phase winding and vortex: Left panel: phase winding (red line) around the torus
leads to a current. As the phase has close the current is quantized. Right panel: Vortex structure
of |ψ(r⊥)|2 with a core of linear extension ∼ ξ.

the superfluid at the boundary. Two vortices with opposite winding numbers can annihilate each
other.
The energy of a vortex consists of the core energy due to the local depletion of the condensate
and the contribution of the circular flow of superfluid. The former can usually be neglected as it
takes only of order of Ecore ∼ Un2

0πξ
2/2 = ~2n0π/4m per unit length of the vortex. The latter,

however, is larger. To be concrete we place the vortex along the rotation axis of a cylindrical
vessel of radius R. Then the energy per unit length is given by

∆E =

∫ R

ξ
dr⊥ r⊥

∫ 2π

0
dθ

~2

2m

1

r2
⊥

∣∣∣∣∂ψ(r⊥, θ)

∂θ

∣∣∣∣2 + Ecore =
~2n0

2m
2πn2

φ ln

(
R

ξ

)
+ Ecore , (6.52)

where the lower integral boundary of r⊥ has been set to ξ as for the superfluid density is
suppressed on smaller distances from the core. Indeed the amazing result is that the energy
scales logarithmically with the system size, i.e. radius of the cylinder in our example, although
the condensate density is only damaged on a comparatively small volume.

6.2 Berezinskii-Kosterlitz-Thouless transition

A peculiar behavior can be found in the two-dimensional superfluids, e.g. a 4He film on a
substrate. How does superfluid order establish in this case? We will see that due to phase
fluctuations of the condensate wave function here a new type of phase transition appears.

6.2.1 Correlation function

First let us examine the correlation functions of the two-dimensional film. For the bosonic
system we can do this the same way as we did previously in Sect.3.7.2. The correlation function
is given

g( ~R ) = 〈 Ψ̂ †(~r ) Ψ̂ (~r + ~R )〉 . (6.53)

In the high-temperature limit we have approximated the long-distance behavior by

g( ~R ) =

∫
d2k

(2π)2

ei
~k · ~R

eβ(ε~k−µ) − 1
≈ 2mkBT

~2

∫
d2k

(2π)2

ei
~k · ~R

k2 + k2
0

=
2

λ2
K0(k0R) ≈ 1

λ2

√
2π

k0R
e−k0R

(6.54)
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with k2
0 = −2mµ/~2, λ = h/

√
2πmkBT (thermal wavelength) and K0(x) is the modified Bessel

function (also known as MacDonalds function). Thus, we find exponential decay of the correla-
tion.
The low-temperature limit can be conveniently discussed by taking advantage of the simple
formulation of the energy in Eq.(6.40), where we keep n0 constant and restrict to the phase
fluctuations. Then we obtain

E[φ] = Un2
0

∫
d2r

[
ξ2( ~∇φ)2 − 1

2

]
= Un2

0

∑
~q

ξ2q2φ ~q φ− ~q −
Ω

2

 (6.55)

with the Fourier transform

φ(~r ) =
1√
Ω

∑
~q

φ ~q e
i ~q ·~r (6.56)

and Ω here as the area of the system. Now turn to the calculation of the correlation function

g( ~R ) = n0〈ei(φ(0)−φ( ~R ))〉 = n0e
−〈(φ(0)−φ( ~R ))2〉 =

(
πR

r0

)−η(T )

(6.57)

where the last equality is connected with the fact that with the above energy the averaging is
Gaussian. 4 Here the correlation function still decays, but now algebraically with η(T ) = 2/n0λ

2

being a function linear in T and r−3
0 = n being a characteristic length. At all temperatures there

is no real long-range order, but it looks like we are for all low enough temperatures always on a
critical point, since the correlation length is obviously infinitely larger.

4Averaging: In order to calculate the correlation function in Eq.(6.57) we turn the Fourier space for the phase:

φ(~r ) =
1√
Ω

∑
~q

φ ~q e
i ~q ·~r (6.58)

and rewrite the energy

E[φ] = Un2
0ξ

2
∑
~q

q2φ ~q φ− ~q = Un2
0ξ

2
∑
~q

q2(φ2
1, ~q + φ2

2, ~q ) (6.59)

ignoring the constant term and separating real and imaginary part, φ ~q = φ1, ~q + iφ2, ~q . The partition function is
given by

Z =

∫ ∏
~q

dφ1, ~q dφ2, ~q e
−βUn2

0ξ
2 ∑

~q q
2(φ2

1, ~q +φ2
2, ~q ) (6.60)

and the correlation function can be calculated by

g( ~R ) =
1

Z

∫ ∏
~q

dφ1, ~q dφ2, ~q exp

 i√
Ω

∑
~q

(φ1, ~q + iφ2, ~q )(1− ei~k · ~R )− βUn2
0ξ

2
∑
~q

q2(φ2
1, ~q + φ2

2, ~q )

 (6.61)

which can be evaluated by completing the square.

g( ~R ) = exp

− kBT

Un2
0ξ

2

1

Ω

∑
~q

1− cos ~q · ~R
q2

 = exp

{
− kBT

Un2
0ξ

2(2π)2

∫
d2q

1− cos ~q · ~R
q2

}
. (6.62)

We can again use the relation connection with the Bessel function used above and obtain

g( ~R ) = exp

{
− kBT

Un2
0ξ

22π

∫ π/r0

0

dq
1− J0(qR)

q

}
= exp

{
−η(T )

∫ πR/r0

0

dx
1− J0(x)

x

}

≈ exp

{
−η(T ) ln

(
πR

r0

)}
=

(
πR

r0

)−η(T )

(6.63)

where we introduce a cutoff for large q with r0 ≈ n−1/3 the mean distance between the bosons.
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6.2.2 Topological excitations and BKT transition

This qualitative change of the correlation function indicates a phase transition which does not
fit into the picture of suppression of order due to collective modes of the phonon type. Phonons
are, however, not the only excitations possible. Kosterlitz and Thoulouss realized that in a two
dimensional superfluid (and also in other phases mentioned below) vortices play an important
role for this change of behavior. Vortices constitute a topological excitation.
A conceptual argument for the occurrence of transition can be derived through the free energy
of a single vortex. As we have seen above the energy of a vortex with nφ = 1 is given by

E =
~2n0

2m
2π ln

(
R

ξ

)
(6.64)

where R a linear extension of the of the two-dimensional system. The entropy of the vortex is
given through the phase space of the vortex which is given by number of distinct vortex positions
in the system ∼ R2/ξ2 (number of cells of size ξ2 where we can place the vortex), leading to
S = kB ln(R/ξ)2. Thus the free energy of the vortex is

F = E − TS =

{
~2n0

2m
2π − 2kBT

}
ln

(
R

ξ

)
(6.65)

which suggests a phase transition at

kBTKT =
~2n0

2m
π (6.66)

where the prefactor changes sign. Above TKT vortices are favored below they are suppressed.
Note that this argument does not depend on the system size as both contributions in F scale
the same way.
The transition can be understood in terms of vortex-anti-vortex pairs being bound or dissociated
(anti-vortex: has the same structure as the vortex but with opposite winding of the phase). The
high temperature phase corresponds to unbound free vortices destroying the phase coherence,
while at low temperatures vortices bind into pairs of opposite winding number such that there is
no phase winding of bound pairs. A vortex and anti-vortex pair behave like particle and antipar-
ticle. They can be created spontaneously at the expense of the energy of two vortices, without
changing the overall phase winding of the system. For the same reason they can annihilate each
other releasing the vortex energies. Thus the number of vortex pairs is not conserved. Only the
totel winding number of all vortices is conserved,

n
(tot)
ψ =

∑
i

n
(i)
φ . (6.67)

We can discuss the gas of vortices in terms of the grand canonical ensemble.
Two vortices interact with each other by an energy

Eij = −2
~2

2m
2πn

(i)
φ n

(j)
φ ln

∣∣∣∣ ~r i − ~r j
ξ

∣∣∣∣ , (6.68)

which is formally equivalent to the Coulomb energy of two charged particles (winding number as
charge). Note this expression is only true if the vortex cores do not overlap, i.e. |~r i − ~r j | � ξ.
The grand canonical partition function is given by

Zv =

∞∑
N=0

zN

[(N/2)!]2
1

ξ2N

∑
{nφ}

∫
d2r1 · · · d2rN exp

2β
~2

2m
2π
∑
i<j

n
(i)
φ n

(j)
φ ln

∣∣∣∣ ~r i − ~r j
ξ

∣∣∣∣
 (6.69)

where the first sum runs only over even numbers N (vortex pairs) such that
∑
{nφ} restricts to

winding numbers adding up to n
(tot)
ψ = 0. The fugacity z includes the energy of each vortex.
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Considering the very dilute vortex system with z → 0 we can restrict to N = 0, 2 and discuss

only a single vortex-anti-vortex pair (n
(1)
φ = −n(2)

φ = 1). In view of the transition of the vortex
system it is now interesting to examine the vortex spacing. The mean square distance is given
by

〈|~r 1 − ~r 2|〉 =
1

2πΩξ2Zv

∫
|~r 1−~r 2|≥ξ

d2r1 d
2r2|~r 1 − ~r 2|2

∣∣∣∣ ~r 1 − ~r 2

ξ

∣∣∣∣− 2πβ~2

m

(6.70)

where we renormalize by the volume (area) Ω of the system. The partition function can be
approximated by Zv ≈ 1. Then decomposing the two positions ~r 1 and ~r 2 into center of mass
and relative coordinates, ~r vp = (~r 1 + ~r 2)/2 and ~r = ~r 1 − ~r 2 we obtain

〈|~r |2〉 = ξ
2πβ~2

2m
−2

∫ ∞
ξ

dr r3− 2πβ~2

2m = − ξ2

4− 2π~2

mkBT

=
ξ2

4

(
TKT

T
− 1

)−1

(6.71)

which shows that the vortex-anti-vortex separation is finite for T < TKT but diverges as T →
TKT. Note that here the same transition temperature TKT is found as in Eq.(6.66).
The dissociated vortices move freely and destroy the phase coherence, while the moving bound
pair is not detrimental for the phase, as it does not carry a net phase winding. There are
similar two-dimensional systems which contain topological excitations. In a crystal lattice the
topological excitations are dislocations which have also a topological nature characterized by
means of the Burger’s vector. Another example is the two-dimensions XY-spin system with the
Hamiltonian,

HXY = J
∑
〈i,j〉

(Sxi S
+
j S

y
i S

y
j ) = JS2

∑
〈i,j〉

cos(θi − θj) (6.72)

considering classical spins with ~S i = S(cos θi, sin θi) where the in-plane angle plays a similar
role as the phase of the condensate wave function discussed above.
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Chapter 7

Linear Response Theory

Much information about a macroscopic system can be gained through the observation of its re-
sponse to a small external perturbation. If the perturbation is sufficiently small we can consider
the response of the system in lowest order, linear to the perturbing field, as a so-called linear
response. We are familiar with this concept from our previous discussion of magnetism where
in a paramagnet the magnetization is proportional to the applied magnetic field. The magnetic
susceptibility as a linear response function incorporates important information about the mag-
netic system. We may extend our discussion by considering the response on time and space
dependent perturbations into account in order to observe dynamical properties of a system.
If we knew all stationary states of a macroscopic quantum system with many degrees of freedom
we could calculate essentially any desired quantity. As we mentioned earlier this full information
is hard to store and is also unnecessary in view of our real experimental interests. The linear
response functions are an efficient way to provide in a condensed form some of the most important
and relevant information of the system, accessible in an experiment. The linear response function
is one element of quantum field theory of solid state physics. We will introduce it here on an
elementary level.

7.1 Linear Response function

Some of the well-known examples of linear response functions are the dielectric and the magnetic
susceptibilities which describe the dielectric and magnetic response of a macroscopic system to
an external field, respectively. Including spatial and time dependence we can write the relation
between response and field as,

~P (~r, t) =

∫
d3r′

∫
dt′ χe(~r − ~r ′, t− t′) ~E(~r ′, t′)

~M(~r, t) =

∫
d3r′

∫
dt′ χm(~r − ~r ′, t− t′) ~H(~r ′, t′)

(7.1)

where we consider here a homogeneous, isotropic medium. It is obvious from this form that
the response functions χe,m describes how a field at the position ~r ′ at time t′ influences the
system at ~r at a later time t (causality). Causality actually requires that χ(~r, t) = 0 for t < 0.
The response functions are non-local in space and time. The convolution of Eq.(7.1) can be
converted into a simple product - a ”local” form - by going to momentum-frequency space,

~P (~q, ω) = χe(~q, ω) ~E(~q, ω) and ~M(~q, ω) = χm(~q, ω) ~H(~q, ω) (7.2)

where the Fourier transformation is performed as follows,

f(~r, t) =
1

V

∑
~q

∫ +∞

−∞

dω

2π
f(~q, ω)e−i(ωt−~q·~r) . (7.3)

We now determine the response function for a general external field and response quantity.
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7.1.1 Kubo formula - retarded Green’s function

We consider here a quantum system described by the Hamiltonian H0 and analyze its response
to an external field h(~r, t) which couples to the field operator Â(~r),

H = H0 +H′(t) = H0 +

∫
d3r Â(~r)h(~r, t)eηt (7.4)

where η = 0+ is a small positive parameter allowing to switch the perturbation adiabatically
on, i.e. at time t → −∞ there is no perturbation. The behavior of the system can now be
determined by the density matrix ρ̂(t). Possessing ρ̂ we are able to calculate interesting mean
values of operators, 〈B̂(t)〉 = tr(ρ̂(t)B̂) . We find the density matrix by means of the equation
of motion,

i~
∂ρ̂

∂t
= −[ρ̂,H] = −[ρ̂,H0 +H′] . (7.5)

We proceed using the concept of time-dependent perturbation theory, ρ̂ = ρ̂0 + δρ̂(t), with

ρ̂0 =
1

Z
e−βH0 and Z = tre−βH0 (7.6)

Then we insert this separated form and truncate the equation in linear order in H′,

i~
∂

∂t
δρ̂ = −[δρ̂,H0]− [ρ̂0,H′] + · · · . (7.7)

We introduce now the interaction representation (time-dependent perturbation theory),

δρ̂(t) = e−iH0t/~ŷ(t)eiH0t/~ ⇒ i~
∂

∂t
δρ̂ = −[δρ̂,H0] + e−iH0t/~

{
i~
∂ŷ(t)

∂t

}
eiH0t/~ . (7.8)

Comparing Eqs. (7.7) and (7.8) and using (7.5) we arrive at the equation for ŷ,

i~
∂ŷ(t)

∂t
= −[ρ̂0,H′int(t)] with H′int(t) = eiH0t/~H′e−iH0t/~ (7.9)

which is formally solved by

ŷ(t) =
i

~

∫ t

−∞
dt′ [ρ̂0,H′int(t′)] . (7.10)

We now look at the mean value of the observable B̂(~r). For simplicity we assume that the
expectation value of B̂ vanishes, if there is no perturbation, i.e. 〈B̂〉0 = tr{ρ̂0B̂} = 0. We
determine

〈B̂(~r)〉(t) = tr
{
δρ̂(~r, t)B̂(~r)

}
= tr

{
i

~
e−iH0t/~

∫ t

−∞
dt′ [ρ̂0,H′int(t′)]eiH0t/~B̂(~r)

}
.

(7.11)

By means of cyclic permutation of the operators in {. . .}, which does not affect the trace, we
arrive at the form

〈B̂(~r)〉(t) = − i
~

∫ t

−∞
dt′
∫
d3r′ tr

{
ρ̂0[B̂int(~r, t), Âint(~r

′, t′)]
}
h(~r ′, t′)eηt

′

=

∫
dt′
∫
d3r′ χBA(~r − ~r ′, t− t′)h(~r ′, t′) ,

(7.12)

which defines the response function. Notably, it is entirely determined by the properties of the
unperturbed system.
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Recipe for the linear response function: We arrive at the following recipe to obtain a general
linear response function: From now on we denote the Hamiltonian of the (unperturbed) system
H. Then the linear response function of the pair of operators Â, B̂ (they are often in practice
conjugate operators, Â = B̂†) is given by

χBA(~r − ~r ′, t− t′) = − i
~

Θ(t− t′)〈[B̂H(~r, t), ÂH(~r ′, t′)]〉H (7.13)

where 〈. . .〉H is the thermal mean value with respect to the Hamiltonian H,

〈Ĉ〉H =
tr{Ĉe−βH}
tr{e−βH} , (7.14)

ÂH(t) = eiHt/~Âe−iHt/~ is the Heisenberg representation of the operator Â (analog for B̂). Note
that the temporal step function Θ(t− t′) ensures the causality, i.e. there is no response for the
system before there is a perturbation. The form (7.13) is often called Kubo formula or retarded
Green’s function.

Frequently used examples are:

• magnetic susceptibility:

perturbation H′ = −
∫
d3r µBŜ

z(~r)h(~r, t)

conjugate magnetization M̂(~r) = µBŜ
z(~r)

response function χzz(~r − ~r ′, t− t′) =
i

~
Θ(t− t′)µ2

B〈[ŜzH(~r, t), ŜzH(~r ′, t′)]〉H .
(7.15)

• dielectric susceptibility:

perturbation H′ =
∫
d3r en̂(~r)φ(~r, t)

conjugate density en̂(~r)

response function χe(~r − ~r ′, t− t′) = − i
~

Θ(t− t′)e2〈[n̂H(~r, t), n̂H(~r ′, t′)]〉H .

(7.16)

7.1.2 Information in the response function

The information stored in the response function can be most easily visualized by assuming that
we know the complete set of stationary states of the system Hamiltonian H: H|n〉 = εn|n〉.
For simplicity we will from now on assume that Â = B̂† which is the case in many practical
examples, and will simplify our notation. We can then rewrite the response function χ as

χ(~r − ~r ′, t− t′) = − i
~

Θ(t− t′)
∑
n

e−βεn

Z

{
〈n|eiHt/~B̂(~r)e−iHt/~eiHt

′/~B̂(~r ′)†e−iHt
′/~|n〉

−〈n|eiHt′/~B̂(~r ′)†e−iHt
′/~eiHt/~B̂(~r)e−iHt/~|n〉

}
= − i

~
Θ(t− t′)

∑
n,n′

e−βεn

Z

{
〈n|B̂(~r)|n′〉〈n′|B̂(~r ′)†|n〉ei(εn−εn′ )(t−t′)/~

−〈n|B̂(~r ′)†|n′〉〈n′|B̂(~r)|n〉ei(εn′−εn)(t−t′)/~
}
,

(7.17)
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where we inserted 1 =
∑

n′ |n′〉〈n′|. It is convenient to work in momentum and frequency space.
Thus, we perform now the Fourier transform

χ(~q, ω) =

∫
d3r̃

∫ +∞

−∞
dt̃ χ(~̃r, t̃)eiωt̃−i~q·~̃r

= − i
~
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2

∫ ∞
0

dt̃
{
ei(εn−εn′+~ω)t̃/~ − ei(εn′−εn+~ω)t̃/~

}
e−ηt̃

(7.18)

where we introduce

B̂~q =

∫
d3r̃B̂(~̃r)e−i~q·~̃r and B̂†~q =

∫
d3r̃B̂(~̃r)†ei~q·~̃r . (7.19)

Performing the time integral in (7.18) we obtain

χ(~q, ω) =
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2

{
1

~ω − εn′ + εn + i~η
− 1

~ω − εn + εn′ + i~η

}

=

∫ ∞
0

dω′ S(~q, ω′)

{
1

ω − ω′ + iη
− 1

ω + ω′ + iη

}
.

(7.20)

In the last line we write the response function in a spectral form with S(~q, ω) as the spectral
function,

S(~q, ω) =
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2δ(~ω − εn′ + εn) (7.21)

We call S(~q, ω) also dynamical structure factor which comprises information about the excitation
spectrum associated with B̂. It represents a correlation function1 ,

S(~r − ~r ′, t− t′) =
1

h

〈
B̂H(~r, t)B̂H(~r ′, t′)†

〉
H
, (7.23)

and contains the spectrum of the excitations which can be coupled to by the external perturba-
tion.

7.1.3 Analytical properties

The representation of the linear response function in (7.20) shows that χBA(~q, ω) has poles only
in the lower half of the complex ω-plane. This property reflects causality (χ(~r, t) = 0 for t < 0).
We separate now χ = χ′ + iχ′′ in real and imaginary part and use the relation

lim
η→0+

1

x+ iη
= P 1

x
− iπδ(x) . (7.24)

1Consider the Fourier transform

S(~q, ω) =

∫
d3r̃

∫ +∞

−∞
dtS(~̃r, t)eiωt−i~q·~̃r

=
1

V h

∫
d3r̃d3r′

∫ +∞

−∞
dt
∑
n,n′

e−βεn

Z
〈n|eiHt/~B̂(~̃r + ~r ′)e−iHt/~|n′〉〈n′|B̂(~r ′)†|n〉e−i~q·(~̃r+~r ′)+i~q ′·~r ′+iωt

=
1

h

∫ +∞

−∞
dt
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2ei(εn−εn′+~ω)t/~

=
∑
n.,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2δ(~ω − εn′ + εn) ,

(7.22)
as given in (7.21).
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with P denoting the principal part. This relation leads to

χ′(~q, ω) =

∫ ∞
0

dω′ S(~q, ω′)

{
P 1

ω − ω′ − P
1

ω + ω′

}
,

χ′′(~q, ω) = −π {S(~q, ω)− S(~q,−ω)} .
(7.25)

Therefore the imaginary part of χ corresponds to the excitation spectrum of the system.
Finally, it has to be noted that χ(~q, ω) follows the Kramers-Kronig relations:2

χ′(~q, ω) = − 1

π

∫ +∞

−∞
dω′ P χ

′′(~q, ω′)

ω − ω′ ,

χ′′(~q, ω) =
1

π

∫ +∞

−∞
dω′ P χ

′(~q, ω′)

ω − ω′ .
(7.27)

7.1.4 Fluctuation-Dissipation theorem

First we consider the aspect of dissipation incorporated in the response function. For this
purpose we ignore for simplicity the spatial dependence and consider a perturbative part of the
Hamiltonian which only depends on time.

H′ = h(t)B̂ ⇒ 〈B̂〉(t) =

∫ ∞
0

dt′ χ(t− t′)h(t′) (7.28)

with B̂ = B̂†. We assume now a monochromatic external field,

h(t) =
1

2
(h0e

−iωt + h∗0e
iωt)

⇒ 〈B̂〉(t) =

∫ ∞
0

dt′χ(t− t′)1

2
(h0e

−iωt′ + h∗0e
iωt′) =

1

2

{
χ(ω)∗h0e

−iωt + χ(ω)h∗0e
iωt
}
.

(7.29)

2Kramers-Kronig relation: This relation results from the analytic structure of χ. Consider a contour in the
upper half-plane of ω′ where χ(~q, ω′) has no poles due to causality.∮

C

dω′
χ(~q, ω′)

ω − ω′ − iη′ = 0

⇒
∫ +∞
−∞ dω′ χ(~q, ω′)P 1

ω−ω′ + iπχ(~q, ω) = 0 .

(7.26)

Separating this equation into real and imaginary part yields the Kramers-Kronig relation.

’

C

Im

Re

ω

ω

’

Fig. 6.1: Contour C close in the upper half of the ω′-plane.
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The energy dissipation rate is determined by3

dE

dt
= 〈 ∂

∂t
H〉 = 〈B̂〉∂h

∂t
=
iω

4
[χ(ω)∗ − χ(ω)]|h0|2 −

iω

4
[χ∗(ω)h2

0e
−2iωt − χ(ω)h∗0e

2iωt]

⇒ dE

dt
=
ω

2
χ′′(ω)|h0|2 < 0

(7.31)

where for the time averaged rate we drop oscillating terms with the time dependence e±i2ωt.
The imaginary part of the dynamical susceptibility describes the dissipation of the system.
From the definition of the dynamical structure factor it follows that

S(~q,−ω) = e−β~ωS(~q, ω) (7.32)

because

S(~q,−ω) =
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2δ(−~ω − εn′ + εn)

=
∑
n,n′

e−βεn′−β~ω

Z
|〈n′|B̂−~q|n〉|2δ(~ω − εn + εn′) = e−β~ωS(~q, ω) .

(7.33)

This is a statement of detailed balance. The transition matrix element between two states is the
same whether the energy is absorbed or emitted. For emitting, however, the thermal occupation
of the initial state has to be taken into account.
Using (7.25) we can derive the following relation

χ′′(~q, ω) = −π [S(~q, ω)− S(~q,−ω)] = −π[1− e−β~ω]S(~q, ω) (7.34)

which is known as the fluctuation-dissipation theorem. Let us consider here some consequences
and find the relation to our earlier simplified formulations.∫ +∞

−∞
dω S(~q, ω) =

∫ +∞

−∞
dω

∑
n,n′

e−βεn

Z
|〈n|B̂ ~q |n′〉|2δ(~ω − εn′ + εn)

=
1

~
∑
n,n′

e−βεn

Z
〈n|B̂ ~q |n′〉〈n′|B̂†~q |n〉

=
1

~
〈B̂ ~q (0)B̂†~q (0)〉 = − 1

π

∫ +∞

−∞
dω

χ′′(~q, ω)

1− e−β~ω

(7.35)

This corresponds to the equal-time correlation function (assuming 〈B̂〉 = 0).
Now we turn to the classical case of the fluctuation-dissipation theorem and consider the the
limit kBT � ~ω. Then we may approximate this equation by

〈|B̂~q|2〉 ≈ −
kBT

π

∫ +∞

−∞
dω
χ′′(~q, ω)

ω
= −kBTχ′(~q, 0) = −kBTχ(~q, 0) . (7.36)

3The time-derivative of the Hamiltonian is given by

dH
dt

=
∂H
∂t

+
i

~
[H,H] =

∂H
∂t

(7.30)

for a quantum mechanical problem. The analogous relation is obtained for classical systems.
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This is valid, if χ′′(~q, ω) essentially vanishes for frequencies comparable and larger than the
temperature.4 For a uniform field we find∫

d3rd3r′ 〈B̂(~r, t = 0)B̂†(~r ′, t = 0)〉 = 〈B̂ ~q=0B̂
†
~q=0〉 = −kBTχ(~q = 0) = −kBTχ , (7.40)

i.e. the static uniform susceptibility is related to the integration of the equal-time correlation
function as we had used previously several times. Note the minus sign results from the sign of
coupling to the external field.

7.2 Example - Heisenberg ferromagnet

In this section we apply the concept of linear response function to discuss the ferromagnetic
Heisenberg quantum spin model with s = ~/2. Like in the Ising model the spins reside on a
hypercubic lattice and are coupled via nearest-neighbor interaction. The Heisenberg model has
the full SU(2) spin rotation symmetry.

H = −J
∑
〈i,j〉

~̂Si · ~̂Sj = −J
∑
〈i,j〉

[
Ŝzi Ŝ

z
j +

1

2

{
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

}]

= − J
V

∑
~q

γ~q ~̂S~q · ~̂S−~q = − J
V

∑
~q

γ~q

[
Ŝz~q Ŝ

z
−~q +

1

2

{
Ŝ+
~q Ŝ
−
−~q + Ŝ−~q Ŝ

+
−~q

}] (7.41)

with γ~q = 2
∑

α=x,y,... cos(qα) (lattice constant a = 1, unit of length). The exchange coupling
−J is negative so that the ground state is ferromagnetic (all spins aligned). This ground state

has maximal spin ~̂Stot =
∑

i
~̂Si which is a symmetry operator of the Hamiltonian. In the second

line we have introduced the Fourier transformed Hamiltonian with

~̂Si =
1

V

∑
~q

~̂S~qe
i~q·~ri (7.42)

where we use again periodic boundary conditions with a hypercube of edge length L. The
quantum spins satisfy the following commutation relations:[

Ŝzi , Ŝ
±
j

]
= ±~δijŜ±i ,

[
Ŝ+
i , Ŝ

−
j

]
= 2~δijŜzi ,[

Ŝz~q , Ŝ
±
~q ′

]
= ±~Ŝ±~q+~q ′ ,

[
Ŝ+
~q , Ŝ

−
~q ′

]
= 2~Ŝz~q+~q ′ .

(7.43)

It is possible to discuss the ferromagnetic state by means of mean field approximation which
is formally the same as for the Ising model leading to the same critical temperature kBTc =
Jzs2 = Jd~2/2.

4Static response function: We consider a system with

H = H0 +H′ = H0 +

∫
d3r h(~r )B̂(~r ) = H0 +

1

V

∑
~q

h−qB̂ ~q = H0 +
∑
~q

H− ~q B̂ ~q (7.37)

where we assume for the following B̂− ~q = B̂†~q . The mean value

〈B̂ ~q 〉 =
∂F

∂H− ~q
= − ∂

∂H− ~q
kBT lnZ = tr(ρ̂B̂ ~q ) (7.38)

with ρ̂ = exp[β(F −H)] and 〈B̂ ~q 〉 = 0 for H ~q = 0. The static response function is obtain from

χ( ~q ) =
∂〈B ~q 〉
∂H ~q

∣∣∣∣
H ~q =0

= tr

{
B̂ ~q

∂

∂H ~q
eβ(F−H)

}∣∣∣∣
H ~q =0

= tr
{
B̂ ~q β(〈B̂− ~q 〉 − B̂− ~q )ρ̂

}∣∣∣
H ~q =0

= −β〈B̂ ~q B̂
†
~q 〉

(7.39)
which is the classical form of the fluctuation dissipation theorem for spatially modulated perturbative fields.
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7.2.1 Tyablikov decoupling approximation

Here we would like to go beyond mean field theory using the response function for the Heisenberg
model. We introduce the transverse dynamical spin susceptibility,

χ(~q, t− t′) =
i

~
Θ(t− t′)〈[Ŝ−~q (t), Ŝ+

−~q(t
′)]〉 . (7.44)

We use now a method based on the equation of motion to find this response function.

i~
d

dt
χ(~q, t− t′) = −δ(t− t′)〈[Ŝ−~q , Ŝ+

−~q]〉+
i

~
Θ(t− t′)〈[[Ŝ−~q ,H](t), Ŝ+

−~q(t
′)]〉

= 2δ(t− t′)~〈Ŝz~q=0〉

− i
~

Θ(t− t′)J~
V

∑
~q ′

(γ~q ′ − γ~q+~q ′)
{〈[

Ŝz~q ′(t)Ŝ
−
~q−~q ′(t), Ŝ

+
−~q(t

′)
]〉

+〈
[
Ŝ−~q+~q ′(t)Ŝ

z
−~q ′(t), Ŝ

+
−~q(t

′)
]
〉
}
.

(7.45)
On the right-hand side this equation leads to new retarded Green’s functions containing three
spin operators of the form,

i

~
Θ(t− t′)

〈[
Ŝz~q ′(t)Ŝ

−
~q−~q ′(t), Ŝ

+
−~q(t

′)
]〉

. (7.46)

Thus we have also to set up equations of motion for them which in turn lead to Green’s functions
with four spin operators and so on. The resulting hierarchy of equation is intractable.
Therefore, we introduce here an approximation which truncates the hierarchy and leads to a
closed equation system, a scheme known as Tyablikov decoupling,

Ŝz~q ′(t)Ŝ
−
~q−~q ′(t)→ 〈Ŝz0〉Ŝ−~q (t)δ0,~q ′

Ŝ−~q+~q ′(t)Ŝ
z
~q ′(t)→ 〈Ŝz0〉Ŝ−~q (t)δ0,~q ′

(7.47)

Replacing the corresponding terms on the right-hand side of the equation of motion we obtain

i~
∂

∂t
χ(~q, t− t′) = 2δ(t− t′)~〈Ŝz~q=0〉 −

J~
V
〈Ŝz~q=0〉(γ0 − γ ~q )χ( ~q , t− t′) . (7.48)

We now perform a Fourier transform, replacing t− t′ = t̃:∫
dt̃ eiωt̃−ηt̃

[
i
∂

∂t̃
+
J

V
〈Ŝz~q=0〉(γ0 − γ ~q )

]
χ( ~q , t̃) =

∫
dt̃ eiωt̃−ηt̃2δ(t− t′)〈Ŝz~q=0〉 (7.49)

which leads to {
ω + iη + 2

J

V
〈Ŝz0〉(γ0 − γ~q)

}
χ(~q, ω) = 2〈Ŝz0〉 (7.50)

which leads immediately to the solution

χ(~q, ω) =
2〈Ŝz0〉

ω + 2 JV 〈Ŝz0〉(γ0 − γ~q) + iη
. (7.51)

Here we define now the mean field 〈Ŝz0〉 = −V m with 0 ≤ m ≤ ~/2. We have introduced the
small imaginary part iη in order to guarantee the causality.
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First let us look at the spectrum of excitations if m 6= 0. This is given by the imaginary part of
χ.

χ′′(~q, ω) = 2πV mδ[ω − 2Jm(γ0 − γ~q)]

⇒ ω~q = 2Jm(γ0 − γ~q) = 4Jm
∑
α

(1− cos qα)
(7.52)

This is the dispersion of a collective magnetic mode, a magnon or spin wave, which corresponds
analogous to the phonons in a solid to a bosonic mode. This mode appears as an excitation
with well-defined momentum-energy relation. For small energy the dispersion is quadratic,
ω~q = 2Jm~q 2.

q

ω

ω

S(q,    )

Fig. 6.2: Dynamical structure factor for the spin excitation spectrum in the ferromagnetic
phase.

7.2.2 Instability condition

Now we construct the self-consistence equation for the mean field 〈Ŝz0〉. In principle we could
use the previous mean field approximation solution. However, we may also require that the
fluctuation-dissipation theorem is satisfied in order to take the effects of fluctuations into account.
Thus, we consider the dynamical structure factor,

S(~q, ω) =

∫
dt eiωt

1

~
〈Ŝ−~q (t)Ŝ+

−~q(0)〉 . (7.53)

Taking the ~q-sum and ω integral provides an onsite equal time correlation function:

1

V 2

∑
~q

∫
dω S(~q, ω) =

1

~
〈Ŝ−i (0)Ŝ+

i (0)〉 =
1

~

{
〈 ~̂S

2

i 〉 − 〈Ŝz2i 〉 − 〈Ŝzi 〉~
}

=
~
2

+m . (7.54)

Now we express S(~q, ω) by means of the fluctuation-dissipation theorem (7.34).

~
2

+m = − 1

π

∫
dω

1

1− e−β~ω
1

V 2

∑
~q

χ′′(~q, ω) =
1

V

∑
~q

2m

1− e−β~ω~q (7.55)

The instability condition defining the critical temperature is obtained from the limit m → 0,
assuming it to be a second order (continuous) phase transition. Then we expand the denominator
on the right-hand side and obtain the equation

~
2

=
kBTc
J~

1

V

∑
~q

1

γ0 − γ~q
(7.56)
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For the three-dimensional system a numerical solution shows kBTc ≈ 1.1J~2 which is consid-
erably smaller than the mean field result of 1.5J~2. The reduction is, analogous to the self-
consistent fluctuation approximation, caused by thermal fluctuations which are ignored in the
ordinary mean field approximation.
In one and two dimensions we find that the integral on the right-hand side diverges at the lower
boundary (infrared divergence).

1

V

∑
~q

1

γ0 − γ~q
→
∫

ddq

(2π)d
1

γ0 − γ~q
→
∫ Λ

0
dq
qd−1

q2
→∞ for d ≤ 2 . (7.57)

Thus kBTc → 0. This is a consequence of the spin wave fluctuations which destroy the magnetic
moment. This result is also known as the Hohenberg-Mermin-Wagner theorem. It applies to
systems with a continuous spin symmetry and short-range interaction. Note that Peierls’ domain
wall argument fails here, since the domain walls have an infinite width due to the continuous
degeneracy of the magnetic ground state, i.e. any direction for the ordered moment has the
same energy.

7.2.3 Low-temperature properties

How do the spin wave fluctuations influence the low-temperature behavior? Let us first consider
m(T ) = ~/2− δm(T ). We insert this into the self-consistence equation,

~− δm =

(
~
2
− δm

)
2

V

∑
~q

(
1 +

∞∑
n=1

e−β~ω~qn

)

≈ (~− 2δm)

{
1 +

∞∑
n=1

∫
d3q

(2π)3
e−2Jm~βnq2

}
= (~− 2δm)

{
1 +

ζ(3/2)(kBT )3/2

(4πJ~2)3/2

}
(7.58)

which leads to

δm(T ) ≈ ζ(3/2)

(4πJ~2)3/2
(kBT )3/2 . (7.59)

If we compare this with the result of the ordinary mean field approximation, δm ∝ exp(−Tc/T )
we find that the thermal spin wave fluctuations suppress the magnetic order at T > 0 more
strongly.
Finally we consider the spin wave contribution to the low-temperature heat capacity. The
magnons as bosons have a dispersion ω~q = csq

2 leading to a density of states as

D(ω) ∝ ω1/2 . (7.60)

With this we obtain

U ∝
∫
dωω1/2 ~ω

eβ~ω − 1
∝ T 5/2 ⇒ C ∝ T 3/2 (7.61)

which is also a consequence of low-energy spin wave excitations.
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Chapter 8

Renormalization group

While the mean field approximation describes second-order phase transitions in a very handy
way, we have seen that it treats fluctuations poorly so that the critical behavior is not adequately
reproduced. This is particularly true for the renormalization of the transition point and the
critical exponents of quantities which are singular at the phase transition. In this context
a powerful method has been developed in the late sixties and seventies which introduce a new
concept to describe critical phenomena: the renormalization group method. This method is based
on a method for the successive decimation of high energy degrees of freedom of the system with
the aim to extract the most important information on the low-energy physics from a complex
many-body system. In this way the properties of a phase transitions, in particular, its critical
regime can be described. There are many variants of the renormalization procedure also beyond
the discussion of phase transitions and much development is still going on. Here we will restrict
to one special formulation which gives a good insight to the ideas.

8.1 Basic method - Block spin scheme

Close to a second order phase transition fluctuations are large and hard to treat. The renormal-
ization group method has the aim to connect the behavior of a model close to with the behavior
of a related model far from the phase transition. The basic idea is to make a change of the length
scale at which the system is considered. Close to the critical point the only relevant length scale
is the correlation length, the length over which the degrees of freedom effectively interact. This
length is diverging, if the critical point approached. The procedure rests on diluting (reducing)
the number of degrees of freedom in a proper way so as to shrink effectively the length scale and
to ”move away” from the critical point.
In order to illustrate the method we consider again the Ising model with the degrees of freedom
si = ±s on a regular lattice. The partition function is given by

Z( ~K,N) =
∑
{si}

eH( ~K,{si},N) (8.1)

where we assume a generalized Hamiltonian of the form

H( ~K, {si}, N) = NK0 +K1

∑
i

si +K2

∑
〈i,j〉

sisj + · · · (8.2)

with couplings among many spins, ~K = (K0,K1,K2, . . . ). In the standard form of the Ising
model we have

K0 = 0 , K1 = H/kBT , K2 = J/kBT , Kn>2 = 0 . (8.3)

The aim is now to reduce the number of degrees of freedom without changing the partition
function. This can be done by deriving an appropriate model of the remaining degrees of
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freedom. We introduce b > 1 which denotes the change of the length scale in the system. In
the decimation procedure we reduce the degrees of freedom by factor bd. In the following we
will use the so-called block spin or related formulations which gives an intuitive view of the
renormalization group procedure. We separate the spin degrees of freedom into two groups {Sb}
and {s′}. The first set will be eliminated while the second set represents the remaining degrees
of freedom.

Z( ~K,N) =
∑
{s′}

∑
{Sb}

eH( ~K,{Sb},{s′},N) =
∑
{s′}

eH( ~K′,{s′},Nb−d) = Z( ~K ′, Nb−d) . (8.4)

Thus we express the Hamiltonian in terms of new coupling constants between the remaining
degrees of freedom. Looking at the reduced free energy per spin we find

f( ~K) = − lim
N→∞

1

N
ln
[
Z( ~K,N)

]
= −b−d lim

N→∞

1

Nb−d
ln
[
Z( ~K ′, Nb−d)

]
= b−df( ~K ′) . (8.5)

The transformation ~K → ~K ′ can be repeated in the same way

~K(n) = R ~K(n−1) = Rn ~K with N → Nb−dn (8.6)

where the set of operations {Rn} with n = 0, 1, 2, 3, . . . represents a semigroup, leading to the
name renormalization group. It is a semigroup only, because it lacks the inversion. There is
namely no unique way to undo a decimation step. The renormalization group transformations
lead to a ”flow” of the coupling constants ~K.
The instabilities of the system are determined by so-called unstable fixed points where we find

R ~Kc = ~Kc , (8.7)

i.e. the coupling constants do not change under renormalization group transformation. The
region of ~K close to the fixed point is most interesting as we can approximate the flow of the
coupling constants within a linear approximation,

~K = ~Kc + δ ~K and R ~K ≈ ~Kc + Λδ ~K (8.8)

with Λ being a quadratic matrix of the dimension of ~K which can be infinite in principle.
This matrix is generally not Hermitian and its eigenvectors ~ei (unit length) are not orthogonal.
Nevertheless we can express (8.8) as

~K = ~Kc +
∞∑
i=0

ci~ei and R ~K = ~K ′ = ~Kc +
∞∑
i=0

cib
yi~ei (8.9)

Thus we find
Rci = c′i = cib

yi . (8.10)

The exponents yi characterize the eigenvectors ~ei. If yi > 0 (yi < 0) then ~ei is called relevant
(irrelevant). ~ei with yi = 0 is called marginal. Along relevant eigenvectors we move away from
the fixed point under successive decimation (unstable fixed point).
Consider the case that only ~e1 is relevant, setting the external field H to zero. The phase
transition (critical temperature) corresponds to the temperature Tc where c1 vanishes (fixed
point). Close to the fixed point ( ~K close to ~Kc or T close to Tc) we can approximate

c1 = A

(
T

Tc
− 1

)
= −Aτ , (8.11)

and then consider the renormalization group step

c′1 = Rc1 = A

(
T ′

Tc
− 1

)
= −Aτ ′ ⇒ τ ′ = by1τ . (8.12)
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Thus the renormalization group step corresponds effectively to a change of the temperature. Let
us use this relation first for the length scale. The correlation length is changed in a renormal-
ization group step by

ξ → ξ′ = ξ(T )/b = ξ(T ′) (8.13)

The fixed point is characterized by ξ = ξ/b so that only two situations are possible ξ = ∞ for
the unstable fixed point and ξ = 0 for a stable fixed point which can be interpreted as the limit
of non-interacting degrees of freedom (no correlations). In case of an unstable fixed point we
obtain close to Tc,

|τ |−ν
b

= |τ ′|−ν ⇒ τ ′ = b1/ντ . (8.14)

This leads immediately to

ν =
1

y1
. (8.15)

Therefore the exponent y1 describing the change of temperature under the renormalization group
step is connected directly with the critical exponent, ν of the coherence length.
We now turn to the free energy, still assuming that c1 is the only component in the renormal-
ization group procedure. Then the singular part of the free energy per spin close to the critical
point has the following form:

f(τ) = b−df(τ ′) = b−df(τby1) = b−dlf(τbly1) , (8.16)

where the last equality means that we consider l renormalization group steps. We now choose l
as a real number so that τbly1 = 1 and so bl = τ−1/y1 . Then the free energy takes the form

f(τ) = τd/y1f(1) (8.17)

with the critical behavior of the heat capacity C ∝ |τ |−α we find here that

2− α =
d

y1
. (8.18)

Thus, from the exponent y1 we have obtained ν and α. Equations (8.15) and (8.18) can be
combined to the Josephson scaling νd = 2−α, which we had seen in Section 5.4.2. Modifications
and additional exponents can be obtained by keeping the magnetic field as another coupling
constant. For simplicity we ignore this here and turn to the examples.

8.2 One-dimensional Ising model

The one-dimensional Ising model can be solved exactly in a rather simple way. In the absence
of a magnetic field the partition function and the reduced free energy are given by

Z = [2 cosh(K)]N and f(K) = ln [2 cosh(K)] , (8.19)

respectively, where K = J/kBT .
We define the partition functions as

Z =
∑
{s}

eNK0+K2
∑
i sisi+1 , (8.20)

which is convenient to illustrate the way of decimation. Note that K = K2 here. We now
reorganize this partition function in order to identify a decimation scheme, where we sum over
the spins on the even sides,

Z =
∑
{sodd}

∑
{seven}

eNK0+K2
∑
i(s2i−1+s2i+1)s2i

=
∑
{sodd}

∏
i

e2K0

{
eK2(s2i−1+s2i+1) + e−K2(s2i−1+s2i+1)

}
=
∑
{sodd}

∏
i

eK
′
0+K′2s2i−1s2i+1

(8.21)
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where s = 1. The new coupling parameter K ′ is related through the condition

e2K0

{
eK2(s2i−1+s2i+1) + e−K2(s2i−1+s2i+1)

}
= eK

′
0+K′2s2i−1s2i+1 (8.22)

In order to solve this equation we consider the configurations (s2i−1, s2i+1) = (+1,+1) and
(+1,−1) which yields the equations

e2K0
{
e2K2 + e−2K2

}
= eK

′
0+K′2

2e2K0 = eK
′
0−K′2

 ⇒


K ′0 = 2K0 +

1

2
ln [4 cosh(2K2)]

K ′2 =
1

2
ln [cosh(2K2)]

(8.23)

Note that this decimation scheme conserves the form of the partition function, i.e. we end up
with the same connectivity of spins in the exponent (nearest neighbor coupling). We will see in
the next section that this is not generally the case.
There are two fixed points:

(K0c,K2c) = (∞,∞) and (K0c,K2c) = (− ln 2, 0) . (8.24)

For the coupling constant K2 the first fixed point is unstable (the iterative renormalization leads
the coupling constants away from the fixed point) and the second is stable.

b=2

3 4 5 7 8 9 10 116

1 3 5 7 9 11

RG step

1 2

Fig.7.1: Decimation scheme: Every second spin is integrated out to reach a renormalized new
system with only half the spins of the previous system.

We do not find a fixed point at a finite value ofK2 which states that no phase transition occurs, as
expected in view of Peierls argument. The unstable fixed point corresponds to zero-temperature
limit where the spins order in the ground state. The stable fixed point K2c = 0 is the limit
of non-interacting spins. The renormalization group treatment which had been here performed
exactly, shows that there is no phase transition at a finite temperature.

0

2

∞

K

Fig.7.2: Flow of the coupling constant K2 = J/kBT of the one-dimensional Ising model under
the renormalization group scheme. For any finite coupling and temperature the flow goes

towards K = 0 the limit of completely decoupled spins.

Therefore we find that starting at any finite value of K2 leads us through successive application
of the decimation procedure towards weaker and weaker coupling K2. The fixed point of K2 =
0 eventually corresponding to non-interacting spins is the ultimate limit of disordered spins.
Through the renormalization group procedure it is possible to generate an effective model which

128



can be solved perturbatively and obtain the essential physics of the system. We introduce
K0 = g(K2) and write

g(K ′2) =
1

2

(
ln 4 +K ′2

)
. (8.25)

from (8.23). We start with K0 = 0 and write

ZN (K2) =
∑
{s}

eK2
∑
i sisi+1 = eNg(K

′
2)ZN/2(K ′2) = eNg(K

′
2)+Ng(K′′2 )/2ZN/4(K ′′2 ) = . . . . (8.26)

The reduced free energy

f(K2) = − 1

N
lnZN (K2) (8.27)

can now be approximated by

f (n)(K2) = −
n∑

n′=1

g(K
(n′−1)
2 )

2n′−1
− 1

2n
ln 2 , (8.28)

by successively increasing n which leads to K
(n)
2 → 0. For K2 = 0 we find f = − ln 2. Thus

knowing the weak coupling limit allows us to determine the reduced free energy at any parameter
K2 (temperature).

8.3 Two-dimensional Ising model

Also for the two-dimensional Ising model there is an exact solution, due to Onsager, which is,
however, considerably more complicated than for the one-dimensional system. The partition
function is given by

Z =
[
2 cosh(2K)eI

]N
(8.29)

with

I =

∫ ∞
0

dφ

2π
ln

{
1

2

[
1 + (1− κ2 sin2 φ)1/2

]}
(8.30)

and

κ =
2 sinh(2K)

cosh2(2K)
. (8.31)

In this case there is a phase transition at finite temperature given by

sinh(2Kc) = 1 ⇒ kBTc = 2.27J Kc = 0.4407 . (8.32)

0’

b=   2
2

3

4

1
0

Fig.7.3: Decimation scheme for two-dimensional Ising model: Every second site is integrate
yielding an effective coupling among all surrounding spins.
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Now we turn to the renormalization group treatment.1 There are various decimation schemes
we could imagine. In analogy to the one-dimensional case we divide the square lattice into two
sublattices as shown in Fig. 7.3: The white sites are integrated out. We take the plaquette
indicated in the figure. Spins 1, 2, 3, and 4 encircle spin 0. The latter couples through nearest
neighbor interaction to the former four spins. Thus, our decimation works as follows

Z = · · ·
∑

s1,s2,s3,s4

∑
s0

eKs0(s1+s2+s3+s4) · · ·

= · · ·
∑

s1,s2,s3,s4

[
eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)

]
· · · .

(8.33)

We reformulate the partition function for the remaining spin degrees of freedom

Z = · · ·
∑

s1,s2,s3,s4

eK
′
0+K′1(s1s2+s2s3+s3s4+s4s1)+K′2(s1s3+s2s4)+K′3s1s2s3s4 · · · . (8.34)

Going through the space of spin configurations we find new effective interactions between the
four surrounding spins with the relation2

K ′0 =
1

8
ln
{

cosh4(2K) cosh(4K)
}

+ ln 2

K ′1 =
1

8
ln {cosh(4K)}

K ′2 =
1

8
ln {cosh(4K)}

K ′3 =
1

8
ln {cosh(4K)} − 1

2
ln {cosh(2K)}

(8.38)

where K ′0 is again connected with the reduced free energy, K ′1 and K ′2 denote nearest- and
next-nearest-neighbor spin-spin interaction, and K ′3 gives a four-spin interaction on the plaque-
tte. Note that the neighboring plaquettes contribute to the nearest-neighbor interaction, e.g.
summing in Fig. 7.3 over s0′ on site 0′, yields another interaction between s1 and s2. Therefore
we have to modify the second equation in (8.38) by multiplying by a factor 2,

K ′1 =
1

4
ln {cosh(4K)} . (8.39)

1Literature: H.J. Maris and L.P. Kadanoff, Am. J. Phys. 46, 652 (1978).
2The renormalization group relations are obtained by looking at different spin configurations for

eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)

= eK
′
0+K′

1(s1s2+s2s3+s3s4+s4s1)+K′
2(s1s3+s2s4)+K′

3s1s2s3s4 .

(8.35)

We use now the configurations

(s1, s2, s3, s4) = (+,+,+,+), (+,+,+,−), (+,−,+,−), (+,+,−,−) (8.36)

and obtain the equations,

e4K + e−4K = eK
′
0+4K′

1+2K′
2+K′

3 ,

e2K + e−2K = eK
′
0−K

′
3 ,

2 = eK
′
0−4K′

1+2K′
2+K′

3 ,

2 = eK
′
0−2K′

2+K′
3 ,

(8.37)

whose solution leads to (8.38).
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Unlike in the Ising chain we end up here with a different coupling pattern than we started. More
spins are coupled on a wider range. Repeating the decimation procedure would even further
enlarge the interaction range and complexity. This is not a problem in principle. However,
in order to have a more practical iterative procedure we have to make an approximation. We
restrict ourselves to the nearest neighbor interactions which would give a well-defined iterative
procedure. But simply ignoring the other couplings which additionally help to align the spins
would lead to an oversimplified behavior and would actually give no phase transition. Thus we
have to add the other couplings in some way to the nearest-neighbor coupling. It can be shown
that the four-spin interaction is small and not important close to the transition point, and we
concentrate on K ′1 and K ′2 only. Let us define the effective nearest-neighbor in a way to give the
same ground state energy as both couplings. Each site has four nearest- and four next-nearest
neighbors, which yield the energy per site for full spin alignment

E0 = 2NK ′1 + 2NK ′2 = 2NK ′ (8.40)

Thus we define the new renormalized nearest-neighbor coupling

K ′ = K ′1 +K ′2 =
3

8
ln {cosh(4K)} (8.41)

which now can be iterated. We find a stable fixed points of this new equation at K = 0 and ∞.
There is also an unstable fixed point at

Kc = 0.507 (8.42)

This unstable fixed point corresponds now to a finite-temperature phase transition at kBTc =
1.97J , which is lower than the mean field result kBTc = 4J , but relatively inaccurate compared
to the exact result of 2.27J .

order0

K
c

disorder
∞

Fig.7.4: Renormalization group flow of coupling constant; The unstable fixed point Kc

represents the critical point. On the left hand side, the flow leads to the stable fixed point
K = 0 corresponding to the uncoupled spins: disorder phase. The right hand side flows to the

stable fixed point K =∞, where system is ordered.

It is now interesting to consider the exponents which we had discussed above. Thus we take
into account that in our decimation scheme b =

√
2 and calculate

K ′ −Kc =
3

8
[ln {cosh(4K)} − ln {cosh(4Kc)}]

=
3

8
(K −Kc)

d

dK
ln {cosh(4K)}

∣∣∣∣
K=Kc

= (K −Kc)
3

2
tanh(4Kc) = 1.45(K −Kc) = by1(K −Kc)

⇒ by1 = 2y1/2 = 1.45 ⇒ y1 = 2
ln 1.45

ln 2
= 1.07 .

(8.43)

From this result we obtain the critical exponents ν and α:

ν =
1

y1
= 0.93 and α = 2− d

y1
= 0.135 . (8.44)
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The exact result is νexact = 1 (mean field νmf = 1/2) and αexact = 0 meaning that the heat
capacity has a logarithmic singularity not describable by an exponent.
The decimation method used here is only one among many which could be imagined and have
been used. Unfortunately, for practice reasons approximations had to be made so that the results
are only of qualitative value. Nevertheless these results demonstrate that non-trivial properties
appear in the critical region close to the second order phase transition.
Other decimations schemes can be used. Decimations in real space are only one type of method,
know under the name of block spin method. Alternatively, also decimations schemes in momen-
tum space can be used. Depending on the problem and the purpose different methods are more
useful.
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Appendix A

2D Ising model: Monte Carlo
method and Metropolis algorithm

By Christian Iniotakis

A.1 Monte Carlo integration

In the description of many physical scenarios, one may be confronted with an integration prob-
lem, which is not solvable analytically. Thus, the correct result of the integration has to be
approximated by evaluating the function at a sufficiently large set of sample points:∫

dx f(x)→
∑
xi

f(xi). (A.1)

There are several well-established numerical integration methods based on sample points, which
are equally spaced, e.g. the midpoint or trapezoidal rules, as well as some more evolved adaptive
methods1. These methods work fine in lower dimensions. However, if the space of integration
is of higher dimension, they are practically not applicable anymore, since the number of sample
points grows exponentially with the number of dimension.
In contrast to this, the main idea of Monte Carlo integration is to use sample points, which are
generated randomly2. For low-dimensional problems, such a method is not useful, if compared
to the other methods mentioned above (an example is given in the lecture). Nevertheless, Monte
Carlo integration is easy to generalize and is the method of choice for high-dimensional problems.

A.2 Monte Carlo methods in thermodynamic systems

We have already seen, that the the expectation value of a quantity A in the canonical ensemble
(where β = 1/kBT is fixed) can be written as

〈A〉 =

∑
Si
A(Si)e

−βH(Si)∑
Si
e−βH(Si)

. (A.2)

Here the sums have to be performed over all possible microstates Si of the system and H(Si) is
the energy of the state Si. With the partition function

Z =
∑
Si

e−βH(Si) (A.3)

1These methods decide, whether and where more additional points should be evaluated.
2like in a casino, which gives some hint about the origin of the name.
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we may define

P (Si) =
1

Z
e−βH(Si) (A.4)

so that
〈A〉 =

∑
Si

P (Si)A(Si). (A.5)

The expectation value for A is the sum of the values A(Si), weighted with the function P .
Although this structure looks rather simple, it is generally not possible to evaluate it in a naive
way. One concrete problem is the tremendous number3 of states Si involved. One might think
about using the Monte Carlo method here, generating a random sequence of n sample states
Si0 , Si1 , ..., Sin , for which we could evaluate the corresponding A(Sin). However, normally it is
not possible to calculate the partition function Z, even with a Monte Carlo technique. Thus
we do not know the corresponding weighting factors P (Sin). How can we manage to get the
expectation value, then?
Firstly, we notice that the weighting factor P represents the probability distribution of thermo-
dynamic equilibrium, since ∑

Si

P (Si) = 1. (A.6)

Thus, a rather elegant solution of the problem would be, to generate a series of sample states
for the Monte Carlo method, which contains the states Si according to their distribution P -
instead of a completely random sequence4. For these states, we could simply sum up all their
corresponding A values to get a good approximation for the expectation value. But still the
problem is, how to generate such a series, since we do not know the probability distribution P .
What we may access, however, is the relative probability of two states, because the partition
function drops out:

P (Si)

P (Sj)
= e−β[H(Si)−H(Sj)]. (A.7)

It turns out, that an algorithm originally developed by Metropolis et al. solves the problem5. It
is capable of generating sequences of random states, which fulfill the corresponding probability
distribution, based on the knowledge of the relative probabilities only. In the following, we will
illustrate the functional principle of the Metropolis algorithm for a very simple example, namely
an Ising model consisting of two sites only.

A.3 Example: Metropolis algorithm for the two site Ising model

Consider the two site Ising model, where the configuration space consists of the four states
Si = {↑↑, ↓↓, ↑↓, ↓↑}. Without an applied magnetic field, we have a ground state energy EG and
an excited state energy EE , and both of them are twofold degenerate. The two states S1 and
S2 belong to the ground state level, and both S3 and S4 to the excited one. In the following, p
denotes the probability of the excited state relative to the ground state, given by

p = e−β(EE−EG). (A.8)

Now, take a look at the following algorithm, which produces a sequence of states S(n):

1. Choose a starting state S(0) out of the four Si.

3Note, that we assume a model system with a discrete configuration space here. For a continuous model, the
sums should be replaced by integrals over configuration space.

4For a non-degenerate system at low temperatures, for example, the ground state should appear much more
often in this sequence than any specific state of higher energy (if the sequence is long enough...).

5Cf. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21, 1087
(1953).

134



2. Given a state S(n), randomly pick one of the other states and denote it S̃.

3. Generate the next state S(n+1) according to the rule:
If the energy H(S̃) ≤ H(S(n)), set S(n+1) := S̃.
If the energy H(S̃) > H(S(n)), set S(n+1) := S̃ with probability p,
and keep S(n+1) := S(n) otherwise.

4. Continue with step 2.

The algorithm works quite simple, but what are its properties? We can answer this question

in terms of probability. Let p
(n)
i denote the probability, that S(n) = Si. The corresponding

probability vector of the nth state lives in the configuration space and is given by

p(n) = (p
(n)
1 , p

(n)
2 , p

(n)
3 , p

(n)
4 )T . (A.9)

One step of the algorithm may be represented by a probability matrix Π in the following way:

p(n+1) = Πp(n), (A.10)

where the matrix elements Πij are the probabilities Pj→i of the step getting from state Sj to
Si. It is not difficult to find, e.g., P1→2 = 1

3 · 1, P1→3 = P1→4 = 1
3 · p and P1→1 = 2

3(1 − p).
Eventually,

Π =
1

3


2(1− p) 1 1 1

1 2(1− p) 1 1
p p 0 1
p p 1 0

 . (A.11)

Note, that Π is diagonalizable. The matrices

M =


1
p 0 −2 −1
1
p 0 0 1

1 −1 1 0
1 1 1 0

 (A.12)

and

M−1 =
1

2(1 + p)


p p p p
0 0 −(1 + p) 1 + p
−p −p 1 1
−1 1 + 2p −1 −1

 (A.13)

result in
M−1ΠM = Λ (A.14)

with the diagonal matrix

Λ =


1 0 0 0
0 −1

3 0 0

0 0 1−2p
3 0

0 0 0 1−2p
3

 . (A.15)

This is quite helpful in finding the actual probability vector after n steps. We have

p(n) = Πp(n−1)

= Πnp(0)

= MΛnM−1p(0).

The nth power of the diagonal matrix Λ simply is a diagonal matrix with the elements of Λ,
but each raised to the power of n. For a large number of iteration steps, n → ∞, only the
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top-left entry of Λn will survive. The other eigenvalues have a modulus smaller than 1 and
vanish accordingly. In this limit, we get

p(∞) =
1

2(1 + p)


1 1 1 1
1 1 1 1
p p p p
p p p p

p(0) =
1

2(1 + p)


1
1
p
p

 . (A.16)

Now, we can list several remarkable properties, which are typical for a Metropolis algorithm in
general: Firstly note, that p(∞) is independent from the actual starting vector p(0) due to the

normalization condition
∑

i p
(0)
i = 1. Furthermore, it remains unchanged by Π, since we have

p(∞) = Πp(∞). (A.17)

Finally, most important, the elements of p(∞) show the correct probability distribution6. In
the practical use of such a Metropolis algorithm, one has to wait for a sufficiently large number
n of first initial steps7. After this initial process, the algorithm effectively produces a random
sequence of states according to the probability distribution of thermodynamic equilibrium. A
sufficiently large number of those states can then be used for the Monte Carlo integration.
The concrete generalization of the sample Metropolis algorithm presented above to an Ising
model with a larger amount of sites is straightforward. A typical way is as follows:

1. Choose a starting state S(0).

2. Given a state S(n), keep the spins at all sites, apart from one randomly picked site, where
you flip the spin. Denote this new state S̃.

3. Generate the next state S(n+1) according to the rule:
If H(S̃) ≤ H(S(n)), set S(n+1) := S̃.

If H(S̃) > H(S(n)), set S(n+1) := S̃ with prob. p = e−β[H(S̃)−H(S(n))],
and keep S(n+1) := S(n) otherwise.

4. Continue with step 2.

The basic step 3. remains unchanged. It fulfills the so-called detailed balance property

P (Si) · Pi→j = P (Sj) · Pj→i, (A.18)

which is a sufficient condition for P being the stationary probability distribution. Thus, one can
be sure to finally get the thermodynamic equilibrium distribution using the Metropolis algorithm.
Note, that the algorithm given here differs from the one presented above by a minor point
regarding step 2. The new state is not randomly chosen from the huge amount of all possible
states, as above. Instead, the new state is generated from the old one by randomly picking a site
and flipping its spin, but all the spins at other sites remain unchanged8. Alternatively, the local
spin flip may be performed not for a randomly chosen site, but for all sites, one after the other,
in a sweep. In the lecture, some sample solutions for the 2D Ising model, that are based on
the Monte Carlo Metropolis method, will be presented. There are even more evolved techniques
using cluster updates to overcome the effect of the critical slowing down.

6Actually, the Metropolis algorithm implements a Markov chain in configuration space, for which the thermo-
dynamic equilibrium distribution is stationary.

7The actual number severely depends on the initial values and the circumstances.
8This kind of local updating allows to determine the energy difference and thus the relative probability much

faster. An important aspect is to ensure the reachability of any state in a finite number of steps to keep ergodicity.
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Appendix B

High-temperature expansion of the
2D Ising model: Finding the phase
transition with Padé approximants

By Christian Iniotakis

In this section, we investigate the 2D Ising model using a specific approximation method, which
allows to determine singular critical points at phase transitions in a rather elegant numerical
way. Since we consider only the simplest two-dimensional cases, we may compare the final
results with those of exact analytical solutions1. We start with the Ising Hamiltonian

H = −J
∑
<i,j>

σiσj − h
∑
i

σi. (B.1)

Here, we assume a regular lattice of N sites with allowed spin values σi = ±1 at site i. The
index < i, j > denotes nearest neighbor connections. Due to the constants J > 0 and h,
it is energetically favorable if a spin is parallel to its next neighbors and to the direction of
the magnetic field, respectively. Obviously, the configuration space of this system contains 2N

possible states.

B.1 High-temperature expansion

For a general quantity A, the expectation value is given by

〈A〉 =
TrAe−βH

Tre−βH
, (B.2)

where the abbreviation β = 1/kBT has been used. In the following, we concentrate on the
average magnetization per spin/site

m = 〈 1

N

N∑
i=1

σi〉 (B.3)

and the resulting zero-field susceptibility

χ0 =
∂m

∂h

∣∣∣∣
h=0

. (B.4)

1Cf., e.g., L. Onsager, Phys. Rev. 65, 117 (1944).
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The Tr-operator in the expression for the expectation value sums over all 2N possible states of
our system. Furthermore, for the concrete evaluation it is helpful to realize that

Tr 1 = Trσ2n
i σ

2m
j ...σ2l

k = 2N , (B.5)

whereas
Trσ2n+1

i σmj ...σ
l
k = 0. (B.6)

In words, as long as we deal with products of even powers of the σi only, we get 2N . However,
as soon as at least one of the powers is odd, we get zero.
Exercise 1: Using above relations, show that the reduced zero-field susceptibility

χ = kBTχ0 (B.7)

is given by

χ =
1

N

Tr
∑

i,j σiσje
−βH0

Tr e−βH0
= 1 +

1

N

Tr
∑

i 6=j σiσje
−βH0

Tr e−βH0
(B.8)

with H0 denoting the zero-field Hamiltonian

H0 = −J
∑
<i,j>

σiσj . (B.9)

As a next step, we want to evaluate both the numerator and the denominator of the reduced
zero-field susceptibility. For this purpose, we use the identity

eβJσiσj =
∞∑
n=0

(βJ)n

n!
σni σ

n
j

=

∞∑
n=0

(βJ)2n

(2n)!
+ σiσj

∞∑
n=0

(βJ)2n+1

(2n+ 1)!

= coshβJ + σiσj sinhβJ

= cosh(βJ)(1 + wσiσj) (B.10)

with the definition
w = tanhβJ. (B.11)

Note, that w → 0 for T →∞ and w < 1 for finite T . Thus, w is an ideal candidate (better than
β itself) for a series expansion in a small parameter, starting from the high-temperature regime.
Due to

e−βH0 = eβJ
∑
<i,j> σiσj =

∏
<i,j>

eβJσiσj , (B.12)

Eq. (B.10) can be plugged into the expression for the reduced zero-field susceptibility Eq. (B.8),
and we find in orders of w:

χ = 1 +
1

N

Tr
∑
i 6=j

σiσj
∏
<r,s>

(1 + wσrσs)

Tr
∏
<r,s>

(1 + wσrσs)

= 1 +
1

N

Tr
∑
i 6=j

σiσj

1 + w
∑
<r,s>

σrσs + w2
∑

<r,s>6=<n,m>
σrσsσnσm + ...


Tr

1 + w
∑
<r,s>

σrσs + w2
∑

<r,s>6=<n,m>
σrσsσnσm + ...

 .
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n square lattice, q = 4 triangular lattice, q = 6 honeycomb lattice, q = 3

0 1 1 1

1 4 6 3

2 12 30 6

3 36 138 12

4 100 606 24

5 276 2586 48

6 740 10818 90

7 1972 44574 168

8 5172 181542 318

9 13492 732678 600

10 34876 2 935218 1098

11 89764 11 687202 2004

12 229628 46 296210 3696

13 585508 182 588850 6792

14 1 486308 717 395262 12270

15 3 763460 2809 372302 22140

Table B.1: Coefficients an of the high-temperature expansion of the reduced zero-field suscep-
tibility χ in orders of w = tanhβJ (cf. Exercise 2). The data for the different lattice types is
according to Sykes et al.

Exercise 2: Calculate the lowest orders in the numerator and the denominator. Show, that we
end up with

χ = 1 +
1

N

2NNqw + 2NNq(q − 1)w2 +O(w3)

2N +O(w3)

= 1 + qw + q(q − 1)w2 +O(w3),

where q denotes the number of nearest neighbors in the lattice.
The evaluation of higher coefficients is merely a combinatorial task. In Table B.1, we list the
results published by Sykes et al.2 in 1972.

B.2 Finding the singularity with Padé approximants

The coefficients in Table B.1 grow rapidly for higher orders. In particular, the series

χ =
∑
n

anw
n (B.13)

does not converge for all temperatures T or values of w, respectively. This is not surprising,
since we expect a singularity of the form

χ ∼ A(w − wc)−γ (B.14)

to appear when w → w−c due to the phase transition. The specific values of both wc and the
critical exponent γ > 0 are unknown so far. And obviously, an “ordinary” series expansion of the
Taylor-type is not sufficient to handle such a singularity appropriately. Therefore we employ the
method of the so-called Padé approximants3 in the following, which will allow us to determine
the critical values wc and γ with a high accuracy.

2Cf. M.F. Sykes, D.S. Gaunt, P.D. Roberts and J.A. Wyles, J. Phys. A 5, 624 (1972).
3Cf. H. Padé’s thesis of the year 1892 as well as G.A. Baker, Phys. Rev. 124, 768 (1961).
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The Padé approximant [m,n] to a given function f is the ratio of a polynomial of degree m
divided by a polynomial of degree n

[m,n] =
p0 + p1x+ p2x

2 + ...+ pmx
m

1 + q1x+ q2x2 + ...+ qnxn
(B.15)

such that it agrees with f up to order m+ n:

f = [m,n] +O(xm+n+1). (B.16)

Note, that the coefficients pi, qj of the polynomials are uniquely determined, and with them also
is the Padé approximant [m,n]. The Padé approximants [m, 0] just coincide with the Taylor
series expansion for f up to order m and are of no use for our purpose here. However, Padé
approximants of higher order in the denominator naturally exhibit poles. This feature makes
them good candidates for catching the singularity at the phase transition.
Since the expected singularity is of order γ, whereas the poles of the Padé approximants are
restricted to integer orders, we may introduce the following trick: Instead of χ, we use the
auxiliary function ∂w lnχ, since

χ ∼ A(w − wc)−γ
lnχ ∼ lnA− γ ln(w − wc)

∂w lnχ ∼ −γ
w − wc

.

Thus we expect the Padé approximants for the function ∂w lnχ to display a singularity at the
critical value wc, representing the physical phase transition. Moreover, the value of the residue
corresponding to this singularity should provide us with −γ. In Table B.2, we list the first
coefficients for the auxiliary function ∂w lnχ. Results for the concrete numerical evaluation of
the Padé approximants will be presented in the lecture. Some samples can be seen in Figs. B.1,
B.2 and B.3 for the square, triangular and honeycomb lattice, respectively. We get a very good
estimate for the critical exponent compared to its exact value

γ = 7/4 = 1.75, (B.17)

which is independent of the lattice type. Furthermore, the results for the critical values wc are
in excellent agreement with those of analytical solutions given in the brackets:

wSQUc ≈ 0.414211 (
√

2− 1 ≈ 0.414214)

wTRIc ≈ 0.267944 (2−
√

3 ≈ 0.267949)

wHONc ≈ 0.577348 (1/
√

3 ≈ 0.577350).

The critical temperature Tc can easily be calculated from wc. We get

kBTc
J
≈ 2.269 / 3.641 / 1.519 (B.18)

for the square, triangular and honeycomb lattice, respectively. Note, that the critical tempera-
ture roughly scales with the number q of nearest neighbors in the lattice, which are accordingly
given by

q = 4 / 6 / 3. (B.19)

This behavior indicates, that a coupling to more neighbors enhances parallel alignment of the
spins, allowing the phase transition to occur already at higher temperatures.
Summarizing, employing Padé approximants revealed the phase transitions of the 2D Ising
model on different lattice types with a high accuracy. The main work within this method lies
in calculating sufficiently many coefficients of the power series of the corresponding singular
quantity4. A generalization to, e.g., the 3D-case is straightforward.

4Note, that the success of this method crucially depends on the concrete type of singularity to deal with.
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n square lattice, q = 4 triangular lattice, q = 6 honeycomb lattice, q = 3

0 4 6 3

1 8 24 3

2 28 90 9

3 48 336 15

4 164 1266 33

5 296 4752 27

6 956 17646 87

7 1760 65760 159

8 5428 245646 297

9 10568 917184 243

10 31068 3422898 795

11 62640 12773952 1503

12 179092 47674386 2499

13 369160 177928824 2355

14 1034828 664051230 7209

Table B.2: Coefficients of the high-temperature expansion of the function ∂w lnχ in orders of
w = tanhβJ . We only give results up to order 14, generated from Table B.1.
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Fig. B.1: Poles of the [7, 7] Padé approximant for ∂w lnχ on the square lattice. The physical
pole is at wc ≈ 0.414211 with residue −1.7497.
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Pole: 0.267944

Res: -1.74928
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Fig. B.2: Poles of the [7, 7] Padé approximant for ∂w lnχ on the triangular lattice. The
physical pole is at wc = 0.267944 with residue −1.7493.
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Fig. B.3: Poles of the [15, 15] Padé approximant for ∂w lnχ on the honeycomb lattice. The
physical pole is at wc = 0.577348 with residue −1.7497.
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