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Definitions: von Neumann entropy. In this series we will derive some useful properties of
the von Neumann entropy: the quantum version of Shannon entropy.

The von Neumann entropy of a density operator ρ ∈ S(HA) is defined as

H(A)ρ = − tr
(
ρ log ρ

)
= −

∑
i

λi log λi, (1)

where {λi}i are the eigenvalues of ρ.

Given a composite system HA ⊗ HB ⊗ HC we write H(AB)ρ to denote the entropy of the
reduced state of a subsystem, ρAB = trC(ρABC). When the state ρ is obvious from the context
we drop the indices.

The conditional von Neumann entropy is defined as

H(A|B)ρ = H(AB)ρ −H(B)ρ. (2)

In the Alice-and-Bob picture this quantifies the uncertainty that Bob (who holds the B part of
the quantum state ρAB) still has about Alice’s state.

The strong sub-additivity property of the von Neumann entropy is very useful. It applies to a
tripartite composite system HA ⊗HB ⊗HC ,

H(A|BC)ρ ≤ H(A|B)ρ. (3)

Exercise 1. Properties of the von Neumann Entropy.

(a) Prove the following general properties of the von Neumann entropy:

(i) H(A)ρ > 0 for any ρA.

(ii) If ρAB is pure, then H(A)ρ = H(B)ρ.

Hint. Use the Schmidt decomposition of bipartite pure states: for any |ψ〉AB, there exist

coefficients pk, and two orthonormal sets of vectors {|χk〉A}k and {|φk〉B}k, such that |ψ〉AB =∑
k

√
pk |χk〉A ⊗ |φk〉B.

(iii) If two systems are independent, ρAB = ρA⊗ ρB, then H(AB)ρ = H(A)ρA +H(B)ρB .

Solution.

(i) We have H(A)ρ = −
∑
k pk log pk, where pk are the eigenvalues of ρA. But − log pk is positive since

probabilities are less than one, hence H(A)ρ > 0.

(ii) This becomes clear when you apply the Schmidt decomposition to the pure state ρAB : the reduced
states of the two subsystems A and B have the same eigenvalues and therefore the same von Neumann
entropy.

(iii) We denote by {λi}i and {γj}j the eigenvalues of ρA and ρB respectively. Hence {λiγj}i,j are the
eigenvalues of ρAB and we can write:

H(AB)ρ = −
∑
i,j

λiγj log(λiγj)

= −
(∑

i

λi
)

︸ ︷︷ ︸
=1

·
(∑

j

γj log γj
)
−
(∑

j

γj
)

︸ ︷︷ ︸
=1

·
(∑

i

λi log λi
)

= H(A)ρA +H(B)ρB .
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(b) Consider a bipartite state that is classical on subsystem Z: ρZA =
∑

z pz|z〉〈z|Z ⊗ ρzA for
some basis {|z〉Z}z of HZ . Show that:

(i) The conditional entropy of the quantum part, A, given the classical information Z is

H(A|Z)ρ =
∑
z

pzH(A|Z = z), (4)

where H(A|Z = z) = H(A)ρzA .

Solution. First, note that the eigenvalues of
∑
z pz|z〉〈z|⊗ρ

z
A are given by {pzλzk}z,k, where {λzk}k

are the eigenvalues of ρzA ≡ ρA|Z=z. We may now write:

H(AZ)ρ = −
∑
z,k

pzλ
z
k log(pzλ

z
k)

= −
∑
z

pz
(∑

k

λzk

)
︸ ︷︷ ︸

=1

log pz −
∑
z

pz
(∑

k

λzk log λzk

)

= H(Z) +
∑
z

pzH(A|Z = z),

and

H(A|Z)ρ = H(AZ)ρ −H(Z)ρ =
∑
z

pzH(A|Z = z) .

(ii) The entropy of A is concave,

H(A)ρ ≥
∑
z

pzH(A|Z = z). (5)

Solution. First note that from strong sub-additivity follows sub-additivity, H(AC) ≤ H(A) +
H(C), if HB is empty. Applying this to a system classical in HZ , we get

H(AZ) 6 H(A) +H(Z) . (S.1)

However, we also have as seen before

H(AZ) = H(Z) +
∑
z

pz H(A|Z = z) , (S.2)

from which the inequality follows immediately.

(iii) The entropy of a classical probability distribution {pz}z cannot be negative, even if
one has access to extra quantum information, A,

H(Z|A)ρ ≥ 0. (6)

Solution. Let us introduce a copy of the classical subsystem Z, Y , as follows:

ρAZY =
∑
z

pz|z〉〈z|Z ⊗ |z〉〈z|Y ⊗ ρzA.

Note that, for this state, H(AZ) = H(AY ) = H(AZY ).
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We may now appply the strong sub-additivity,

H(Y |AZ) ≤ H(Y |A)

⇔ H(AZY ) +H(A) ≤ H(AZ) + H(AY )︸ ︷︷ ︸
=H(AZY )

⇔ 0 ≤ H(AZ)−H(A)

⇔ 0 ≤ H(Z|A)

Remark: Eq (6) holds in general only for classical Z. Bell states are immediate
counterexamples in the fully quantum case.

Exercise 2. Von Neumann Entropy and Entanglement.

(a) Compute the entropies H(A), H(AB) and the conditional entropy H(A|B) of the Bell
state

|Φ+〉AB =
1√
2

(|00〉AB + |11〉AB) ; (7)

(b) Calculate the conditional entropies H(A|BC), H(AB|C) and H(A|B) of the GHZ state

|GHZ〉ABC =
1√
2

(|000〉ABC + |111〉ABC) . (8)

Solution.

(a) The reduced state on A is the fully mixed state, 1
2
1. Then H(A) = 1, and H(AB) = 0 because the global

state is pure. Then

H(A|B) = H(AB)−H(A) = −1 . (S.3)

(b) The reduced state on A is fully mixed, 1
2
1, and the reduced state on AB is classically correlated, ρAB =

1
2
|00〉〈00|+ 1

2
|11〉〈11|. Then

H(A) = 1 ; H(AB) = 1 ; H(A|B) = 0 . (S.4)

Then since the global state is pure, H(ABC) = 0 and

H(A|BC) = −1 ; H(AB|C) = −1 . (S.5)

Consider a separable state ρAB, i.e. a state that can be written as a convex combination of
product states:

ρAB =
∑
k

pk ρ
(k)
A ⊗ ρ

(k)
B , (9)

where {pk}k is a probability distribution.

(c) Prove that the von Neumann entropy is always positive for such a state,

H (A|B)ρ > 0 . (10)
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Remark: This means that, whenever the conditional entropy is negative, you are necessarily in
possession of an entangled state.

Hint. First use the results of point (b) of the previous exercise to prove that the conditional von Neumann

entropy is concave, i.e. if ρAB =
∑
k pk ρ

(k)
AB, then

H (A|B)ρ >
∑
k

pkH (A|B)ρ(k) . (11)

Solution. Let’s first prove the claim, given in the hint, that the conditional von Neumann entropy is concave.
Let ρAB =

∑
k pk ρ

(k)
AB . As a convenience, let’s introduce an extra classical system Z and define the state

ρABZ =
∑
k

pk |k〉〈k|Z ⊗ ρ(k)AB , (S.6)

i.e. Z is an additional, fictive, register that contains the information about which of the product states ρ
(k)
AB the

system is actually in. Note that tracing out Z, we obtain the initial given state ρAB .

Consider the conditional entropy H (A|B)ρ. By strong subadditivity, and writing out the entropies, we have

H (A|B)ρ > H (A|BZ)ρ = H (ABZ)−H (BZ) = H (AB|Z)−H (B|Z) . (S.7)

We then use point (b) (i) of the previous exercise to write

(S.7) =
∑
k

pk
(
H (AB|Z = z)ρ −H (B|Z = z)ρ

)
=
∑
k

pk
(
H (AB)ρ(k) −H (B)ρ(k)

)
=
∑
k

pkH (A|B)ρ(k) . (S.8)

Now, return to the main problem of the exercise, and let ρAB be a separable state of the form (9). By concavity
of the conditional von Neumann entropy shown above, and using its additivity for independent systems,

H (A|B)ρ >
∑
k

pkH (A|B)
ρ
(k)
A
⊗ρ(k)

B

=
∑
k

pk
[
H (AB)

ρ
(k)
A
⊗ρ(k)

B

−H (B)
ρ
(k)
B

]
=
∑
k

pk
[
H (A)

ρ
(k)
A

+H (B)
ρ
(k)
B

−H (B)
ρ
(k)
B

]
=
∑
k

pkH (A)
ρ
(k)
A

> 0 .
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