Definitions: von Neumann entropy. In this series we will derive some useful properties of the von Neumann entropy: the quantum version of Shannon entropy.

The von Neumann entropy of a density operator $\rho \in \mathcal{S}(\mathscr{H}_A)$ is defined as

$$H(A)_{\rho} = -\operatorname{tr}\left(\rho \log \rho\right) = -\sum_{i} \lambda_{i} \log \lambda_{i}, \qquad (1)$$

where $\{\lambda_i\}_i$ are the eigenvalues of ρ .

Given a composite system $\mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$ we write $H(AB)_{\rho}$ to denote the entropy of the reduced state of a subsystem, $\rho_{AB} = \operatorname{tr}_C(\rho_{ABC})$. When the state ρ is obvious from the context we drop the indices.

The *conditional* von Neumann entropy is defined as

$$H(A|B)_{\rho} = H(AB)_{\rho} - H(B)_{\rho}.$$
(2)

In the Alice-and-Bob picture this quantifies the uncertainty that Bob (who holds the *B* part of the quantum state ρ_{AB}) still has about Alice's state.

The strong sub-additivity property of the von Neumann entropy is very useful. It applies to a tripartite composite system $\mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$,

$$H(A|BC)_{\rho} \le H(A|B)_{\rho}.$$
(3)

Exercise 1. Properties of the von Neumann Entropy.

- (a) Prove the following general properties of the von Neumann entropy:
 - (i) $H(A)_{\rho} \ge 0$ for any ρ_A .
 - (ii) If ρ_{AB} is pure, then $H(A)_{\rho} = H(B)_{\rho}$.

Hint. Use the Schmidt decomposition of bipartite pure states: for any $|\psi\rangle_{AB}$, there exist coefficients p_k , and two orthonormal sets of vectors $\{|\chi_k\rangle_A\}_k$ and $\{|\phi_k\rangle_B\}_k$, such that $|\psi\rangle_{AB} = \sum_k \sqrt{p_k} |\chi_k\rangle_A \otimes |\phi_k\rangle_B$.

(iii) If two systems are independent, $\rho_{AB} = \rho_A \otimes \rho_B$, then $H(AB)_{\rho} = H(A)_{\rho_A} + H(B)_{\rho_B}$.

Solution.

- (i) We have $H(A)_{\rho} = -\sum_{k} p_k \log p_k$, where p_k are the eigenvalues of ρ_A . But $-\log p_k$ is positive since probabilities are less than one, hence $H(A)_{\rho} \ge 0$.
- (ii) This becomes clear when you apply the Schmidt decomposition to the pure state ρ_{AB} : the reduced states of the two subsystems A and B have the same eigenvalues and therefore the same von Neumann entropy.
- (iii) We denote by $\{\lambda_i\}_i$ and $\{\gamma_j\}_j$ the eigenvalues of ρ_A and ρ_B respectively. Hence $\{\lambda_i\gamma_j\}_{i,j}$ are the eigenvalues of ρ_{AB} and we can write:

$$H(AB)_{\rho} = -\sum_{i,j} \lambda_i \gamma_j \log(\lambda_i \gamma_j)$$

= $-\left(\sum_{i} \lambda_i\right) \cdot \left(\sum_{j} \gamma_j \log \gamma_j\right) - \left(\sum_{j} \gamma_j\right) \cdot \left(\sum_{i} \lambda_i \log \lambda_i\right)$
= $H(A)_{\rho_A} + H(B)_{\rho_B}.$

- (b) Consider a bipartite state that is classical on subsystem Z: $\rho_{ZA} = \sum_{z} p_{z} |z\rangle \langle z|_{Z} \otimes \rho_{A}^{z}$ for some basis $\{|z\rangle_{Z}\}_{z}$ of \mathscr{H}_{Z} . Show that:
 - (i) The conditional entropy of the quantum part, A, given the classical information Z is

$$H(A|Z)_{\rho} = \sum_{z} p_{z} H(A|Z=z), \qquad (4)$$

where $H(A|Z = z) = H(A)_{\rho_A^z}$.

Solution. First, note that the eigenvalues of $\sum_{z} p_{z} |z\rangle \langle z| \otimes \rho_{A}^{z}$ are given by $\{p_{z}\lambda_{k}^{z}\}_{z,k}$, where $\{\lambda_{k}^{z}\}_{k}$ are the eigenvalues of $\rho_{A}^{z} \equiv \rho_{A|Z=z}$. We may now write:

$$H(AZ)_{\rho} = -\sum_{z,k} p_z \lambda_k^z \log(p_z \lambda_k^z)$$

= $-\sum_z p_z \left(\sum_k \lambda_k^z\right) \log p_z - \sum_z p_z \left(\sum_k \lambda_k^z \log \lambda_k^z\right)$
= $H(Z) + \sum_z p_z H(A|Z=z),$

and

$$H(A|Z)_{\rho} = H(AZ)_{\rho} - H(Z)_{\rho} = \sum_{z} p_{z} H(A|Z=z)$$

(ii) The entropy of A is concave,

$$H(A)_{\rho} \ge \sum_{z} p_{z} H(A|Z=z).$$
(5)

Solution. First note that from strong sub-additivity follows sub-additivity, $H(AC) \leq H(A) + H(C)$, if \mathscr{H}_B is empty. Applying this to a system classical in \mathscr{H}_Z , we get

$$H(AZ) \leqslant H(A) + H(Z) . \tag{S.1}$$

However, we also have as seen before

$$H(AZ) = H(Z) + \sum_{z} p_z \ H(A|Z=z) ,$$
 (S.2)

from which the inequality follows immediately.

(iii) The entropy of a classical probability distribution $\{p_z\}_z$ cannot be negative, even if one has access to extra quantum information, A,

$$H(Z|A)_{\rho} \ge 0. \tag{6}$$

Solution. Let us introduce a copy of the classical subsystem Z, Y, as follows:

$$\rho_{AZY} = \sum_{z} p_{z} |z\rangle \langle z|_{Z} \otimes |z\rangle \langle z|_{Y} \otimes \rho_{A}^{z}.$$

Note that, for this state, H(AZ) = H(AY) = H(AZY).

We may now appply the strong sub-additivity,

$$\begin{split} H(Y|AZ) &\leq H(Y|A) \\ \Leftrightarrow & H(AZY) + H(A) \leq H(AZ) + \underbrace{H(AY)}_{=H(AZY)} \\ \Leftrightarrow & 0 \leq H(AZ) - H(A) \\ \Leftrightarrow & 0 \leq H(Z|A) \end{split}$$

Remark: Eq (6) holds in general only for classical Z. Bell states are immediate counterexamples in the fully quantum case.

Exercise 2. Von Neumann Entropy and Entanglement.

(a) Compute the entropies H(A), H(AB) and the conditional entropy H(A|B) of the Bell state

$$|\Phi^+\rangle_{AB} = \frac{1}{\sqrt{2}} \left(|00\rangle_{AB} + |11\rangle_{AB}\right) ; \tag{7}$$

(b) Calculate the conditional entropies H(A|BC), H(AB|C) and H(A|B) of the GHZ state

$$|GHZ\rangle_{ABC} = \frac{1}{\sqrt{2}} \left(|000\rangle_{ABC} + |111\rangle_{ABC}\right) . \tag{8}$$

Solution.

(a) The reduced state on A is the fully mixed state, $\frac{1}{2}\mathbb{1}$. Then H(A) = 1, and H(AB) = 0 because the global state is pure. Then

$$H(A|B) = H(AB) - H(A) = -1$$
. (S.3)

(b) The reduced state on A is fully mixed, $\frac{1}{2}\mathbb{1}$, and the reduced state on AB is classically correlated, $\rho_{AB} = \frac{1}{2}|00\rangle\langle00| + \frac{1}{2}|11\rangle\langle11|$. Then

$$H(A) = 1$$
; $H(AB) = 1$; $H(A|B) = 0$. (S.4)

Then since the global state is pure, H(ABC) = 0 and

$$H(A|BC) = -1$$
; $H(AB|C) = -1$. (S.5)

Consider a separable state ρ_{AB} , i.e. a state that can be written as a convex combination of product states:

$$\rho_{AB} = \sum_{k} p_k \, \rho_A^{(k)} \otimes \rho_B^{(k)} \,, \tag{9}$$

where $\{p_k\}_k$ is a probability distribution.

(c) Prove that the von Neumann entropy is always positive for such a state,

$$H\left(A|B\right)_{\rho} \geqslant 0 \ . \tag{10}$$

Remark: This means that, whenever the conditional entropy is negative, you are necessarily in possession of an entangled state.

Hint. First use the results of point (b) of the previous exercise to prove that the conditional von Neumann entropy is concave, i.e. if $\rho_{AB} = \sum_{k} p_k \rho_{AB}^{(k)}$, then

$$H(A|B)_{\rho} \geqslant \sum_{k} p_{k} H(A|B)_{\rho^{(k)}} \quad .$$

$$\tag{11}$$

Solution. Let's first prove the claim, given in the hint, that the conditional von Neumann entropy is concave. Let $\rho_{AB} = \sum_{k} p_k \rho_{AB}^{(k)}$. As a convenience, let's introduce an extra classical system Z and define the state

$$\rho_{ABZ} = \sum_{k} p_k |k\rangle \langle k|_Z \otimes \rho_{AB}^{(k)} , \qquad (S.6)$$

i.e. Z is an additional, fictive, register that contains the information about which of the product states $\rho_{AB}^{(k)}$ the system is actually in. Note that tracing out Z, we obtain the initial given state ρ_{AB} .

Consider the conditional entropy $H(A|B)_{\rho}$. By strong subadditivity, and writing out the entropies, we have

$$H(A|B)_{\rho} \ge H(A|BZ)_{\rho} = H(ABZ) - H(BZ) = H(AB|Z) - H(B|Z) .$$
(S.7)

We then use point (b) (i) of the previous exercise to write

$$(S.7) = \sum_{k} p_{k} \left(H \left(AB | Z = z \right)_{\rho} - H \left(B | Z = z \right)_{\rho} \right) = \sum_{k} p_{k} \left(H \left(AB \right)_{\rho^{(k)}} - H \left(B \right)_{\rho^{(k)}} \right)$$
$$= \sum_{k} p_{k} H \left(A | B \right)_{\rho^{(k)}} . \quad (S.8)$$

Now, return to the main problem of the exercise, and let ρ_{AB} be a separable state of the form (9). By concavity of the conditional von Neumann entropy shown above, and using its additivity for independent systems,

$$\begin{split} H\left(A|B\right)_{\rho} \geqslant \sum_{k} p_{k} H\left(A|B\right)_{\rho_{A}^{(k)} \otimes \rho_{B}^{(k)}} &= \sum_{k} p_{k} \left[H\left(AB\right)_{\rho_{A}^{(k)} \otimes \rho_{B}^{(k)}} - H\left(B\right)_{\rho_{B}^{(k)}} \right] \\ &= \sum_{k} p_{k} \left[H\left(A\right)_{\rho_{A}^{(k)}} + H\left(B\right)_{\rho_{B}^{(k)}} - H\left(B\right)_{\rho_{B}^{(k)}} \right] = \sum_{k} p_{k} H\left(A\right)_{\rho_{A}^{(k)}} \geqslant 0 \;. \end{split}$$