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Exercise 1. Bell-type Experiment.

Consider a 2-qubit Hilbert space HAB = HA ⊗HB with basis {|00〉, |01〉, |10〉, |11〉} in the Bell
state

|ψ+〉 =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) . (1)

Two parties, Alice and Bob, get half of state |ψ+〉 so that Alice has qubit A and Bob has qubit
B. The POVM corresponding to a measurement can be written in function of the angle α that
the measurement basis makes with the {|0〉, |1〉} basis,

Mα =
{
|α〉〈α|, |α⊥〉〈α⊥|

}
, |α〉 = cos

α

2
|0〉+ sin

α

2
|1〉, |α⊥〉 = − sin

α

2
|0〉+ cos

α

2
|1〉,

where the 1/2 factor comes from the Bloch sphere notation. We label the outcomes + for |α〉
and − for |α⊥〉.

Suppose Alice performs such a measurement Mα on her qubit.

(a) Find the description Bob would give to his partial state on B after he knows that Alice
performed the measurement Mα

A on A. What description would Alice give to ρB given
that she knows what measurement outcome she received?

(b) If Bob does the measurement M0
B = {|0〉〈0|, |1〉〈1|} on B, what is the probability dis-

tribution for his outcomes, PrB? How would Alice describe his probability distribution,
PrB|A?

(c) In part a) and b) Alice and Bob have different descriptions of the quantum state ρB and
probability distribution of measurement outcomes on that state. Explain how this sub-
jective assignment of the scenarios at B does not contradict with the actual measurement
outcomes Bob will get after doing the measurement M0

B.

From now on look at the case where Alice and Bob can choose two different bases each:

meas. 0

+-

1

+

-

2

+

-

3

+

-

Alice α = 0,

{
|0〉 → +

|π〉 → −
α = π

2
,

{
|π
2
〉 → +

|−π
2
〉 → −

Bob α = π
4
,

{
|π
4
〉 → +

| 5π
4
〉 → −

α = 3π
4
,

{
| 3π

4
〉 → +

|−π
4
〉 → −

(d) The joint probabilities PXY |ab(x, y) of Alice and Bob obtaining outcomes x and y when
they measure A = a and B = b are given in the following table.
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Alice A =0 A =2
Bob + − + −

B=1
+ 1

2 − ε ε 1
2 − ε ε

− ε 1
2 − ε ε 1

2 − ε

B=3
+ ε 1

2 − ε
1
2 − ε ε

− 1
2 − ε ε ε 1

2 − ε

with ε = 1
2 sin2(π/8) ≈ 0.07.

Compute

IN (PXY |AB) = P (X = Y |A = 0, B = 3) +
∑
|a−b|=1

P (X 6= Y |A = a,B = b).

This quantity, similar to a Bell inequality, captures non-locality of quantum correlations:
classically, it is at least equal to 1, whereas for quantum correlations it can be smaller than
1.

(e) Correlations of the above form that exist within quantum theory cannot be created clas-
sically. However, they are not the most general distributions we could consider if we are
only contained by the no-signalling principle: there are in fact other joint distributions that
cannot be obtained by measurements on a quantum state, but that nonetheless would not
allow for instantaneous information transmission over distance (signalling). To see this,
look at the following joint probability distribution, a so-called PR box:

Alice A =0 A =2
Bob + − + −

B=1
+ 1

2 0 1
2 0

− 0 1
2 0 1

2

B=3
+ 0 1

2
1
2 0

− 1
2 0 0 1

2

Show that the PR box

(i) is non-signalling: P (X|a, b1) = P (X|a, b2), ∀a;

(ii) is non-local: PXY |ab 6= PX|aPY |b;

(iii) yields IN (PXY |AB) = 0.

(f) We shall now see how the above quantum correlation (coming from the Bell state) can be
simulated using such a PR box combined with deterministic strategies. Imagine that Alice
and Bob are given:

• with probability 1− p a PR-box;

• with probability p/4, one of four deterministic boxes, that always outcome ++, +−,
−+ and −− respectively.

Find p so that the final joint probability distribution equals the one of the Bell state given
above.
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Solution.

(a) Let Pα = |α〉〈α| ⊗ 1B and Pα⊥ = |α⊥〉〈α⊥| ⊗ 1B .

We have

|α〉 = cos
α

2
|0〉+ sin

α

2
|1〉 |α〉〈α| =

(
cos2 α

2
cos α

2
sin α

2

cos α
2

sin α
2

sin2 α
2

)

Pα =


cos2 α

2
0 cos α

2
sin α

2
0

0 cos2 α
2

0 cos α
2

sin α
2

cos α
2

sin α
2

0 sin2 α
2

0
0 cos α

2
sin α

2
0 sin2 α

2



|α⊥〉 = cos
(α

2
+
π

2

)
|0〉+ sin

(α
2

+
π

2

)
|1〉 |α⊥〉〈α⊥| =

(
cos2 α

2
− cos α

2
sin α

2

− cos α
2

sin α
2

sin2 α
2

)
= − sin

α

2
|0〉+ cos

α

2
|1〉

Pα⊥ =


sin2 α

2
0 − cos α

2
sin α

2
0

0 sin2 α
2

0 − cos α
2

sin α
2

− cos α
2

sin α
2

0 cos2 α
2

0
0 − cos α

2
sin α

2
0 cos2 α

2

 ,

and the state shared by Alice and Bob is

|Ψ+〉〈Ψ+| = |00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|
2

=
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

The probability that Alice obtains outcome α is

PrA(α) = tr
[
Pα|ψ+〉〈ψ+|

]
= tr

1

2


cos2 α

2
0 0 cos2 α

2

cos α
2

sin α
2

0 0 cos α
2

sin α
2

cos α
2

sin α
2

0 0 cos α
2

sin α
2

sin2 α
2

0 0 sin2 α
2


 =

1

2

and the reduced state on Bob’s side after the measurement, from the point of view of Alice (who knows
that the outcome of her measurement was α) is

ρB|A=α = trA

(
Pα|ψ+〉〈ψ+|

PrA(α)

)
= trA


cos2 α

2
0 0 cos2 α

2

cos α
2

sin α
2

0 0 cos α
2

sin α
2

cos α
2

sin α
2

0 0 cos α
2

sin α
2

sin2 α
2

0 0 sin2 α
2

 =

(
cos2 α

2
cos α

2
sin α

2

cos α
2

sin α
2

sin2 α
2

)
.

Similarly, for the the other outcome, α⊥, we have

PrA(α⊥) =
1

2
ρB|A=α⊥ =

(
sin2 α

2
− cos α

2
sin α

2

− cos α
2

sin α
2

cos2 α
2

)
.

If Bob does not know that Alice performed a measurement, he sees his state as ρB = trA |φ+〉〈φ+| = 1
2
1B .

Imagine now that Bob knows that Alice performed this measurement but does not know the outcome. All
he know is that he has state ρB|A=α if she got α and state ρB|A=α⊥ if she got α⊥,

ρB|A=? = PrA(α)ρB|A=α + PrA(α⊥)ρB|A=α⊥

=
1

2

(
cos2 α

2
cos α

2
sin α

2

cos α
2

sin α
2

sin2 α
2

)
+

1

2

(
sin2 α

2
− cos α

2
sin α

2

− cos α
2

sin α
2

cos2 α
2

)
=
1B

2
.

From Bob’s viewpoint, it is the same whether Alice does not measure her qubit or measures it but does
not tell him the outcome.

(b) We can read the probability distribution of M0
B conditioned on A directly from our results in part (a),

PrB|A=α(x) =

{
cos2 α

2
, for x = 0

sin2 α
2
, for x = 1

For A = α⊥ the probabilities are interchanged. PB (not conditioned on A) is just the uniform distribution
over 0, 1.
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(c) The qubit of system B is correlated to another system (A) and what we are looking at are the states (and
probability distributions) conditioned / not conditioned on an event on that system (measurement on A)
that is itself random. More detailed analysis in the tips.

(d) The joint probabilities PXY |ab(x, y) of them obtaining outcomes x and y when they measure A = a and
B = b are given by:

Alice A =0 A =2
Bob + − + −

B=1
+ 1

2
− ε ε 1

2
− ε ε

− ε 1
2
− ε ε 1

2
− ε

B=3
+ ε 1

2
− ε 1

2
− ε ε

− 1
2
− ε ε ε 1

2
− ε

with ε = 1
2

sin2(π/8) ≈ 0.07.

IN (PXY |AB) =
∑

k=+,−

PXY |A=0,B=3(k, k) +
∑
|a−b|=1

PXY |A=a,B=b(k, k̄)


=
∑

red terms in the table = 8ε

(e) The PR-box is given by the following joint probability distribution:

Alice A =0 A =2
Bob + − + −

B=1
+ 1

2
0 1

2
0

− 0 1
2

0 1
2

B=3
+ 0 1

2
1
2

0
− 1

2
0 0 1

2

The PR-box is

(i) non-signalling:

PX|A=a,B=1(x) = PX|A=a,B=3(x), ∀a, x⇔

⇔
∑
y

PXY |A=a,B=1(x, y) =
∑
y

PX|A=a,B=3(x, y), ∀a, x⇔

⇔
∑

red terms =
∑

orange terms, ∀ columns⇔

⇔ 1

2
=

1

2
X

The other non-signalling condition, P (Y |a1, b) = P (Y |a2, b),∀b, can be checked similarly, summing
over rows instead of columns.

(ii) non-local:
Any local distribution is a convex combination of deterministic local distributions,

v

There are only 16 non-signalling deterministic local distributions:

1 0 1 0
0 0 0 0

1 0 1 0
0 0 0 0

,

1 0 1 0
0 0 0 0

0 0 0 0
1 0 1 0

,

1 0 0 1
0 0 0 0

1 0 0 1
0 0 0 0

,

1 0 0 1
0 0 0 0

0 0 0 0
1 0 0 1

, etc.

However, if we try to decompose the PR-box in this way we obtain:
1
2

0 1
2

0
0 1

2
0 1

2

0 1
2

1
2

0
1
2

0 0 1
2

= 1
2

1 0 1 0
0 0 0 0

0 0 1 0
0 0 0 0

+ 1
2

1 0 1 0
0 0 0 0

0 0 1 0
0 0 0 0

PXY |A=a,B=b(x, y) 6= PX|A=a(x) PY |B=b(y), ∀a, b, x, y ⇔

⇔ PXY |A=a,B=b(x, y) 6=

∑
y′,b′

PXY |A=a,B=b′(x, y
′)

∑
x′,a′

PXY |A=a′,B=b(x
′, y)

 , ∀a, b, x, y ⇔
⇔ {table cell} 6=

[∑
{column of the cell}

] [∑
row of the cell

]
, ∀ cells⇔

⇔ 0 or
1

2
6=
[

1

2
+

1

2

] [
1

2
+

1

2

]
= 1 X
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(iii) and yields IN (PXY |AB) = 0.

Alice A =0 A =2
Bob + − + −

B=1
+ 1

2
0 1

2
0

− 0 1
2

0 1
2

B=3
+ 0 1

2
1
2

0
− 1

2
0 0 1

2

IN (PXY |AB) =
∑

red terms = 0

(f) If we look at the first entry in the table (top left), it is straightforward to see that we need

(1− p) ∗ 1

2
+ p ∗ 1

4
=

1

2
− ε, (S.1)

which implies that p = 4ε. One can easily verify that this result also works for the other entries in the
table.

See also: J. S. Bell, Phys. Vol. 1, No. 3, pp. 195–200, 1964.
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