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Exercise 1. POVMs are the Most General Quantum to Classical Evolutions.

To motivate why we consider POVMs in quantum information theory, we will show in this
exercise that they capture the most general evolution of a quantum system into a classical
register. A classical system X, in the quantum information formalism, is a quantum system
(with Hilbert space HX) which is in a state ρX known to be diagonal in a fixed basis {|x〉}.

Let EA→X : L (HA) → L (HX) be a trace-preserving, completely positive map from a (finite
dimensional) quantum system A into a classical register X.

Show that this evolution is described by a POVM {Ax} with the required properties, i.e. the
probability of the (classical) output state to be in |x〉〈x| is tr (Axρ).

The following steps might help you, but it is not mandatory to follow them.

(a) Argue that E has to take the following form:

EA→X (ρ) =
∑
x

|x〉〈x| fx (ρ) , (1)

where fx : L (HA) → R is a linear mapping of ρ onto real numbers. fx (ρ) are the
eigenvalues of E (ρ) in the eigenbasis {|x〉} (which is fixed because, remember, X is a
classical register).

Solution. Since the output of the channel has to be diagonal in the basis {|x〉}, we can write the general
expression (1), where fx is a function of ρ giving the eigenvalue of the output of E corresponding to the
eigenvector |x〉. Since E is linear, it follows that fx has to be linear.

Also, since the output of E is a density operator, the output of fx has to be a real number between 0
and 1 (those are the possible eigenvalues of density operators). In addition, by the condition that density
operators have unit trace, the values of fx for fixed ρ must sum up to one,

∑
x fx (ρ) = 1.

(b) Argue that fx (·) can be written in general as

fx (·) = tr [Ax (·) ] , (2)

for some hermitian operator Ax.

Hints. tr
[
A†B

]
is the Hilbert-Schmidt scalar product in the space of linear operators L (HA).

Also, what kind of object is fx?

Solution. The functional fx is an element of the dual space of linear operators on HA by definition (the
dual space of the vector space V is the space of all functionals V → C on V ). Any element v̄ of a (finite
dimensional) dual space to the vector space V can be written as a scalar product operation 〈v, ·〉 with a
fixed element v of the vector space.

Since fx is an element of the dual vector space of L (HA), then in general there exists an element Ax of
the vector space L (HA) such that

fx (·) = 〈Ax , (·)〉 = tr (Ax (·)) , (S.1)

where we recall that the Hilbert-Schmidt product 〈A,B〉 = tr
(
A†B

)
is a scalar product on L (HA) .

Ax can be assumed to be hermitian because the input to fx is always hermitian (density operators are

hermitian), so if one had chosen Ax not hermitian, we could replace it by A′
x = 1

2

(
Ax +A†

x

)
which is

obviously hermitian.
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(c) Argue that for all ρ, fx has to take positive values and that the values for all x have to
sum up to 1,

∑
x fx (ρ) = 1. Deduce that Ax > 0 and

∑
xAx = 1.

Solution. We have argued in point (a) that the output of fx is a real number between 0 and 1, with∑
x fx (ρ) = 1 for any fixed ρ.

The expression tr (Axρ) is positive for all ρ if and only if Ax is positive semidefinite (otherwise, if for a |ψ〉
we had 〈ψ |Ax |ψ〉 < 0, then it would follow that tr (Ax|ψ〉〈ψ|) < 0). So Ax has to be positive semidefinite.

Likewise,
∑
x tr (Axρ) = 1 for all ρ implies

∑
xAx = 1. Indeed, for any basis {|ψk〉}, we have 1 =

tr
((∑

xAx
)
|ψk〉〈ψk|

)
= 〈ψk |

∑
xAx |ψk〉, so that the operator

∑
xAx has 1’s on its diagonal in any basis.

The only operator satisfying this is the identity operator.

(d) Conclude from points (a)–(c).

Solution. We have shown that the operators Ax have all the necessary properties for forming a POVM

(they are positive semidefinite and sum up to the identity). In addition, they correctly reproduce the

outcome probabilities (diagonal elements of the output of E) as tr (Axρ).

Exercise 2. Distinguishing two quantum states

Suppose you know the density operators of two quantum states ρ, σ ∈HA. Then you are given
one of the states at random—it may either be ρ or σ, with probability 1/2. The challenge is to
perform a single measurement on your state and then guess which state that is.

(a) What is your best strategy? In which basis do you think you should perform the measure-
ment? Can you express that measurement using a projector Q?

Hint. You can use the idea of exercise 1. What are you looking for? What should be the measure-

ment outcome?

Solution. We are looking for a strategy to guess either if the state was ρ or σ, i.e. we need a mapping
from the quantum system onto one classical bit of information, “guess ρ” or “guess σ”. However, we have
shown in Ex. 1 that the most general mapping of a quantum system to a classical register is precisely a
POVM.

Denote the POVM elements by Qρ (for “guess ρ”) and Qσ (for “guess σ”). We need Qρ + Qσ = 1, so
Qσ = 1−Qρ (This is by definition of a POVM, or actually, it is needed in order to conserve probability).

We have reformulated the problem as follows: we are looking for a POVM, with elements Qρ and 1−Qρ,
such that the total probability of guessing right is maximized.

The total probability of guessing right is given by

Pr [distinguish correctly] = Pr[ρ is given]× Pr[measure outcome Qρ from ρ]

+ Pr[σ is given]× Pr[measure outcome Qσ from σ]

=
1

2
tr (Qρρ) +

1

2
tr ((1−Qρ)σ)

=
1

2
tr (Qρρ+ σ −Qρσ) =

1

2
+

1

2
tr (Qρ (ρ− σ)) . (S.2)

So we need to find the Qρ that maximizes the expression tr (Qρ (ρ− σ)).

Choose a representation in terms of the eigenstates |ηk〉 of the operator ρ− σ,

(ρ− σ) |ηk〉 = ηk|ηk〉 . (S.3)
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Note that the operator ρ− σ is not a density operator. It is, however, hermitian and has trace zero.

We want to maximize the expression

tr (Qρ (ρ− σ)) =
∑
k

ηk tr (Qρ|ηk〉〈ηk|) =
∑
k

ηk〈ηk |Qρ |ηk〉 . (S.4)

The maximum value is then obtained with the choice (recall that we have the constraint 0 6 Qρ 6 1)

〈ηk |Qρ |ηk〉 = 1 if ηk > 0 ; (S.5)

〈ηk |Qρ |ηk〉 = 0 if ηk < 0 . (S.6)

Thus our optimal Qρ is the projector onto the eigenspace for the positive eigenvalues of the operator ρ−σ.

The maximization is taken from [Helstrom, C. W., Quantum Detection and Estimation Theory, Journal of

Statistial Physics, 1(2):231–252, 1969]. In the latter, discussion of quantum hypothesis testing is treated

with more generality.

(b) Show that this optimal probability is directly related to the trace distance,

Pr [distinguish correctly] =
1

2
[1 + δ (ρ, σ)] . (3)

Solution. Remember that the trace distance between states ρ and σ is given by

δ(ρ, σ) =
1

2
‖ρ− σ‖1 =

1

2
tr|ρ− σ| , (S.7)

where ‖A‖1 = tr|A| is simply the sum of the absolute values of the eigenvalues of A (this norm is also
called the Shatten-1 norm).

We just have to show that the optimal value from point (a) of this exercise satisfies (3).

We know from point (a) that

Pr [distinguish correctly] =
1

2
+

1

2
tr (Qρ (ρ− σ)) =

1

2
+

1

2

∑
k: ηk>0

ηk . (S.8)

On the other hand, we have

δ (ρ, σ) =
1

2

∑
k

|ηk| =
1

2

(∑
ηk>0

ηk −
∑
ηk<0

ηk
)
. (S.9)

However, since ρ− σ has trace zero, we have
∑
ηk = 0 and thus

∑
ηk<0 ηk = −

∑
ηk>0 ηk. So

(S.9) =
1

2

∑
ηk>0

ηk +
1

2

∑
ηk>0

ηk =
∑
ηk>0

ηk . (S.10)

Combining with (S.8), we eventually obtain (3).

Exercise 3. Classical channels as trace-preserving completely positive maps.

In this exercise we will see how to represent classical channels as trace-preserving completely
positive maps (TPCPMs).

(a) Take the binary symmetric channel p,
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1 - p

1 - p

p
p

X Y

Recall that we can represent the probability distributions on both ends of the channel as
quantum states in a given basis: for instance, if PX(0) = q, PX(1) = 1− q, we may express
this as the 1-qubit mixed state ρX = q |0〉〈0|+ (1− q) |1〉〈1|.
What is the quantum state ρY that represents the final probability distribution PY in the
computational basis?

Solution. We have

PY (0) =
∑
x

PX(x)PY |X=x(0) = q(1− p) + (1− q)p

PY (1) = qp+ (1− q)(1− p),

which can be expressed as a quantum state ρy = [q(1−p)+(1−q)p] |0〉〈0|+[qp+(1−q)(1−p)] |1〉〈1| ∈ L(HY ).

(b) Now we want to represent the channel as a map

Ep : S(HX)→ S(HY )

ρX 7→ ρY .

An operator-sum representation (also called the Kraus-operator representation) of a CPTP
map E : S(HX) → S(HY ) is a decomposition {Ek}k of operators Ek ∈ Hom(HX ,HY ),∑

k EkEk
† = 1, such that

E(ρX) =
∑
k

EkρXEk
†.

Find an operator-sum representation of Ep.

Hint. Think of each operator Ek = Exy as the representation of the branch that maps input x to

output y.

Solution. We take four operators, corresponding to the four different “branches” of the channel,

E0→0 =
√

1− p|0〉〈0|
E0→1 =

√
p|1〉〈0|

E1→0 =
√
p|0〉〈1|

E1→1 =
√

1− p|1〉〈1|.
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To check that this works for the classical state ρX , we do

E(ρX) =
∑
xy

Ex→y ρX E†
x→y

=
∑
xy

Ex→y

[
q|0〉〈0|+ (1− q)|1〉〈1|

]
E†
x→y

=(1− p) |0〉〈0|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|0〉〈0|

+ p |1〉〈0|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|0〉〈1|

+ p |0〉〈1|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|1〉〈0|

+ (1− p) |1〉〈1|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|1〉〈1|

=q(1− p) |0〉〈0|
+ qp |1〉〈1|
+ (1− q)p |0〉〈0|
+ (1− q)(1− p) |1〉〈1| = ρY .

(c) Now we have a representation of the classical channel in terms of the evolution of a quantum
state. What happens if the initial state ρX is not diagonal in the computational basis?

Solution. In general, we can express the state in the computational basis as ρX =
∑
ij αij |i〉〈j|, with the

usual conditions (positivity, normalization). Applying the map gives us

E(ρX) =
∑
xy

Ex→y

[∑
ij

αij |i〉〈j|
]
E†
x→y

=(1− p) |0〉〈0|
[∑
ij

αij |i〉〈j|
]
|0〉〈0|

+ p |1〉〈0|
[∑
ij

αij |i〉〈j|
]
|0〉〈1|

+ p |0〉〈1|
[∑
ij

αij |i〉〈j|
]
|1〉〈0|

+ (1− p) |1〉〈1|
[∑
ij

αij |i〉〈j|
]
|1〉〈1|

=α11(1− p) |0〉〈0|+ α11p |1〉〈1|
+ α22p |0〉〈0|+ α22(1− p) |1〉〈1|.

Using α11 := α, α22 = 1 − α, we get E(ρX) = [α(1 − p) + (1 − α)p] |0〉〈0| + [αp + (1 − α)(1 − p)] |1〉〈1|.
The channel ignores the off-diagonal terms of ρX : it acts as a measurement on the computational basis

followed by the classical binary symmetric channel.

(d) Now consider an arbitrary classical channel p from an n-bit space X to an m-bit space Y ,
defined by the conditional probabilities

{
PY |X=x(y)

}
xy

.

Express p as a map Ep : S(HX)→ S(HY ) in the operator-sum representation.

Solution. We generalize the previous result as

Ep(ρX) =
∑
x,y

PY |X=x(y) |y〉〈x|ρX |x〉〈y|

=
∑
x,y

Ex→yρXE
†x→ y, Ex→y =

√
PY |X=x(y) |y〉〈x|.
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To see that this works, take a classical state ρX =
∑
x PX(x) |x〉〈x| as input,

Ep(ρX) =
∑
x,y

PY |X=x(y) |y〉〈x|
(∑

x′

PX(x′) |x′〉〈x′|
)
|x〉〈y|

=
∑
x,y

PY |X=x(y) PX(x) |y〉〈y|

=
∑
y

Py(y) |y〉〈y|.
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