QSIT:Theory

Quantum Systems for Information Technology Theory Part

Matthias Christandl
Quantum Information Theory
Institute for Theoretical Physics
ETH Zurich

What is it?

- All-round theory course for quantum information
(heavy-theory course given by Prof. Renner)
- target audience: experimental physicists current or future Bachelor/Master/PhD

0. Introduction

Content

- What is Quantum Information and Computation?
- What is Entanglement?
- What is a Bell Inequality?
- What is Quantum Tomography?
- What is Shor's Algorithm?
- What is Quantum Error Correction?

Testat

- active participation in the course and exercises
- 75\% of exercises

I. Quantum Information

Information

- Shannon, 1948
- Concept ,,information" independent of physical implementation
- string of bits 01011010100

- all physical information can be represented in this way \rightarrow Information Theory

Computation

- Turing, 1948
- Concept „computation" independent of physical implementation

- Church-Turing thesis:
all physical computation can be represented by a Turing machine \rightarrow Computer Science

Quantum Mechanics

- Shannon \& Turing's notions (1948) based on classical physics 01011010100 information has always definite value
- Quantum Mechanics (1900s) atoms not governed by classical physics
- State of system \leftrightarrow wave function

Shannon/Turing can in principle not apply! definite measurement values do not exist prior to measurement, in principle!
Einstein, Podolsky \& Rosen (I935), Bell (I967), Kochen \& Specker (I967)

```
Need for theory of information and
computation that applies to QM
```


The Bit

- The bit $=$ unit of information
on/off

heads/tails
north pole/ south pole
- variable $x \in\{0,1\}$

The Bit

- random bit

child plays with switch
toss of a coin
travel lottery

- random variable X
range $\{0,1\}$

$$
\begin{aligned}
& p(0)=\operatorname{prob}[X=0] \\
& p(1)=\operatorname{prob}[X=1]
\end{aligned}
$$

The Quantum Bit or Qubit

$$
\prime 0^{\prime} \rightarrow|0\rangle=\binom{1}{0} \quad \prime^{\prime} \rightarrow|1\rangle=\binom{0}{1}
$$

```
state of a
    qubit
```

- superposition principle $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}$
- probability amplitudes
- normalisation $|\alpha|^{2}+|\beta|^{2}=1$

- in nature: polarisation of photon

electron / nuclear spin I/2 ground vs excited state

Measuring a Qubit

- Qubit $=$ Bloch vector
- Bloch vector $=$ infinite amount of information

$$
\begin{aligned}
& \theta=\theta_{0} \theta_{1} \theta_{2} \ldots \\
& \phi=\phi_{0} \phi_{1} \phi_{2} \ldots
\end{aligned}
$$

- Can qubit store an infinite amount of information?
- No! Measurement retrieves only one bit!
- State of qubit after measurement = outcome

Measuring a Qubit

- Observable= self-adjoint operator
 matrix,

- Measurement: probabilistic and disturbing! only I bit information, but we can choose which!

$$
\begin{aligned}
& =\operatorname{tr}|\psi\rangle\langle\psi|\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \\
& =\cos ^{2} \frac{\theta_{i}}{2}
\end{aligned}
$$

Qubit

- $\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle$ orthonormal, i.e. antipodal
\Rightarrow measure, if state is in one of two antipodes:
- North or south pole?
- Madrid or Wellington?
- Bangkok or Lima?

Qubit

- State: North pole Measurement: North or south pole? Result: North pole
- State: Copenhagen Measurement: North or south pole? Result: North pole ($\operatorname{Cos}^{2} 35^{\circ} / 2 \approx 91 \%$)
- State: Singapore Measurement: North or south pole? Result: North pole ($\operatorname{Cos}^{2} 90^{\circ} / 2=50 \%$)

The projector

Mixed qubit

Mixed states: the problem

Incomplete knowledge of the system:
we may have state $\left|\psi_{j}\right\rangle$ with probability p_{j}

How to represent our knowledge of the state? Let us see what happens if we measure the state...

Observable
A

Outcomes
$\left\{a_{i}\right\}$

Post-measurement states
$\left\{\left|\alpha_{i}\right\rangle\right\}$

Mixed states: derivation

Probability of obtaining outcome a_{i}

$$
\begin{aligned}
\operatorname{prob}\left[a_{i}\right] & =\sum_{j} p_{j}\left|\left\langle\alpha_{i} \mid \psi_{j}\right\rangle\right|^{2} \\
& =\sum_{j} \operatorname{tr}\left[\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right|\right] \\
& =\operatorname{tr}[(\underbrace{\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|}_{=\rho})\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right| \underbrace{\text { Thependent on } \rho}_{\text {The probability is only }}
\end{aligned}
$$

Density matrix

Incomplete knowledge of the system: we may have state $\left|\psi_{j}\right\rangle$ with probability p_{j}

Description by density matrix

$$
\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

Special case of a pure state: perfect knowledge we have state $|\psi\rangle$ with probability 1

$$
\rho=|\psi\rangle\langle\psi|
$$

Bloch representation

not necessarily orthogonal

Bloch ball

Properties of density matrices

In general,

$$
\begin{gathered}
\rho \geq 0, \quad \operatorname{tr} \rho=1 \\
\text { positive semidefinite } \\
\text { (non-negative eigenvalues) }
\end{gathered}
$$

On the other hand, any state has an eigenvector decomposition

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad \forall \rho \in \mathcal{S}(\mathcal{H})
$$

The density matrix describes all the physical properties of a state!

How mixed is a state?

Measure of information: purity $\operatorname{tr}\left(\rho^{2}\right)$

Examples

$$
\begin{aligned}
\rho=|\psi\rangle\langle\psi| & \Rightarrow \quad \operatorname{tr}\left(\rho^{2}\right)=1 \\
\rho=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| & \Rightarrow \quad \operatorname{tr}\left(\rho^{2}\right)=\frac{1}{2}
\end{aligned}
$$

Other measures: entropies (later...)

Composed systems

Several Qubits

Hilbert space of 1 qubit

$$
\mathcal{H}_{1}=\mathbb{C}^{2}=\operatorname{span}\{|0\rangle,|1\rangle\}=\operatorname{span}\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

Hilbert space of n Qubits

$$
\begin{aligned}
\mathcal{H}_{n} & =\mathcal{H}_{1} \otimes \mathcal{H}_{1} \otimes \ldots \otimes \mathcal{H}_{1}=\mathcal{H}_{1}^{\otimes n} \\
& =\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}=\mathbb{C}^{2 \otimes n} \\
& =\operatorname{span}\left\{\left|i_{1} i_{2} \ldots i_{n}\right\rangle\right\}_{i_{j} \in\{0,1\}} \\
& =\mathbb{C}^{2^{n}}
\end{aligned}
$$

Example: 2 qubits

$$
\begin{aligned}
\mathcal{H}_{2} & =\mathbb{C}^{2} \otimes \mathbb{C}^{2} \\
& =\operatorname{span}\{|0\rangle \otimes|0\rangle,|0\rangle \otimes|1\rangle,|1\rangle \otimes|0\rangle,|1\rangle \otimes|1\rangle\} \\
& =\operatorname{span}\left\{\binom{1}{0} \otimes\binom{1}{0},\binom{1}{0} \otimes\binom{0}{1},\binom{0}{1} \otimes\binom{1}{0},\binom{0}{1} \otimes\binom{0}{1}\right\} \\
& =\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

Examples of normalized states

$$
|\phi\rangle=|0\rangle \otimes|1\rangle=:|0\rangle|1\rangle=:|01\rangle
$$

simplifying notation

$$
|\psi\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
$$

d-dimensional systems

Hilbert space of dimension d

$$
\mathcal{H}=\mathbb{C}^{d}=\operatorname{span}\{|0\rangle,|1\rangle, \ldots,|d-1\rangle\}
$$

Example: $d=3$

$$
\begin{gathered}
\mathcal{H}=\mathbb{C}^{3}=\operatorname{span}\{|0\rangle,|1\rangle,|2\rangle\} \\
|\psi\rangle=\frac{|0\rangle+|1\rangle-|2\rangle}{\sqrt{3}}
\end{gathered}
$$

Mixed states on many qubits

Example: 2 qubits. Source prepares

- state $|\phi\rangle=|01\rangle$ with probability p
- state $|\psi\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}$ with probability $1-p$

Density matrix

$$
\begin{aligned}
\rho & =p|\phi\rangle\langle\phi|+(1-p)|\psi\rangle\langle\psi| \\
& =p|01\rangle\langle 01|+(1-p) \frac{(|01\rangle-|10\rangle)(\langle 01|-\langle 10|)}{2} \\
& =\frac{1+p}{2}|01\rangle\langle 01|+\frac{1-p}{2}(-|01\rangle\langle 10|-|10\rangle\langle 01|+|10\rangle\langle 10|) \\
& =\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1+p & p-1 & 0 \\
0 & p-1 & 1-p & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Density matrix of many qubits

Mixed state of n qubits can be expanded in terms of Pauli matrices

$$
\rho=\frac{1}{2^{n}} \sum_{i_{j} \in\{0, x, y, z\}} \underbrace{r_{i_{1} \ldots i_{n}}}_{\in \mathbb{R}} \sigma_{i_{1}} \otimes \ldots \otimes \sigma_{i_{n}} \in \mathcal{M}_{2^{n} \times 2^{n} \text { with } \sigma_{0}=\mathbb{1}}^{\quad \text { analogue of Bloch vector (not all vectors are allowed!) }}
$$

Mixed states by forgetting: partial trace

If we forget (or do not have access to) the state of system B

Density matrix of A is given by the partial trace of $\rho_{A B}$ over system B

$$
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{k=0}^{|B|-1}\left(\mathbb{1}_{A} \otimes\left\langle\left. k\right|_{B}\right) \rho_{A B}\left(\mathbb{1}_{A} \otimes|k\rangle_{B}\right)\right.
$$

Measurement statistics on A do not change

$$
\operatorname{tr}\left(\rho_{A B}|\alpha\rangle\left\langle\left.\alpha\right|_{A} \otimes \mathbb{1}_{B}\right)=\operatorname{tr}\left(\rho_{A}|\alpha\rangle\left\langle\left.\alpha\right|_{A}\right)\right.\right.
$$

Examples

$$
\begin{aligned}
& =\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)
\end{aligned}
$$

We obtained a mixed state of one qubit from a (pure) state of two qubits by forgetting one qubit!

Entanglement

Schrödinger 1932
(6)

 frowe in Aophen I

System I.
throbich x
Thelen f. $\alpha(* t)$
$\sin ($ righel. $) g_{y}$. A $(Z \log$ val $)$
Tuni q.joithen $\alpha_{k}(x t), A_{k}$.

$$
\alpha(x, t)=\sum a_{k} \alpha_{1 / t}
$$

$$
\beta(y, t)
$$

os
$A_{k}(y, t), B_{k}$.

$$
\beta(t t)=\sum b_{t} \beta_{A}
$$

Schrödinger 1932

The claim that the measurement restricts the ψ-function to the subspace belonging to the measurement result has the strange consequence that the ψ-function of a system is changed by the performance of a measurement on a different, far separated system and through the transmission of the message.

System I.
Onorkinist F

$$
\text { System } \pi
$$

$$
\beta(y, t)
$$

$$
B
$$

$$
A_{k}(y, t), O_{k}
$$

$$
\beta_{(t)}=\sum b_{x} \beta_{l}
$$

Schrödinger 1932

If we think of the two systems as a whole the ψ-function of this joint system is given by

$$
\psi(t, y)=\sum_{k} \sum_{l} a_{k} b_{p} \alpha_{k} \rho_{\rho}
$$

If we couple the systems for a short while and decouple them afterwards, the ψ-function acquires the form

$$
\psi(t, y)=\sum_{i} \sum_{l} c_{k l} \alpha_{k} \beta_{l}
$$

where in general $c_{\text {te }}: c_{\text {tom }}=c_{\text {ke }}: c_{\text {sim }}$ is not true. There remains a dependence, even if we separate the systems widely.

Schrödinger 1932

A subsequent measurement of the quantity B on system II transforms the joint ψ-function into

$$
\psi(t, y)=c^{\prime} \cdot \sum_{k} c_{h l} \alpha_{h} \beta_{l}
$$

which depends on the measured B_{e}. This makes it a bit difficult to view the change in the ψ-function as a Naturvorgang*
*the matter becomes even more strange, if we do not measure B on the American system, but if we measure a different, with B non-commuting integral.

Schrödinger 1932
(\%)

 myzütron. ${ }^{x}$

 mus.

 is mis withencurkter Inurs. nilogure

Pure State Entanglement

Two systems A and B, finite-dimensional

$$
A \cong \mathbb{C}^{d}, d \in \mathbb{N},|A|:=d, \quad B \cong \mathbb{C}^{|B|}
$$

Joint system

$$
A B:=A \otimes B \cong \mathbb{C}^{|A|} \otimes \mathbb{C}^{|B|} \cong \mathbb{C}^{|A B|}
$$

$|\Psi\rangle_{A B} \in A B$ is called separable if $|\Psi\rangle_{A B}=|\psi\rangle_{A} \otimes\left|\psi^{\prime}\right\rangle_{B}$ otherwise it is called entangled.
Example: $|\Psi\rangle_{A B}=|0\rangle_{A} \otimes|0\rangle_{B}$ separable

$$
|\Psi\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)_{\text {entangled }}
$$

Examples

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|00+11\rangle
$$

Entangled state of n qubits

$$
\begin{aligned}
& |\psi\rangle=\sum c_{i_{1} i_{2} \ldots i_{n}}\left|i_{1}\right\rangle\left|i_{2}\right\rangle \ldots\left|i_{n}\right\rangle \\
& \quad \text { with } c_{i_{1} i_{2} \ldots i_{n}} \in \mathbb{C} \text { such that } \sum\left|c_{i_{1} i_{2} \ldots i_{n}}\right|^{2}=1
\end{aligned}
$$

(Not equal to n Bloch spheres!)
When measuring n qubits one can extract at most n bits of information, Holevo's theorem
(Holevo's theorem)

Mixed-State Entanglement

The density operator ρ is separable iff it can be decomposed into product states

$$
\rho_{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|_{A} \otimes \mid \psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|_{B}\right.
$$

Equivalent: for some probabilities p_{i} and density matrices ρ_{A}^{i} and ρ_{B}^{i}

$$
\rho_{A B}=\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}
$$

Werner, 1989
If a state is not separable, we say it is entangled.

Example: Bell state

The wave function

$$
\psi=\frac{1}{\sqrt{2}}|00\rangle+|11\rangle
$$

corresponds to the density operator

$$
\begin{aligned}
\rho & =\frac{1}{2}|00+11\rangle\langle 00+11| \\
& =\frac{1}{2}(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11| \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

which is entangled.

Further Examples

Separable states

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
\frac{1}{3} & 0 & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 \\
0 & 0 & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & 0 & \frac{1}{3}
\end{array}\right) \quad\left(\begin{array}{cccc}
\frac{1}{4} & 0 & 0 & 0 \\
0 & \frac{1}{4} & 0 & 0 \\
0 & 0 & \frac{1}{4} & 0 \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right)
$$

Entangled state

$$
\left(\begin{array}{cccc}
\frac{1}{8} & 0 & 0 & \frac{2}{8} \\
0 & \frac{1}{8} & 0 & 0 \\
0 & 0 & \frac{1}{8} & 0 \\
\frac{2}{8} & 0 & 0 & \frac{1}{8}
\end{array}\right)
$$

Entanglement Criteria
 Excursion to current research

The Peres-Horodecki Criterion

Separability $\underset{\neq}{\Longrightarrow}$
PPT (positive partial transpose)

$$
\begin{gathered}
\rho_{A B}=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right) \\
\text { entangled }
\end{gathered}
$$

The Peres-Horodecki Criterion

A Hierarchy of Criteria

de Finetti (1937); Diaconis \& Freedman; Størmer, Hudson \& Moody; Raggio \& Werner; Caves, Fuchs \& Schack; König \& Renner, Christandl, König, Mitchison \& Renner (2006)

An active research field!

How close to separable is $\rho_{A B}$ if a k-extension is found? How long does it take to check if a k-extension exists?

Measurements and Time Evolution

Measurements

Labelling with eigenvalues often convenient, but not necessary
projective \longleftrightarrow set of orthogonal projectors that measurement sum to identity

POVMs

POVM

positive operator-valued measure
set of positive-semidefinite operators that sum to identity

$$
\begin{array}{r}
\left\{Q_{i}\right\}, Q_{i} \geq 0, \sum_{i} Q_{i}=\mathrm{id} \\
\underbrace{\langle\phi| Q_{i}|\phi\rangle=\left\langle\left.\phi\right|_{A}\left\langle\left. 0\right|_{B} P_{i} \mid \phi\right\rangle_{A} \mid 0\right\rangle_{B} \geq 0}
\end{array} \quad \begin{array}{r}
\sum_{i} Q_{i}=\sum_{i}\left\langle\left. 0\right|_{B} P_{i} \mid 0\right\rangle_{B} \\
=\left\langle\left. 0\right|_{B}\left(\sum_{i} P_{i}\right) \mid 0\right\rangle_{B} \\
=\left\langle\left. 0\right|_{B} \operatorname{id}_{A B} \mid 0\right\rangle_{B}=\mathrm{id}_{A}
\end{array}
$$

POVMs: Examples

Example I: Mixture of two projective measurements

$$
Q_{0}=\frac{1}{2}|0\rangle\langle 0|, Q_{1}=\frac{1}{2}|1\rangle\langle 1|, Q_{3}=\frac{1}{2}|-\rangle\langle-|, Q_{4}=\frac{1}{2}|-\rangle\langle-|
$$

with 50% probability measure in z-direction with 50% probability meaure in x-direction

Example 2:Tetrahedron

$$
Q_{i}=\frac{1}{2}\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right|=\frac{1}{2} \frac{1}{2}\left(\mathrm{id}+\vec{a}_{i} \cdot \vec{\sigma}\right)
$$

$a_{0 / 1}=\sqrt{\frac{2}{3}}\left(\pm 1,0,-\frac{1}{\sqrt{2}}\right), a_{2 / 3}=\sqrt{\frac{2}{3}}\left(0, \pm 1, \frac{1}{\sqrt{2}}\right)$

Time Evolution

with time-independent Hamiltonian for a fixed amount of time

Example: Qubit rotation

$$
\begin{gathered}
U_{t}=e^{i t \vec{e} \cdot \frac{\vec{\sigma}}{2}} \quad U_{t} \rho U_{t}^{\dagger}=\frac{1}{2}\left(\mathrm{id}+U_{t}(\vec{r} \cdot \vec{\sigma}) U_{t}^{\dagger}\right)=\frac{1}{2}\left(\mathrm{id}+\left(R_{t} \vec{r}\right) \cdot \vec{\sigma}\right) \\
\text { rotations in the Bloch sphere }
\end{gathered}
$$

Rotations in the Bloch sphere

$$
U_{t}=e^{i t \vec{e} \cdot \frac{\vec{\sigma}}{2}} \quad U_{t} \rho U_{t}^{\dagger}=\frac{1}{2}\left(\mathrm{id}+U_{t}(\vec{r} \cdot \vec{\sigma}) U_{t}^{\dagger}\right)=\frac{1}{2}\left(\mathrm{id}+\left(R_{t} \vec{r}\right) \cdot \vec{\sigma}\right)
$$

Example: magnetic field in x-direction, qubit in z-direction qubit rotates around x-axis

Example: Hadamard transform

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{\sigma_{x}+\sigma_{z}}{\sqrt{2}}=i e^{i \pi\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \cdot \frac{\vec{\rightharpoonup}}{2}} \quad \sqrt{ } 2
$$

Time Evolution

Physical Operations as CPTP Maps

CPTP maps

Operator-Sum Representation

$$
\begin{aligned}
& \Lambda\left(\rho_{A}\right)=\operatorname{tr}_{B^{\prime}} U\left(\rho_{A} \otimes|0\rangle\left\langle\left. 0\right|_{B}\right) U^{\dagger}\right.=\sum_{i}\left\langle\left. i\right|_{B^{\prime}} U \mid 0\right\rangle_{B} \rho_{A}\left\langle\left. 0\right|_{B} U^{\dagger} \mid i\right\rangle_{B^{\prime}} \\
&=\sum_{i} E_{i} \rho_{A} E_{i}^{\dagger} \\
& \begin{array}{l}
\text { Kraus operators: } \\
\text { matrices, mapping A into A' }
\end{array}
\end{aligned}
$$

CPTP maps: Examples

Depolarising channel
Bit flip channel

$$
\Lambda(\rho)=(1-p) \rho+p \frac{1}{2} \mathbf{1}=\left(1-\frac{3}{4} p\right) \rho+\frac{1}{4} p(X \rho X+\underbrace{Y} \rho Y+Z \rho Z)
$$

$$
\Lambda(\rho)=(1-p) \rho+p X \rho X
$$

$$
\Lambda(\rho)=(1-p) \rho+p Z \rho Z
$$

Kraus operator

Phase flip channel

Amplitude damping channel

$$
\left.\begin{array}{c}
\Lambda(\rho)=E_{0} \rho E_{0}^{\dagger}+E_{1} \rho E_{1}^{\dagger}
\end{array}\right) .
$$

Measurements as CPTP maps

for simplicity for projective ones only

Example: z-axis

$$
\Lambda(\rho)=(\operatorname{tr}|0\rangle\langle 0| \rho)|0\rangle\langle 0|+(\operatorname{tr}|1\rangle\langle 1| \rho)|1\rangle\langle 1|=\left(\begin{array}{cc}
p_{0} & 0 \\
0 & p_{1}
\end{array}\right)
$$

Entangled with Environment

Distinguishing Quantum States

Distances

overlap or fidelity for pure states $\quad|\langle\phi \mid \psi\rangle|$ overlap or fidelity for mixed states $F(\rho, \sigma)=\operatorname{tr} \sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}}$ symmetric!

$$
\|\alpha\|_{1}=\operatorname{tr} \sqrt{\alpha \alpha^{\dagger}}
$$

trace distance for mixed states $\frac{1}{2}\|\rho-\sigma\|_{1}$

Application of nonorthogonal states: The first idea for a quantum technology

```
This paper treats a class of codes made possible by
restrictions on measurement related to the uncertainty
principal. Two concrete examples and some general
results are given.
```

$$
\begin{gathered}
\text { Conjugate Coding }{ }^{\star} \\
\text { Stephen Wiesner } \\
\text { Columbia University, New York, N.Y. }
\end{gathered}
$$

Wiesner Conjugate Coding

receiving first message= measuring vertical/ horizontal
receiving second
message=
measuring right/left

II. Quantum Computation

Computer Science: Computability

Concept:

Universal Turing machine

Question:
Are all functions computable by the universal Turing machine?
Answer: No!
Example: the function that asks whether the
Turing machine halts for algorithm X on input 0

Circuit model

$\stackrel{\text { input length }}{ }$ Build-up for gates
$f:\{0,1\}^{n} \rightarrow\{0,1\}$
Boolean function
$\begin{array}{ccc}x_{1} & \\ x_{2} & \\ \vdots \\ \vdots \\ x_{n} & f(x) \\ \text { input bits }\end{array}$

Gate Truth table

Classical universal set of gates

A set of gates is universal if for all n and for any Boolean function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

can be implemented by a circuit using only gates from the set and ancillas (additional wires with input bit 0).
Theorem: \{NAND, FANOUT\} form a universal set.

However...

- $\exp (\mathrm{n})$ gates are needed to compute an arbitrary function.
- The NAND gate is irreversible.

Computational Complexity

Given a function of input size n, how long does it take to compute it?

Equivalent formulations

How many steps does the Turing machine have to do? How many gates are needed?

Examples of functions

Addition

$$
\begin{array}{rr}
& x_{1} x_{2} \ldots x_{n} \\
+\quad & y_{1} y_{2} \ldots y_{n} \\
\hline= & z_{0} z_{1} z_{2} \ldots z_{n}
\end{array}
$$

Multiplying and factoring

$$
z_{1} z_{2} \ldots z_{n}=x_{1} x_{2} \ldots x_{n} \times y_{1} y_{2} \ldots y_{n}
$$

Examples of complexity

Complexity Classes of Decision Problems

P: functions solved with poly(n) circuits
NP: functions verified with poly(n) circuits
EXP: functions solved with $\exp (\mathrm{n})$ circuits

P is strictly smaller than EXP:
\# boolean functions with input size $n: 2^{2^{n}}$
(2 possible outputs for each of the 2^{n} input strings)
\# boolean functions implementable with circuit size $\operatorname{poly}(n)$:

$$
\exp (\operatorname{poly}(n))
$$

Complexity classes of Decision Problems

Reversible Computation

Quantum computation

Single-qubit quantum gates

Pauli gates

Elementary rotations around x, y and z axes
(generated by the Pauli matrices)
$|0\rangle$
$|1\rangle$$\quad R_{X}(\theta) \quad \begin{aligned} & \cos \left(\frac{\theta}{2}\right)|0\rangle-i \sin \left(\frac{\theta}{2}\right)|1\rangle \\ & -i \sin \left(\frac{\theta}{2}\right)|0\rangle+\cos \left(\frac{\theta}{2}\right)|1\rangle\end{aligned}$

$$
\begin{aligned}
& R_{x}(\theta)=\left(\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & -i \sin \left(\frac{\theta}{2}\right) \\
-i \sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right) \\
& R_{z}(\theta)=\left(\begin{array}{cc}
e^{-i \frac{\theta}{2}} & 0 \\
0 & e^{i \frac{\theta}{2}}
\end{array}\right) \\
& R_{y}(\theta)=\left(\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & -\sin \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right)
\end{aligned}
$$

Single-qubit quantum gates

Phase gate

$\pi / 8$ gate

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & \exp (i \pi / 4)
\end{array}\right)
$$

Hadamard gate
$|0\rangle$
$|1\rangle$

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Controlled quantum gates

Controlled operation

$$
C U=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & u_{11} & u_{12} \\
0 & 0 & u_{21} & u_{22}
\end{array}\right)
$$

Controlled NOT Gate

$$
C N O T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Example: Controlled Phase Gate

$$
C Z=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Universal quantum gates

A set of quantum gates is universal if any quantum operation acting on n qubits can be implemented by a circuit using only those gates and ancillas (additional qubits in state $|0\rangle$), for all n.

Theorem: CNOT and universal single qubit gates form a universal set (proof in exercise series 5).

Remark:This set is not finite (we need rotations for all angles).
However, it is possible to make a finite gate set approximately universal.

Quantum complexity classes

BQP is the class of functions $f^{(n)}:\{0,1\}^{n} \rightarrow\{0,1\}$ that can be computed with poly(n) quantum gates with

$$
\operatorname{Prob}[\text { success }] \geq \frac{2}{3}
$$

Theorem:
If an algorithm obtains the correct result with probability $\geq \frac{2}{3}$
we only need to repeat it $O(\log (1 / \varepsilon))$ times to succeed with probability $1-\varepsilon$.
(proof uses majority vote and law of large numbers)

Quantum complexity classes

