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What is it?

• All-round theory course for quantum 
information
(heavy-theory course given by Prof. Renner)

• target audience: experimental physicists
current or future
Bachelor/Master/PhD
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 0. Introduction
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Content

• What is Quantum Information and 
Computation?

• What is Entanglement?

• What is a Bell Inequality? 

• What is Quantum Tomography?

• What is Shor's Algorithm?

• What is Quantum Error Correction?
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Testat

• active participation in the course and 
exercises

• 75% of exercises
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I. Quantum Information
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Information
• Shannon, 1948

• Concept „information“ independent of 
physical implementation

• string of bits

• all physical information can be represented in 
this way → Information Theory

01011010100
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Computation
• Turing, 1948

• Concept „computation“ independent of 
physical implementation

• Turing machine

• Church-Turing thesis: 
all physical computation can be represented by 
a Turing machine→ Computer Science
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Quantum Mechanics
• Shannon & Turing‘s notions (1948)

based on classical physics
information has always definite value

• Quantum Mechanics (1900s)
atoms not governed by classical physics

• State of system ↔ wave function

definite measurement values do not exist 
prior to measurement, in principle!
Einstein, Podolsky & Rosen (1935), Bell (1967), Kochen & Specker (1967)

01011010100

Shannon/Turing do 
not directly apply!

Shannon/Turing can in 
principle not apply!

Need for theory of information and 
computation that applies to QM
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The Bit

• The bit = unit of information

on/off

heads/tails

north pole/ south pole

• variable x ∈ {0, 1}
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The Bit

• random bit

child plays with switch

toss of a coin

travel lottery

• random variable X
range {0, 1} p(0) = prob[X = 0]

p(1) = prob[X = 1]
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The Quantum Bit or Qubit

• superposition principle

• probability amplitudes

• normalisation

• angles

• in nature: polarisation of photon
                         electron / nuclear spin 1/2
                         ground vs excited state

�0� → |0� =
�

1
0

�
�1� → |1� =

�
0
1

�
state of a 

qubit

|α|2 + |β|2 = 1

|ψ� = α|0�+ β|1� =
�

α
β

�

|ψ� = eiγ
�
cos

θ

2
|0�+ eiφ sin

θ

2
|1�

�

overall phase 
does not matter

Bloch sphere 
representation

infinitely many 
states
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• Qubit = Bloch vector

• Bloch vector = infinite amount of information

• Can qubit store an infinite amount of information?

• No! Measurement retrieves only one bit!

• State of qubit after measurement = outcome

θ = θ0θ1θ2...

φ = φ0φ1φ2...
binary expansion

Reliable Quantum State Tomography

Matthias Christandl* and Renato Renner†

Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
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Quantum state tomography is the task of inferring the state of a quantum system by appropriate

measurements. Since the frequency distributions of the outcomes of any finite number of measurements

will generally deviate from their asymptotic limits, the estimates computed by standard methods do not in

general coincide with the true state and, therefore, have no operational significance unless their accuracy is

defined in terms of error bounds. Here we show that quantum state tomography, together with an

appropriate data analysis procedure, yields reliable and tight error bounds, specified in terms of confidence

regions—a concept originating from classical statistics. Confidence regions are subsets of the state space

in which the true state lies with high probability, independently of any prior assumption on the distribution

of the possible states. Our method for computing confidence regions can be applied to arbitrary

measurements including fully coherent ones; it is practical and particularly well suited for tomography

on systems consisting of a small number of qubits, which are currently in the focus of interest in

experimental quantum information science.

DOI: 10.1103/PhysRevLett.109.120403 PACS numbers: 03.65.Wj, 02.50.!r, 03.67.!a

The state of a classical system can, in principle, be
determined to arbitrary precision by applying a single
measurement to it. Any imprecisions are due solely to
inaccuracies of the measurement technique but not of
fundamental nature. This is different in quantum theory.
It follows from Heisenberg’s uncertainty principle that
measurements generally have a random component and
that individual measurement outcomes only give limited
information about the state of the system—even if an ideal
measurement device is used. To illustrate this difference, it
is useful to take an information-theoretic perspective.
Assume, for instance, that we are presented with a two-
level system about which we have no prior information
except that it has been prepared in a pure state, and our task
is to determine this state. If the system was classical, there
are only two possible pure states, and one single bit of
information is therefore sufficient for its full description.
Furthermore, a single measurement of the system suffices
to retrieve this bit. If the system was quantum, however, the
situation becomes more interesting. A two-level quantum
system (a qubit) admits a continuum of pure states that can,
for example, be parametrized by a point on the Bloch
sphere. To determine this point to a given accuracy !, at
least log2ð4=!2Þ bits of information are necessary [1].
Conversely, according to Holevo’s bound [2], any mea-
surement applied to a single qubit will provide us with at
most one bit of information. And even if n identically
prepared copies of the qubit were measured, at most
log2ðnþ 1Þ bits of information about their state can be
obtained [3]. Hence, the accuracy,!, to which the state can
be determined always remains finite (! % 2=

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
),

necessitating the specification of error bars.
The impact that randomness in measurement data has on

the accuracy of estimates has been studied extensively in

statistics and, in particular, estimation theory [4]. The latter
is concerned with the general problem of estimating the
values of parameters from data that depend probabilisti-
cally on them. The data may be obtained from measure-
ments on a quantum system with parameter-dependent
state, as considered in quantum estimation theory [5].
Quantum state tomography can be seen as a special in-
stance of quantum estimation, where one aims to estimate a
set of parameters large enough to determine the system’s
state completely [6–12].
An obvious choice of parameters are the matrix elements

of a density operator representation of the state. Because
of the finite accuracy, however, the individual estimates
for the matrix elements do not generally correspond to
a valid density operator (for instance, the matrix may
have negative eigenvalues). This problem is avoided with
other techniques, such as maximum likelihood estimation
(MLE) [10,13,14], which has been widely used in experi-
ments [15–21], or Bayesian estimation [5,22–27].
InMLE, an estimate for the error bars canbeobtained from

the width of the likelihood function, which is approximated
by the Fisher information matrix [12,13,28–31]. In current
experiments, one also usesnumerical plausibility tests known
as ‘‘bootstrapping’’ or,moregenerally, ‘‘resampling’’ [20,32]
in order to obtain bounds on the errors. However, despite
being reasonable in many practical situations, these bounds
are not known to have a well-defined operational interpreta-
tion and, in the case of the resamplingmethod,may lead to an
underestimate of the errors [33].
In contrast, Bayesian methods can be used to calculate

‘‘credibility regions’’, i.e., subsets of the state space in
which the state is found with high probability. This
probability, however, depends on the choice of a ‘‘prior’’,
corresponding to an assumption about the distribution
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precision on Bloch 
sphere, see 

Christandl & 
Renner, PRL 2012

Measuring a Qubit
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Measuring a Qubit

• Observable= self-adjoint operator

• Measurement:
probabilistic and disturbing!
only 1 bit information, 
but we can choose which!

here, 2x2 Hermitian 
matrix, 

eigenvalues (real)spectral theorem eigenvectors (orthonormal)

measurement 
of A

|ψ�

prob[outcome = i] = |�ψ|φi�|2

= tr|ψ��ψ||φi��φi|

i, |φi�

A = a0|φ0��φ0|+ a1|φ1��φ1|

post-measurement stateoutcome

enclosed angle

= cos2
θi
2
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Qubit
•              orthonormal, i.e. antipodal

⇒ measure, if state is in one of two antipodes: 

• North or south pole?

• Madrid or Wellington?

• Bangkok or Lima?

|φ0�, |φ1�
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Qubit
• State: North pole

Measurement: North or south pole?
Result: North pole

• State: Copenhagen
Measurement: North or south pole?
Result: North pole (Cos2 35°/2≈91%) 

• State: Singapore
Measurement: North or south pole?
Result: North pole (Cos2 90°/2=50%)

50%

50%

91%

9%
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The projector

measurement 
of A

|ψ�
prob[outcome = i] = |�ψ|φi�|2

= tr|ψ��ψ||φi��φi|

i, |φi�

observable consequences depend 
only on projector |ψ��ψ| projector, 

trace =1

Pauli matrices

|ψ��ψ| = 1

2
(1+ �r · �σ)

||r||2 = 1

σy =

�
0 −i
i 0

�
σx =

�
0 1
1 0

�
σz =

�
1 0
0 −1

�

�r · �σ = rxσx + ryσy + rzσz

17



Mixed qubit
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Mixed states: the problem

Incomplete knowledge of the system:
we may have state       with probability

preparation

pj|ψj�

How to represent our knowledge of the state?
Let us see what happens if we measure the state...

Observable Outcomes Post-measurement states

A {ai} {|αi�}

|ψj�
pj

noisy!
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Mixed states: derivation

measurement 
of A

prob[ai] =
�

j

pj |�αi|ψj�|2

=
�

j

tr

�
|ψj��ψj | |αi��αi|

�

= tr





��

j

pj |ψj��ψj |

� �� �
=ρ

�
|αi��αi|





Probability of obtaining outcome ai

prob[ai]
|αi�

The probability is only 
dependent on  ρ

preparation
pj , |ψj�

probability

not necessarily orthogonal
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Density matrix

Description by density matrix

Incomplete knowledge of the system:
we may have state       with probability pj|ψj�

ρ =
�

j

pj |ψj��ψj |

Special case of a pure state: perfect knowledge

we have state       with probability 1|ψ�

ρ = |ψ��ψ|

21



Bloch representation

preparation
pj , |ψj�

probability

not necessarily orthogonal

measurement 
of A

i, |φi� prob[outcome = i]

=
�

i

pjtr|ψj��ψj ||φi��φi|

= tr(
�

i

pj |ψj��ψj |
� �� �

=ρ

)|φi��φi|
average of the Bloch vectors 

1

2
+
1

2

=+= =

shorter Bloch 
vector
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Bloch ball

ρ =
1

2
(1+ �r · �σ)

Pauli matrices

�r · �σ =
�

i

riσi

ρlength=         ||�r||2

noise leads to shortening of 
Bloch vector
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Properties of density matrices

positive semidefinite
(non-negative eigenvalues)

In general,

2

I. INTRODUCTION

A ∼= Cd, d ∈ N, |A| := d, B ∼= C|B|

AB := A⊗B ∼= C|A| ⊗ C|B| ∼= C|AB|

|Ψ�AB ∈ AB

|Ψ�AB = |ψ�A ⊗ |ψ��B

ρSys ≥ 0, tr ρSys = 1

ρ ≥ 0, tr ρ = 1

ρAB

ρAB =
�

i

piρ
i
A ⊗ ρiB

ρΓAB =
�

i

piρ
i
A ⊗ (ρiB)

T

ρiA

ρiB

|Ψ�AB =
1√
2
(|0�A ⊗ |0�B + |1�A ⊗ |1�B)

ρAB = |Ψ��Ψ|AB =





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





ρAB =





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





The density matrix describes all 
the physical properties of a state!

On the other hand, any state has an eigenvector decomposition

ρ =
�

i

pi|ψi��ψi| ∀ρ ∈ S(H)
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How mixed is a state?
Measure of information: purity

Other measures: entropies (later...)

tr(ρ2)

Examples
ρ = |ψ��ψ| ⇒ tr(ρ2) = 1

ρ =
1

2
|0��0|+ 1

2
|1��1| ⇒ tr(ρ2) =

1

2
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Composed systems
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Several Qubits

Hilbert space of     qubit

H1 = C2 = span {|0� , |1�} = span

��
1
0

�
,

�
0
1

��

Hilbert space of    Qubitsn

1

Hn = H1 ⊗H1 ⊗ . . .⊗H1 = H
⊗n
1

= C2 ⊗ C2 ⊗ . . .⊗ C2 = C2⊗n

= span {|i1 i2 . . . in�}ij∈{0,1}

= C2n
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Example: 2 qubits
H2 = C2 ⊗ C2

= span {|0� ⊗ |0� , |0� ⊗ |1� , |1� ⊗ |0� , |1� ⊗ |1�}

= span

��
1
0

�
⊗

�
1
0

�
,

�
1
0

�
⊗

�
0
1

�
,

�
0
1

�
⊗

�
1
0

�
,

�
0
1

�
⊗

�
0
1

��

= span










1
0
0
0



 ,





0
1
0
0



 ,





0
0
1
0



 ,





0
0
0
1










Examples of normalized states

|φ� = |0� ⊗ |1� =: |0�|1� =: |01� |ψ� = |01� − |10�√
2

simplifying notation
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d-dimensional systems
Hilbert space of  dimension d

H = Cd = span {|0� , |1� , . . . , |d− 1�}

Example: d = 3

H = C3 = span {|0� , |1� , |2�}

|ψ� = |0�+ |1� − |2�√
3

29



- state                  with probability

- state                         with probability

Mixed states on many qubits
Example: 2 qubits. Source prepares

|ψ� = |01� − |10�√
2

|φ� = |01�

ρ = p |φ��φ|+ (1− p) |ψ��ψ|

= p |01��01|+ (1− p)
(|01� − |10�)(�01|− �10|)

2

=
1 + p

2
|01��01|+ 1− p

2
(−|01��10|− |10��01|+ |10��10|)

=
1

2





0 0 0 0
0 1 + p p− 1 0
0 p− 1 1− p 0
0 0 0 0





p

1− p

Density matrix

30



Density matrix of many 
qubits

analogue of Bloch vector (not all vectors are allowed!)

ρ =
1

2n

�

ij∈{0,x,y,z}

ri1...in� �� �
∈R

σi1 ⊗ . . .⊗ σin ∈ M2n×2n with σ0 =

Mixed state of     qubits can be expanded 
in terms of  Pauli matrices

n

31



Mixed states by forgetting:
partial trace

ρAB
ρA

If we forget (or do not have access to) the state of system B

Density matrix of A is given by the partial trace of       
over system B

ρAB

tr (ρAB |α��α|A ⊗ B) = tr (ρA|α��α|A)
Measurement statistics on A do not change

ρA = trB (ρAB) =

|B|−1�

k=0

( A ⊗ �k|B) ρAB ( A ⊗ |k�B)

32



Examples

ρAB = |0��0|A ⊗ |0��0|B ρA =
�

l

�l|B |0��0|A ⊗ |0��0|B |l�B

= |0��0|
�

l

�l|0��0|l� = |0��0|

ρA =
1

2

1�

l=0

�l|B |00 + 11��00 + 11||l�B

=
1

2
(|0��0|+ |1��1|)

ρAB =
1

2
|00 + 11��00 + 11|

We obtained a mixed state of one qubit from a (pure) state of 
two qubits by forgetting one qubit!
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Entanglement
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Schrödinger 1932
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Schrödinger 1932

The claim that the measurement restricts the     -function 
to the subspace belonging to the measurement result has 
the strange consequence that the     -function of a system 
is changed by the performance of a measurement on a 
different, far separated system and through the 
transmission of the message.
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Schrödinger 1932
If we think of the two systems as a whole the     -function 
of this joint system is given by

If we couple the systems for a short while and decouple 
them afterwards, the     -function acquires the form

where in general                             is   is not true. 
There remains a dependence, even if we separate the 
systems widely.  

37



Schrödinger 1932
A subsequent measurement of the quantity B on system II 
transforms the joint     -function into 

which depends on the measured      . This makes it a bit 
difficult to view the change in the     -function as a 
Naturvorgang*

*the matter becomes even more strange, if we do not 
measure B on the American system, but if we measure a 
different, with B non-commuting integral.
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Schrödinger 1932
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Pure State Entanglement

Two systems A and B, finite-dimensional

2

I. INTRODUCTION

A ∼= Cd
, d ∈ N, |A| := d, B ∼= C|B|

A central problem in quantum information theory is to characterize entanglement in quantum states
shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�

k
pkρA,k ⊗ ρB,k, for local states ρA,k and ρB,k and probabilities pk. Any separable state can

be created by local quantum operations and classical communication (LOCC) by Alice and Bob
and thus only contains classical correlations. Quantum states that are not separable are called
entangled. As the normalized Hermitian matrices on AB form a real vector space of dimension
d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density

matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),

decide which is the case.

This problem has been intensely studied in recent years (see e.g. [1–6]) with the norm given
either by the Euclidean norm �X�2 ≡ tr(X†X)1/2 or by the trace norm �X�1 ≡ tr

√
X†X.

The best-known algorithms for WSEP(�, || ∗ ||) [2, 3] (with the norm equal either to Euclidean or
trace norm) have worst-case complexity exp

�
O
�
|A|2|B|2 log(�−1))

��
. On the hardness side, Gurvits

[4] proved that WSEP(�, �∗�2) is NP-hard for � = exp(−O(d)), with d =
�
|A| · |B|; the dependence

on � was later improved to � = 1/ poly(d) [5]. The same results apply to the trace norm, since for
every l × l matrix, �X�1 ≥ �X�2 ≥ l−1/2�X�1.

A second problem closely related to the weak-membership problem for separability is the fol-
lowing:

Problem 2. BSS(�) (Best Separable State): Given a Hermitian matrix M on AB, estimate

maxσ∈S tr(Mσ) with additive error �.

The BSS(�) problem thus consists of optimizing a linear function over the convex set of sep-
arable states S. It is a standard fact in convex optimization [7] that linear optimization and
weak-membership over a convex set are equivalent tasks, which implies that BSS(�) can be used
to solve WSEP(δ, � ∗ �) and vice-versa, up to a poly(d) loss in the error parameters � and δ
(see [3] for a detailed analysis). The best known algorithm for BSS(�) has worst-case complexity
2(O((|A|+|B|)�M�∞ log(�−1))).12 The NP-hardness of the weak-membership problem for separability

1 �M�∞ is the operator norm of M , given by the maximum eigenvalue of
√
M†M .

2 The algorithm is nothing more than exaustive search, in which for an operator M with �M�∞ ≤ 1, one con-
siders �-nets [8, Lemma II.4] {|ak�}k and {|bk�}j for the A and B systems of sizes exp

�
O(|A| log(�−1))

�
and

exp
�
O(|B| log(�−1))

�
, respectively, and minimize �ak, bj |M |ak, bj� over k, j.

Joint system
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shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�

k pkρA,k ⊗ ρB,k, for local states ρA,k and ρB,k and probabilities pk. Any separable state can
be created by local quantum operations and classical communication (LOCC) by Alice and Bob
and thus only contains classical correlations. Quantum states that are not separable are called
entangled. As the normalized Hermitian matrices on AB form a real vector space of dimension
d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density

matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),

decide which is the case.

This problem has been intensely studied in recent years (see e.g. [1–6]) with the norm given
either by the Euclidean norm �X�2 ≡ tr(X†X)1/2 or by the trace norm �X�1 ≡ tr

√
X†X.

The best-known algorithms for WSEP(�, || ∗ ||) [2, 3] (with the norm equal either to Euclidean or
trace norm) have worst-case complexity exp

�
O
�
|A|2|B|2 log(�−1))

��
. On the hardness side, Gurvits

[4] proved that WSEP(�, �∗�2) is NP-hard for � = exp(−O(d)), with d =
�
|A| · |B|; the dependence

on � was later improved to � = 1/ poly(d) [5]. The same results apply to the trace norm, since for
every l × l matrix, �X�1 ≥ �X�2 ≥ l−1/2�X�1.

A second problem closely related to the weak-membership problem for separability is the fol-
lowing:

Problem 2. BSS(�) (Best Separable State): Given a Hermitian matrix M on AB, estimate

maxσ∈S tr(Mσ) with additive error �.

The BSS(�) problem thus consists of optimizing a linear function over the convex set of sep-
arable states S. It is a standard fact in convex optimization [7] that linear optimization and
weak-membership over a convex set are equivalent tasks, which implies that BSS(�) can be used
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matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
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Examples

|ψ� = 1√
2
|00 + 11�

Entangled state of n qubits
|ψ� =

�
ci1i2...in |i1� |i2� . . . |in�

with ci1i2...in ∈ C such that
�

|ci1i2...in |
2 = 1

(Not equal to n Bloch spheres!)

When measuring n qubits one can extract at 
most n bits of information, Holevo‘s theorem

(Holevo‘s theorem)
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A central problem in quantum information theory is to characterize entanglement in quantum states
shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�

k pkρA,k ⊗ ρB,k, for local states ρA,k and ρB,k and probabilities pk. Any separable state can
be created by local quantum operations and classical communication (LOCC) by Alice and Bob
and thus only contains classical correlations. Quantum states that are not separable are called
entangled. As the normalized Hermitian matrices on AB form a real vector space of dimension
d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density
matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),
decide which is the case.

This problem has been intensely studied in recent years (see e.g. [1–6]) with the norm given
either by the Euclidean norm �X�2 ≡ tr(X†X)1/2 or by the trace norm �X�1 ≡ tr

√
X†X.
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If a state is not separable, we say it is entangled.

The density operator    is separable iff it can be 
decomposed into product states

Equivalent: for some probabilities     and density 
matrices     and  
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subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density
matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),
decide which is the case.

This problem has been intensely studied in recent years (see e.g. [1–6]) with the norm given
either by the Euclidean norm �X�2 ≡ tr(X†X)1/2 or by the trace norm �X�1 ≡ tr

√
X†X.

The best-known algorithms for WSEP(�, || ∗ ||) [2, 3] (with the norm equal either to Euclidean or
trace norm) have worst-case complexity exp

�
O
�
|A|2|B|2 log(�−1))

��
. On the hardness side, Gurvits

[4] proved that WSEP(�, �∗�2) is NP-hard for � = exp(−O(d)), with d =
�
|A| · |B|; the dependence

on � was later improved to � = 1/ poly(d) [5]. The same results apply to the trace norm, since for
every l × l matrix, �X�1 ≥ �X�2 ≥ l−1/2�X�1.

A second problem closely related to the weak-membership problem for separability is the fol-
lowing:

ρAB =
�

i

pi |ψi��ψi|A ⊗ |ψi��ψi|B

Werner, 1989
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Example: Bell state

corresponds to the density operator

which is entangled.

The wave function

ρ =
1

2
|00 + 11� �00 + 11|

=
1

2
(|00� �00|+ |00� �11|+ |11� �00|+ |11� �11|

=





1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1





ψ =
1√
2
|00�+ |11�
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Further Examples





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









1
3 0 0 1

6
0 1

6 0 0
0 0 1

6 0
1
6 0 0 1

3





Entangled state

Separable states





1
8 0 0 2

8
0 1

8 0 0
0 0 1

8 0
2
8 0 0 1

8









1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4




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Entanglement Criteria
Excursion to current research
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The Peres-Horodecki Criterion
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A central problem in quantum information theory is to characterize entanglement in quantum states
shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�
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d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density
matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),
decide which is the case.

This problem has been intensely studied in recent years (see e.g. [1–6]) with the norm given
either by the Euclidean norm �X�2 ≡ tr(X†X)1/2 or by the trace norm �X�1 ≡ tr

√
X†X.

The best-known algorithms for WSEP(�, || ∗ ||) [2, 3] (with the norm equal either to Euclidean or
trace norm) have worst-case complexity exp

�
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�
|A|2|B|2 log(�−1))

��
. On the hardness side, Gurvits

[4] proved that WSEP(�, �∗�2) is NP-hard for � = exp(−O(d)), with d =
�
|A| · |B|; the dependence

on � was later improved to � = 1/ poly(d) [5]. The same results apply to the trace norm, since for
every l × l matrix, �X�1 ≥ �X�2 ≥ l−1/2�X�1.

A second problem closely related to the weak-membership problem for separability is the fol-
lowing:
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is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�

k pkρA,k ⊗ ρB,k, for local states ρA,k and ρB,k and probabilities pk. Any separable state can
be created by local quantum operations and classical communication (LOCC) by Alice and Bob
and thus only contains classical correlations. Quantum states that are not separable are called
entangled. As the normalized Hermitian matrices on AB form a real vector space of dimension
d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density
matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),
decide which is the case.

This problem has been intensely studied in recent years (see e.g. [1–6]) with the norm given
either by the Euclidean norm �X�2 ≡ tr(X†X)1/2 or by the trace norm �X�1 ≡ tr

√
X†X.

The best-known algorithms for WSEP(�, || ∗ ||) [2, 3] (with the norm equal either to Euclidean or
trace norm) have worst-case complexity exp

�
O
�
|A|2|B|2 log(�−1))

��
. On the hardness side, Gurvits

3

ρAB =





1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2





ρΓAB =





1
2 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 1

2





ρAB =





1
3 0 0 1

6
0 1

6 0 0
0 0 1

6 0
1
6 0 0 1

3





ρAB =





3
8 0 0 2

8
0 1

8 0 0
0 0 1

8 0
2
8 0 0 3

8





|Ψ�AB = |0�A ⊗ |0�B

A central problem in quantum information theory is to characterize entanglement in quantum states
shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�

k pkρA,k ⊗ ρB,k, for local states ρA,k and ρB,k and probabilities pk. Any separable state can
be created by local quantum operations and classical communication (LOCC) by Alice and Bob
and thus only contains classical correlations. Quantum states that are not separable are called
entangled. As the normalized Hermitian matrices on AB form a real vector space of dimension
d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density
matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),
decide which is the case.

This problem has been intensely studied in recent years (see e.g. [1–6]) with the norm given
either by the Euclidean norm �X�2 ≡ tr(X†X)1/2 or by the trace norm �X�1 ≡ tr

√
X†X.

The best-known algorithms for WSEP(�, || ∗ ||) [2, 3] (with the norm equal either to Euclidean or
trace norm) have worst-case complexity exp

�
O
�
|A|2|B|2 log(�−1))

��
. On the hardness side, Gurvits

separable

Separability            PPT (positive partial transpose)

3

ρAB =





1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2





⇒

�⇐

ρΓAB =





1
2 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 1

2





ρAB =





1
3 0 0 1

6
0 1

6 0 0
0 0 1

6 0
1
6 0 0 1

3





ρAB =





3
8 0 0 2

8
0 1

8 0 0
0 0 1

8 0
2
8 0 0 3

8





|Ψ�AB = |0�A ⊗ |0�B

A central problem in quantum information theory is to characterize entanglement in quantum states
shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�

k pkρA,k ⊗ ρB,k, for local states ρA,k and ρB,k and probabilities pk. Any separable state can
be created by local quantum operations and classical communication (LOCC) by Alice and Bob
and thus only contains classical correlations. Quantum states that are not separable are called
entangled. As the normalized Hermitian matrices on AB form a real vector space of dimension
d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density
matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),
decide which is the case.

3

ρAB =





1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2





⇒

�⇐

ρΓAB =





1
2 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 1

2





ρAB =





1
3 0 0 1

6
0 1

6 0 0
0 0 1

6 0
1
6 0 0 1

3





ρAB =





3
8 0 0 2

8
0 1

8 0 0
0 0 1

8 0
2
8 0 0 3

8





|Ψ�AB = |0�A ⊗ |0�B

A central problem in quantum information theory is to characterize entanglement in quantum states
shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�

k pkρA,k ⊗ ρB,k, for local states ρA,k and ρB,k and probabilities pk. Any separable state can
be created by local quantum operations and classical communication (LOCC) by Alice and Bob
and thus only contains classical correlations. Quantum states that are not separable are called
entangled. As the normalized Hermitian matrices on AB form a real vector space of dimension
d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density
matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),
decide which is the case.

46



quantum states

separable states

2

Measure Esq ED KD EC EF ER E∞
R EN

normalisation y y y y y y y y

faithfulness y n ? y y y y n

LOCC monotonicity y y y y y y y y

asymptotic continuity y ? ? ? y y y n

convexity y ? ? ? y y y n

strong superadditivity y y y ? n n ? ?

subadditivity y ? ? y y y y y

monogamy y ? ? n n n n ?

TABLE I: If no citation is given, the property either follows directly from the definition or was derived by

the authors of the main reference. Many recent results listed in this table have significance beyond the study

of entanglement measures, such as Hastings’ counterexample to the additivity conjecture of the minimum

output entropy [76] which implies that entanglement of formation is not strongly superadditive [79].

I. INTRODUCTION
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Squashed entanglement is the quantum analogue of the intrinsic information, which is defined

as

I(X;Y ↓Z) := inf
PZ̄|Z

I(X;Y |Z̄),

for a triple of random variables X,Y, Z [16]. The minimisation extends over all conditional prob-

ability distributions mapping Z to Z̄. It has been shown that the minimisation can be restricted

to random variables Z̄ with size |Z̄| = |Z|[17]. This implies that the minimum is achieved and in

particular that the intrinsic information only vanishes if there exists a channel Z → Z̄ such that

I(X;Y |Z̄) = 0. Whereas our work does not allow us to derive a dimension bound on the system

E in the minimisation of squashed entanglement and hence conclude that the minimisation is

achieved in general, we can assert such a bound if squashed entanglement vanishes: Corollary

?? implies that squashed entanglement vanishes only for separable ρAB . By Caratheodory’s theo-

rem, the number of terms in the separable decomposition of
�

i piρA,i ⊗ ρB,i can be bounded by

|AB|2, and thus ρABE =
�

i piρA,i ⊗ ρB,i ⊗ |i��i|E has vanishing conditional mutual information

with E = |AB|2. Equivalently, there exists a channel applied to a purification of ρAB resulting in

ρABE such that I(A;B|E)ρ vanishes.
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A central problem in quantum information theory is to characterize entanglement in quantum states
shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =�

k pkρA,k ⊗ ρB,k, for local states ρA,k and ρB,k and probabilities pk. Any separable state can
be created by local quantum operations and classical communication (LOCC) by Alice and Bob
and thus only contains classical correlations. Quantum states that are not separable are called
entangled. As the normalized Hermitian matrices on AB form a real vector space of dimension
d = |A|2|B|2 − 1 (we abbreviate dim(A) = |A|), the set of all states can be viewed as a compact,
convex subset of Rd containing the convex subset S ≡ SA:B of separable states.

A fundamental question is to decide, given a description of ρAB (say, as a rational vector in Rd)
whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.
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I. INTRODUCTION
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whether or not it is separable [1–6], i.e. whether or not it is contained in S. This can be formalized
as a decision problem via the weak membership problem. Given a norm || ∗ || on Rd and a closed
subset A ⊂ Rd, let ||ρ−A|| = minσ∈A ||ρ− σ|| be the distance from ρ to A.

Problem 1. WSEP(�, �∗�) (Weak membership problem for separability): Given a density
matrix ρAB with the promise that either (i) ρAB ∈ S or (ii) ||ρAB − S|| ≥ � (ρAB is far outside S),
decide which is the case.

This problem has been intensely studied in recent years (see e.g. [1–6]) with the norm given
either by the Euclidean norm �X�2 ≡ tr(X†X)1/2 or by the trace norm �X�1 ≡ tr

√
X†X.

The best-known algorithms for WSEP(�, || ∗ ||) [2, 3] (with the norm equal either to Euclidean or
trace norm) have worst-case complexity exp
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��
. On the hardness side, Gurvits

[4] proved that WSEP(�, �∗�2) is NP-hard for � = exp(−O(d)), with d =
�
|A| · |B|; the dependence

on � was later improved to � = 1/ poly(d) [5]. The same results apply to the trace norm, since for
every l × l matrix, �X�1 ≥ �X�2 ≥ l−1/2�X�1.

A second problem closely related to the weak-membership problem for separability is the fol-
lowing:
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2





ρAB =





1
3 0 0 1

6
0 1

6 0 0
0 0 1

6 0
1
6 0 0 1

3





ρAB =





2
3 0 0 1

3
0 0 0 0
0 0 0 0
1
3 0 0 1

3





ρAB =





3
8 0 0 2

8
0 1

8 0 0
0 0 1

8 0
2
8 0 0 3

8





ρAB1B2···Bk =
�

i

piρ
i
A ⊗ ρiB1

⊗ ρiB2
⊗ · · ·⊗ ρiBk

|Ψ�AB = |0�A ⊗ |0�B

A central problem in quantum information theory is to characterize entanglement in quantum states
shared by two or more parties [1]. A bipartite density matrix, or state, is a positive semidefinite
matrix ρAB on the tensor product AB ≡ A ⊗ B of finite dimensional complex vector spaces that
is normalized, meaning tr(ρAB) = 1. Such a state is separable if it can be written as ρAB =

de Finetti (1937); Diaconis & Freedman; Størmer, Hudson & Moody; Raggio & Werner; Caves, Fuchs & 
Schack; König & Renner,  Christandl, König, Mitchison & Renner (2006)
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2-extendible

separable states=
      extendible

3-extendible

  137-extendible

2

Measure Esq ED KD EC EF ER E∞
R EN

normalisation y y y y y y y y

faithfulness y n ? y y y y n

LOCC monotonicity y y y y y y y y

asymptotic continuity y ? ? ? y y y n

convexity y ? ? ? y y y n

strong superadditivity y y y ? n n ? ?

subadditivity y ? ? y y y y y

monogamy y ? ? n n n n ?

TABLE I: If no citation is given, the property either follows directly from the definition or was derived by

the authors of the main reference. Many recent results listed in this table have significance beyond the study

of entanglement measures, such as Hastings’ counterexample to the additivity conjecture of the minimum

output entropy [76] which implies that entanglement of formation is not strongly superadditive [79].

I. INTRODUCTION

≈ R|AB|2−1

����
�

11

|AB|

�min(|A|,|B|
i,j |ii��jj|

|AB|

|00�

O

�
log |A|
�2

�

∞−

Squashed entanglement is the quantum analogue of the intrinsic information, which is defined

as

I(X;Y ↓Z) := inf
PZ̄|Z

I(X;Y |Z̄),

for a triple of random variables X,Y, Z [16]. The minimisation extends over all conditional prob-

ability distributions mapping Z to Z̄. It has been shown that the minimisation can be restricted

to random variables Z̄ with size |Z̄| = |Z|[17]. This implies that the minimum is achieved and in

all quantum states

How close to separable is        if a k-extension is found? 
How long does it take to check if a k-extension exists?

3

n = |A|2|B|O
�

log |A|
�2

�

= eO(�−2 log |A| log |B|)

poly(n) = eO(�−2 log |A| log |B|)

ρAB = |Ψ��Ψ|AB =





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





ρAB =





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





ρAB = |Ψ��Ψ|AB =





1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2





ρAB =





1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2





� > 0

⇒

�⇐

⇐

⇔

ρΓAB =





1
2 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 1

2





An active research field!
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Measurements and 
Time Evolution
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Measurements

measurement 
of A

A =
�

i

aiPi
projector on to eigenspace

to i‘th eigenvalue

Labelling with eigenvalues often convenient, 
but not necessary

projective 
measurement 

set of orthogonal projectors that 
sum to identity

{Pi}, Pi = P †
i , P

2
i = Pi,

�

i

Pi = id

ρ

independent of eigenvalue

Is this the most general 
measurement?

i

ρi :=
PiρPi

prob[i]

prob[i] = trPiρ
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POVMs

projective 
measurement 

POVM
positive operator-valued 
measure

set of positive-semidefinite 
operators that sum to identity

i

{Qi}, Qi ≥ 0,
�

i

Qi = id

ρi :=
Pi(ρA ⊗ |0��0|B)Pi

prob[i]
Qi = �0|BPi|0�B

prob[i] = trPi(ρA ⊗ |0��0|B)
= trAQiρA

ρA

|0��0|B

�φ|Qi|φ� = �φ|A�0|BPi|φ�A|0�B ≥ 0

�

i

Qi =
�

i

�0|BPi|0�B

= �0|B(
�

i

Pi)|0�B

= �0|B idAB |0�B = idA
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POVMs: Examples

POVM 
i

{Qi}, Qi ≥ 0,
�

i

Qi = id

ρA
prob[i] = trAQiρA

Example 1: Mixture of two projective measurements 

Q0 =
1

2
|0��0|, Q1 =

1

2
|1��1|, Q3 =

1

2
|−��−|, Q4 =

1

2
|−��−|

with 50% probability measure in z-direction  
with 50% probability meaure in x-direction 

Example 2: Tetrahedron

Qi =
1

2
|αi��αi| =

1

2

1

2
(id + �ai · �σ)

a0/1 =

�
2

3
(±1, 0,− 1√

2
), a2/3 =

�
2

3
(0,±1,

1√
2
)
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Time Evolution

time 
evolution

|ψ� e−iHt|ψ�

with time-independent Hamiltonian 
for a fixed amount of time

without loss of generality 
(discretisation)

U
ρ

Example: Qubit rotation

UtρU
†
t

Ut = eit�e·
�σ
2

unit vector

UtρU
†
t =

1

2
(id + Ut(�r · �σ)U†

t ) =
1

2
(id + (Rt�r) · �σ)

Wunderformel

R(�e, t)rotations in the Bloch sphere
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Rotations in the Bloch sphere
Ut = eit�e·

�σ
2 UtρU

†
t =

1

2
(id + Ut(�r · �σ)U†

t ) =
1

2
(id + (Rt�r) · �σ)

Example: magnetic field in x-direction, qubit in z-direction
qubit rotates around x-axis

trσzρt
1

-1

2 4 6 8 10 12

�0.5

0.5

visibility

Example: Hadamard transform

H =
1√
2

�
1 1
1 −1

�
=

σx + σz√
2

= ie
iπ( 1√

2
,0, 1√

2
)· �σ2

H|0� = 1√
2
(|0�+ |1�) = |+�

H|1� = 1√
2
(|0� − |1�) = |−�
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Time Evolution

time 
evolution

|ψ� e−iHt|ψ�

with time-independent Hamiltonian 
for a fixed amount of time

without loss of generality 
(discretisation)

U
ρ UρU†

Is this the most general evolution?

No: partial trace & measurement

U

ρA

|0��0|B tr

A�

B�

ρA�

trB�U(ρA ⊗ |0��0|B)U†
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Physical Operations as 
CPTP Maps
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CPTP maps

U

ρA

|0��0|B tr

A�

B�

ρA�

trB�U(ρA ⊗ |0��0|B)U†

completely positive trace-preserving map

Λ
trΛ(ρA) = trρA

Λ(ρA) ≥ 0, for all ρA ≥ 0

ρA ρA�

Λ⊗ idC(ρAC) ≥ 0, for all ρAC ≥ 0
for all C

Stinespring: Every CPTP map is of this form!

implies: every state evolution is unitary
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Operator-Sum Representation

U

ρA

|0��0|B tr

A�

B�

ρA�

Λ(ρA) = trB�U(ρA ⊗ |0��0|B)U† =
�

i

�i|B�U |0�BρA�0|BU †|i�B�

=
�

i

EiρAE
†
i

Kraus operators:
matrices, mapping A into A‘
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CPTP maps: Examples

Λ
ρA ρA�

Depolarising channel

Bit flip channel

Λ(ρ) = (1− p)ρ+ p
1

2
1 = (1− 3

4
p)ρ+

1

4
p(XρX + Y ρY + ZρZ)

Λ(ρ) = (1− p)ρ+ pXρX

Λ(ρ) = (1− p)ρ+ pZρZ
Phase flip channel

Amplitude damping channel
Λ(ρ) = E0ρE

†
0 + E1ρE

†
1

E0 =

�
1 0
0

√
1− γ

�
E1 =

�
0

√
γ

0 0

�

Nielsen-Chuang, CUP 2001

Kraus operator

Kraus operator

60



Measurements as CPTP maps
for simplicity for projective ones only

measurement
ρ i

ρi :=
PiρPi

prob[i]

prob[i] = trPiρ

Λ(ρ) =
�

i

pi|i��i|⊗ ρi

=
�

i

|i��i|⊗ PiρPi

Example: z-axis

Λ(ρ) = (tr|0��0|ρ)|0��0|+ (tr|1��1|ρ)|1��1| =
�

p0 0
0 p1

�
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Entangled with Environment

ρ
Λ(ρ) = p1|0��0|+ p1|1��1|measurement

U|0��0|B trB

ρ

ρ = |+��+| |+� = 1√
2
(|0�+ |1�)

1

2
(|00�+ |11�)

1

2
(|0��0|+ |1��1|)

decoherence is 
entanglement with 

environment

U = |00��00|+ |11��10|+ |01��01|+ |10��11|
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Distinguishing 
Quantum States
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Distances
overlap or fidelity for pure states |�φ|ψ�|

overlap or fidelity for mixed states F (ρ,σ) = tr
�√

σρ
√
σ

symmetric!

ρ
measurement

σor     ? prob[guess correctly] =
1

2
+

1

4
||ρ− σ||1

||α||1 = tr
√
αα†

trace distance for mixed states 1

2
||ρ− σ||1
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Application of nonorthogonal states:
The first idea for a quantum technology

78 

This paper treats a class of codes made possible by 

restrictions on measurement related to the uncertainty 

principal. Two concrete examples and some general 

results are given. 

W 

Conjugate Coding 

Stephen Wiesner 

Columbia university, New York, N.Y. 

Department of Physics 

The uncertainty principle imposes restrictions on the 

capacity of certain types of communication channels. This 

paper will show that in compensation for this "quantum noise", 

quantum mechanics allows us novel forms of coding without 

analogue in communication channels adequately described by 

classical physics. 

Research supported in part by the National Science Foundation°  

Wiesner 1970‘s
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Wiesner Conjugate Coding

79 

We will first give two concrete examples of conjugate 

coding and then proceed to a more abstract treatment. 

Example One: A means for transmitting 
two messages either but not both of 
which may be received. 

The communication channel is a light pipe or guide down 

which polarized light is sent. Since the information will be 

conveyed by variat£ons in ths polarization, it is essential 

that the light pipe does not depolarize the light and that 

all polarizations of light travel with the same velocity 

and attenuation. 

The two messages are rendered into the form of two 

binary sequences. The transmitter then sends bursts of 

light at times that we will label T I, T 2, etco The amplitude 

of the bursts is adjusted so that it is unli]4ely that more 

than one photon from each burst will be detected at the 

receiving end of the light pipe. 

Before emitting the ith burst (i=1,2 ...), the transmitter 

chooses one of the two messages in a random manner by flipping 

a coin or selecting a bit from a table of random numbers. If 

the first message is chosen, the ith burst is polarized 

either vertically or horizontally depending on whether the 

ith digit of the first binary sequence is a zero or a one. 

If the second message is chosen, the ith burst is polarized 

in either the right or left-hand circular sense depending on 

whether the ith digit of the second message is a zero or a 

one. See Fig. l, next sheet. 

The receiver contains a quarter wave plate and bire- 

fringent crystal, or some other analyzer, that separates 

POLARIZATION 
8O 

OF ith BURST 
- -  - -  , r - -  

i th D I G I T  OF 
FIRST SEQUENT, 7 

RAN _ _~....~...~.~_.~Ip I 

<• 
i th DIGIT OF 

• ~ _ C O N D  SEQUENCE 

C 

VERTICAL 

HORIZONTAL 

RIGHT 

LEFT 

FIG, 1 

receiving first 
message=
measuring vertical/
horizontal

receiving second 
message=
measuring right/left

half of the bits 
are received of 

one message, but 
nothing of the 

other

0 1 0 1

1 0 1 1

|0�|−�|+�|1�
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II. Quantum Computation
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Computer Science: Computability

If the output state is not a computational basis state, we may obtain certain

outcomes with certain probabilities. Consider the simple Hadamard gate

H

where H =
1√
2

�
1 1

1 −1

�
. Here, measurement in the computational basis

|0� H
|0+1�√

2 �����
results in each, 0 and 1 with probability one half. Quantum computation is

thus inherently probabilistic unlike classical computation. (Note, however, that

it is common to consider classical computational complexity in the presence of

randomness). The first interesting problem we will solve on a quantum computer

is Deutsch’s problem.

1.2.2 Deutsch’s Problem

Let f : {0, 1} → {0, 1}. Decide whether f is constant or not, i.e. compute

f(0) ⊕ f(1) (zero then corresponds to constant and one to not constant). But

let us first consider a reversible version of f :

|x�
f

|x�
|y� |f(x)⊕ y�

We may consider this as a classical gate or a unitary gate (then imagining kets).

The function output is obtained on the second wire when setting x = 0. If

we build a classical circuit, how many f ’s must it contain in order to compute

f(0)⊕ f(1). The answer is clearly 2. The following quantum circuit only needs

one f :

|0� H

f

H ����� f(0)⊕ f(1)

|1� H H |1�
The proof proceeds as follows.

|x� |0� �→ |x� |f(x)�

|x� |1� �→ |x�
���f(x)

�

thus

|x� (|0� − |1�) �→ |x� (|f(x)� −
���f(x)

�
= (−1)

f(x) |x� (|0� − |1�)

which can be checked by inserting both f(x) = 0 and f(x) = 1. The circuit

thus computes

|0� |1� �→ 1

2
|0 + 1� |0− 1�

�→ 1

2

�
(−1)

f(0) |0�+ (−1)
f(1) |1�

�
|0− 1�

�→ 1

2

��
(−1)

f(0)
+ (−1)

f(1)
�
|0�+

�
(−1)

f(0) − (−1)
f(1)

�
|1�

�
|1�

14

What is a computer?

Universal Turing machine
Concept:

1 00 0 1 1 1 0

read/write-head

Question:
Are all functions computable by the universal Turing machine?

Answer: No!
Example: the function that asks whether the 
Turing machine halts for algorithm X on input 0

010
110
...

can move to 
right or left

internal states
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Circuit model

If the output state is not a computational basis state, we may obtain certain

outcomes with certain probabilities. Consider the simple Hadamard gate

H

where H =
1√
2

�
1 1

1 −1

�
. Here, measurement in the computational basis

|0� H
|0+1�√

2 �����
results in each, 0 and 1 with probability one half. Quantum computation is

thus inherently probabilistic unlike classical computation. (Note, however, that

it is common to consider classical computational complexity in the presence of

randomness). The first interesting problem we will solve on a quantum computer

is Deutsch’s problem.

1.2.2 Deutsch’s Problem

Let f : {0, 1} → {0, 1}. Decide whether f is constant or not, i.e. compute

f(0) ⊕ f(1) (zero then corresponds to constant and one to not constant). But

let us first consider a reversible version of f :

|x�
f

|x�
|y� |f(x)⊕ y�

We may consider this as a classical gate or a unitary gate (then imagining kets).

The function output is obtained on the second wire when setting x = 0. If

we build a classical circuit, how many f ’s must it contain in order to compute

f(0)⊕ f(1). The answer is clearly 2. The following quantum circuit only needs

one f :

|0� H

f

H ����� f(0)⊕ f(1)

|1� H H |1�
The proof proceeds as follows.

|x� |0� �→ |x� |f(x)�

|x� |1� �→ |x�
���f(x)

�

thus

|x� (|0� − |1�) �→ |x� (|f(x)� −
���f(x)

�
= (−1)

f(x) |x� (|0� − |1�)

which can be checked by inserting both f(x) = 0 and f(x) = 1. The circuit

thus computes

|0� |1� �→ 1

2
|0 + 1� |0− 1�

�→ 1

2

�
(−1)

f(0) |0�+ (−1)
f(1) |1�

�
|0− 1�

�→ 1

2

��
(−1)

f(0)
+ (−1)

f(1)
�
|0�+

�
(−1)

f(0) − (−1)
f(1)

�
|1�

�
|1�

14

f : {0, 1}n → {0, 1}
Build-up for gates

Boolean function

input length

Truth tableGate1 NOT gate

x x̄NOT

2 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

3 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

4 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

1

1 NOT gate

x x̄NOT

2 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

3 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

4 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

1

1 NOT gate

x x̄NOT

2 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

3 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

4 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

1

1 NOT gate

x x̄NOT

2 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

3 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

4 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

1

1 NOT gate

x x̄NOT

2 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

3 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

4 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

1

1 NOT gate

x x̄NOT

2 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

3 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

4 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

1

1 NOT gate

x x̄NOT

2 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

3 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

4 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

1

5 NAND gate
x1

x2

x1 ∧ x2NAND

Truth table
0 1

0 0 0
1 0 1

2

5 NAND gate
x1

x2

x1 ∧ x2NAND

Truth table
0 1

0 0 0
1 0 1

2

1 general gate

x1

x2

...

...

xn

f(x)f

2 NOT gate

x x̄NOT

3 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

4 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

1

function 
output

input bits
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Classical universal set of gates

5 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

6 NAND gate

x1

x2

x1 ∧ x2NAND

Truth table
0 1

0 0 0
1 0 1

7 FANOUT gate

x

x
x FANOUT

2

5 NAND gate
x1

x2

x1 ∧ x2NAND

Truth table
0 1

0 0 0
1 0 1

2

Theorem:                                form a universal set.

• exp(n) gates are needed to compute an arbitrary function.
• The NAND gate is irreversible.

f : {0, 1}n → {0, 1}

However...

A set of gates is universal if for all n and for any Boolean 
function

can be implemented by a circuit using only gates from the set 
and ancillas (additional wires with input bit 0).

{NAND, FANOUT}
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Computational Complexity

Given a function of input size n, 
how long does it take to compute it?

How many steps does the Turing machine have to do? 
How many gates are needed?

Equivalent formulations
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Examples of functions

Multiplying and  factoring

z0x1x2 . . . xn

+ z0y1y2 . . . yn
= z0z1z2 . . . zn

z1z2 . . . zn = x1x2 . . . xn × y1y2 . . . yn

Addition
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Examples of complexity

Problem #gates 
to solve

#gates
to verify

addition
given two numbers, what is their sum?

multiplication
given two numbers, what is their product?

factoring
given a number, what are its factors?

3-SAT
given an expression

is there an assignment of variables that 
makes it true?

O(n)

O(n2)

O(n)

O(n2)

O(n2)

(x̄1 ∨ x2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ . . .

these are 
upper bounds

(sufficient 
#gates, for the 
best known 
algorithms)

a claimed 
solution

exp(O(n
1
3

× poly(logn)))

exp(O(n)) poly(n)
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Complexity Classes 
of Decision Problems

P: functions solved with poly(n) circuits

NP: functions verified with poly(n) circuits

EXP: functions solved with exp(n) circuits

# boolean functions with input size    :  

exp(poly(n))

poly(n)

.

22
n

n

(   possible outputs for each of the     input strings)2 2n

# boolean functions implementable with circuit size              :   

P is strictly smaller than EXP:
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NP

Complexity classes 
of Decision Problems

EXP

random functions

Factoring

3SAT

Multiplication

Addition

P

3SAT is NP-Complete: if 
3SAT is in P, then P=NP 
(it is the „most difficult“ 

problem in NP)
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Reversible Computation

Bennett: „Everything can be 
computed reversibly.“

1 NOT gate

x x̄NOT

2 AND gate

x1

x2

x1 ∧ x2AND

Truth table
0 1

0 0 0
1 0 1

3 OR gate

x1

x2

x1 ∨ x2OR

Truth table
0 1

0 0 1
1 1 1

4 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

1

irreversible

5 XOR gate

x1

x2

x1 ⊕ x2XOR

Truth table
0 1

0 0 1
1 1 0

Remember how the matrix of the controlled xor gate looks like!

6 NAND gate

x1

x2

x1 ∧ x2NAND

Truth table
0 1

0 0 0
1 0 1

7 FANOUT gate

x

x
x FANOUT

8 AND gate reversible

x1

x2 x1 ∧ x2

x1
reversible

AND

2

reversible

Quantum computation9 general gate reversible
x1

x2

...

xn−1

xn

x1

x2

...

xn−1

f(x)

U

3

replace   by
U :

�
2
�⊗n →

�
2
�⊗n

f

potentially more possibilities 
than in classical computation
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Single-qubit quantum gates 
Pauli gates

2.3 Controlled phase gate

x1

x2 (−1)x1 |x2�

|x1�
Controlled

Phase

2.4 Bitflips gate

|0�
|1�

|1�
|0�X

|0�
|1�

|0�
−|1�Z

|0�
|1�

−i|1�
i|0�Y

2.5 Hademard gate

|0�
|1�

|+�
|−�H

5

Elementary rotations around x, y and z axes 
(generated by the Pauli matrices)

X =

�
0 1
1 0

�

Z =

�
1 0
0 −1

�

Y =

�
0 −i
i 0

�

Rx(θ) =

�
cos

�
θ
2

�
−i sin

�
θ
2

�

−i sin
�
θ
2

�
cos

�
θ
2

�
�

Rz(θ) =

�
e−i θ

2 0

0 ei
θ
2

�

Ry(θ) =

�
cos

�
θ
2

�
− sin

�
θ
2

�

sin
�
θ
2

�
cos

�
θ
2

�
�

2.3 Controlled phase gate

x1

x2 (−1)x1 |x2�

|x1�
Controlled

Phase

2.4 Pauli gates

|0�
|1�

|1�
|0�X

Phase gate
|0�
|1�

|0�
−|1�Z

Bitflip gate
|0�
|1�

−i|1�
i|0�Y

2.5 Elementary rotation gate

|0�
|1�

cos( θ2)|0� − i sin( θ2)|1�
−i sin( θ2)|0�+ cos( θ2)|1�

RX(θ)

|0�
|1�

e−i θ2 |0�
ei

θ
2 |1�

RZ(θ)

|0�
|1�

cos
�
θ
2

�
|0� − sin

�
θ
2

�
|1�

sin
�
θ
2

�
|0�+ cos

�
θ
2

�
|1�

RY (θ)

2.6 Hadamard gate

|0�
|1�

|+�
|−�H

5
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Single-qubit quantum gates 
2.3 Controlled phase gate

x1

x2 (−1)x1 |x2�

|x1�
Controlled

Phase

2.4 Bitflips gate

|0�
|1�

|1�
|0�X

|0�
|1�

|0�
−|1�Z

|0�
|1�

−i|1�
i|0�Y

2.5 Hademard gate

|0�
|1�

|+�
|−�H

5

2.3 Controlled phase gate

x1

x2 (−1)x1 |x2�

|x1�
Controlled

Phase

2.4 Bitflips gate

|0�
|1�

|1�
|0�X

|0�
|1�

|0�
−|1�Z

|0�
|1�

−i|1�
i|0�Y

2.5 Hadamard gate

|0�
|1�

|+�
|−�H

2.6 Phase gate S

|0�
|1�

|0�
i|1�S

2.7 π/8 gate

|0�
|1�

|+�
|−�T

5

Hadamard gate

Phase gate

      gateπ/8

2.3 Controlled phase gate

x1

x2 (−1)x1 |x2�

|x1�
Controlled

Phase

2.4 Bitflips gate

|0�
|1�

|1�
|0�X

|0�
|1�

|0�
−|1�Z

|0�
|1�

−i|1�
i|0�Y

2.5 Hadamard gate

|0�
|1�

|+�
|−�H

2.6 Phase gate S

|0�
|1�

|0�
i|1�S

2.7 π/8 gate

|0�
|1�

|0�
eiπ/4|1�T

5
H =

1√
2

�
1 1
1 −1

�

S =

�
1 0
0 i

�

T =

�
1 0
0 exp(iπ/4)

�
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Controlled quantum gates

Example: Controlled Phase Gate2.3 Controlled phase gate
x1

x2 (−1)x1 |x2�

|x1�Controlled
Phase

5

Chapter 2

Quantum gates

2.1 general gate reversible

x1

x2

...

xn−1

xn

x1

x2

...

xn−1

f(x)

U

2.2 CNOT gate

x1

x2 |x1 ⊕ x2�

|x1�
CNOT

x1

x2 |x1 ⊕ x2�

|x1�

⊕

4

Controlled NOT Gate

Controlled operation

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





CZ =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





1 mystuff

•
U

|0� H

f̃

H

|0� H H

...
...

|0� H H

|1� H H

|x1�

f

|x1�
|x2� |x2�
...

...
|xn� |xn�
|y� f(x1, x2, . . . , xn, y)

|0� H · · · •

F
−1

|j1�

|0� H · · · • |j2�

... H
...

|0� H • · · · |jt−1�

|0� H • · · · |jt�

|u� / U
20

U
21 · · · U

2t−2
U

2t−1 |u�

1

CU =





1 0 0 0
0 1 0 0
0 0 u11 u12

0 0 u21 u22




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Universal quantum gates

A set of quantum gates is universal if any quantum operation 
acting on n qubits  can be implemented by a circuit using only 
those gates and ancillas (additional qubits in state     ), for all n.|0�

Theorem:  CNOT and universal single qubit gates form a 
universal set (proof in exercise series 5).

Remark: This set is not finite (we need rotations for all angles). 
However, it is possible to make a finite gate set approximately universal.

Show that we can write

C =





cos θ0
cos θ1

. . .

cos θ�




, S =





sin θ0
sin θ1

. . .

sin θ�




, (3)

for some angles θ0, . . . , θ�.

Show that the cosine-sine decomposition corresponds to the following circuit identity:

(b) We will now break down the multiplexed unitary gate using the relation
�
U0 0
0 U1

�
=

�
V 0
0 V

� �
D 0
0 D†

� �
W 0
0 W

�
, (4)

where V,D,W are unitary matrices, and D is diagonal. Show that we can write

�
D 0
0 D†

�
=

�
D� 0
0 D�

�
C-Rz, C-Rz =





eiφ0

. . .

eiφ�

e−iφ0

. . .

e−iφ�





, (5)

where D� is also unitary and diagonal. This gives us the following circuit identity:

(c) Now we only have to deal with multiplexed rotations Ry and Rz. Show that, for a single
qubit control,

These identities can be generalized to

2
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Quantum complexity classes

BQP is the class of functions 
that can be computed with poly(n) quantum gates with        
 

f (n) : {0, 1}n → {0, 1}

Prob[success] ≥ 2
3

Theorem:        
 If an algorithm obtains the correct result with probability ≥ 2

3

we only need to repeat it                    times 
to succeed with probability 1− ε.

(proof uses majority vote and law of large numbers)

O(log(1/ε))
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Quantum complexity classes

NP random functions

Factoring

P BQP

EXP
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