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What is it?

® All-round theory course for quantum
information

(heavy-theory course given by Prof. Renner)

® target audience: experimental physicists
current or future

Bachelor/Master/PhD



0. Introduction



Content

What is Quantum Information and
Computation?

What is Entanglement!?

\'A%

\'A%
\'A%
\'A%

nat is a Bell Inequality?

nat is Quantum Tomography?

nat is Shor's Algorithm?

nat is Quantum Error Correction?



Testat

® active participation in the course and
exercises

® /5% of exercises



|. Quantum Information



Information

® Shannon, 1948

® Concept ,,infformation” independent of
physical implementation
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® all physical information can be represented in
this way — Information Theory



Computation
® Turing, 1948

® Concept ,,computation” independent of
physical implementation

moving CPU

® Turing machine

readiwrite device —> H

® Church-Turing thesis:
all physical computation can be represented by
a Turing machine— Computer Science



Quantum Mechanics

® Shannon & Turing’s notions (1948)
based on classical physics 01011010100
information has always definite value

Shannon/Turing do j
® Quantum Mechanics (1900s) _not directly apply!
atoms not governed by classical physics

: Shannon/Turi i
o State Of System RN Wave funCt|On annon/ luring can |ﬂ

principle not apply!

definite measurement values do not exist

prior to measurement, in principle!
Einstein, Podolsky & Rosen (1935), Bell (1967), Kochen & Specker (1967)

Need for theory of information and
computation that applies to QM




The Bi

unit of information

® The bit

on/off

heads/tails
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® variable

10



The Bi

® random bit
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® random variable X

prob[X = 0]

p(0)

range 10,1}

prob|X = 1]

p(1)
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The Quantum Bit or Qubit

1 0 f
0" = |0) = ( . ) 1) = ( X ) Stztfbia]

® superposition principle [¢) = a|0) + §[1) = ( g >

z

® probability amplitudes

® normalisation [af’ +[8]* =1 [ cmmemeeif-

® angles |v) zfy (COS g‘()) + e sin g|1>)

1)
[ infinitely many/j { overall phase ] /\ 1
states does not matter
[ Bloch sphere ]

® |n nature: polarisation of photon

electron / nuclear spin /2
ground vs excited state

representation
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Measuring a Qubit

Qubit = Bloch vector

Bloch vector = infinite amount of information

binary expansion

0 = 00010,... {

)

¢ — ¢0¢1¢2--- <C 10g2(4/Aif

precision on Bloch

sphere, see
Christand| &

Renner, PRL 2012
\_ Y,

Can qubit store an infinite amount of information?

No! Measurement retrieves only one bit!

State of qubit after measurement = outcome
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Measuring a Qubit

® Observable= self-adjoint operatorT

A = agloo) (Po| + a1|p1){P1|
7N S

here, 2x2 Hermitian
matrix,

spectral theorem eigenvaltes (real) eigenvectors (orthonormal)
outcome post-measurement state
\ e
) _, | measurement l ’@J

of A probloutcome = i] = [{1)|$;)|?
® Measurement: — tr|e)) @DH@ (¢]

probabilistic and disturbing! — cogZ &
only | bit information, \

but we can choose which! enclosed angle
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Qubi

orthonormal, i.e. antipodal
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7’¢1

90)

if state is in one of two antipodes:
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= measure
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® Madrid or Wellington!?

® Bangkok or Lima!?
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Qubi

® State: North pole
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® State: Copenhagen

Measurement: North or south pole!?

Result: North pole (Cos? 35°/2=91%)

® State: Singapore

Measurement: North or south pole!?
Result: North pole (Cos? 90°/2

50%)



The projector

|¢> > measurement i’ ’?ZJ
of A probloutcome = ] = [{1)|$;)|*

= tr]u) (v

~
E)bservable consequences depend

W) =5 A +78)

IO =730y +7y0y + 7,0,

‘ |T‘ ’2 ! Pauli matrices J

¢i) (il

rojector,
only on projector [1)) () %{' - J
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Mixed qubit



Mixed states: the problem

Incomplete knowledge of the system:
we may have state |¥;) with probability »;

b,

preparation —— |V;)

How to represent our knowledge of the state!
Let us see what happens if we measure the state...

Observable Outcomes Post-measurement states

A {ai} o)}

19



Mixed states: derivation

not necessarily orthogonal

\

Pjs |¢J>

preparation

J\»

probability

measurement | ProP|a:]

of A

> o)

Probability of obtaining outcome a;

prob|a; ij ailb;))?

:Ztr[m (s o

= tr

/

(;pj“”ﬁwj")‘o”ﬂo‘” The probability is only

~"

=p

dependent on p

=

\




Density matrix

Incomplete knowledge of the system:
we may have state [¢;) with probability »;

Description by density matrix

p= ZP;’WM%‘!

Special case of a pure state: perfect knowledge

we have state |¢)) with probability 1

p= 1)WY
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Bloch representation

not necessarily orthogonal

\

I —> >
pregaT— N of A = D prtus)ivsllon o

probability

meg ) (5] di) (4]

\ . 7
-~

=p
shorter Bloch
vector

L

average of the Bloch vectors J

(D
(D
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Bloch ball
P = ) 1o

Pauli matrices J

noise leads to shortening of

Bloch vector
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Properties of density matrices

In general,

p=>0, trp=1

positive semidefinite
(non-negative eigenvalues)

On the other hand, any state has an eigenvector decomposition

p = ZPJ%M%’ Vp e S(H)

The density matrix describes all
the physical properties of a state!

24



How mixed is a state!

Measure of information: purity  tr(p?)

Examples
p=10)l = tr(p?) =1

p= 200+ 5l = () =

Other measures: entropies (later...)
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Composed systems



Several Qubits

Hilbert space of 1 qubit

Hy = C* =span {|0),|1)} = span { (é) ’ (

Hilbert space of 1 Qubits

Ho=Hi1@H1® ... 0 Hy = HP"
—C?9C?®...0C?=C?*"
— Span {‘Zl 7:2 I in>}ij€{071}

- C*
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Example: 2 qubits

Ho = C*® C?
= span {|0) ® 0),[0) ® 1), [1) ® [0), [1) @ 1)}

=) 0) ()= () (1) 2 (o) () = (1)
IRNANANAY
o) W) o) )
Examples of normalized states

) =10) ®[1) =:]0)[1) =: |01) )

simplifying notation

0

— Span «

_ |o1) — [10)
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d-dimensional systems

Hilbert space of dimension d

H =C?=span{|0),|1),..., ld— 1)}

Example: d =3
H = C3 = span {|0), 1), |2)}

0) +[1) —[2)

¥) = 73
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Mixed states on many qubits

Example: 2 qubits. Source prepares
- state |¢) = |01) with probability p

- state |¢) = 01) = 119) wieh probability 1 —p

V2

Density matrix

p=p|d)(¢| + (1 —p) |¢) (V]
(]01) —[10))((01] — (10])
2

1]+ =2 (~[01)(10] ~ [10){01] + [10) (10])

|

= p |01)(01] + (1 = p)

1+0p
= — |01
5 |

|

~——

110 14+p p-1
-2 p—1 1-p

OO OO
o | 4+ o
o || O
OO OO
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Density matrix of many
qubits

Mixed state of n qubits can be expanded
in terms of Pauli matrices

1 :
p= — E Tiy.iy, Oiy @ ... @0, € Maonyon with o9 =1
AL N——
Zje{()?xayaz} cR \

analogue of Bloch vector (not all vectors are allowed!)
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Mixed states by forgetting:
partial trace

If we forget (or do not have access to) the state of system B

— — pPA
T 1
Density matrix of A is given by the partial trace of PAB
over system B

PAB

|B|-1

pa=trg(pap) = Y (1a®(klp) pap (La®|k)p)
k=0

Measurement statistics on A do not change

tr(papla)(ala @ 1) = tr(palo)(ala)
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Examples

— —

paB = 10)(0]4 ® [0)(0| pa =3 (U5l0)(0]4 ® [0)(0] 5|1} 5

v
e

l
= [0){0] Y _(t[0){0[1) = 10){0]

1 —> —>
pAB:§]OO+11><OO+11\ =
— l pa = §Z<1|Byoo+11><oo+11||z>3

[=0

= 2 (10)(0] +]1)(1])

We obtained a mixed state of one qubit from a (pure) state of
two qubits by forgetting one qubit!
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Entanglement



Schrodinger 1932
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Schrodinger 1932

The claim that the measurement restricts the % -function
to the subspace belonging to the measurement result has
the strange consequence that the % -function of a system
is changed by the performance of a measurement on a
different, far separated system and through the
transmission of the message.

—

f?}/’/@m L ,2_‘ Ao L.
Bemrys 4 oy 5
e [/
i / . / / J q f
b Wl aipoe (st 4, . 4/ st) 4,

(- 2 ay, AGf= = 4e /by

36



Schrodinger 1932

If we think of the two systems as a whole the % -function
of this joint system is given by

Al ) = Z Z e éﬂ ¥y 547/
%z " 4

If we couple the systems for a short while and decouple
them afterwards, the % -function acquires the form

¥ (% 9] 2 e B .
22 Cor B 1.
1 £ o & = p 1
where in general %. - ¢, ., isnottrue.

There remains a dependence, even if we separate the
systems widely.
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Schrodinger 1932

A subsequent measurement of the quantity B on system I
transforms the joint % -function into

O R
@ (% 7) :L"?> %o 4

which depends on the measured 75, .This makes it a bit
difficult to view the change in the % -function as a
Naturvorgang™

*the matter becomes even more strange, if we do not
measure B on the American system, but if we measure a
different, with B non-commuting integral.
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Schrodinger 1932
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Pure State Entanglement

Two systems A and B, finite-dimensional

A=C'deN,|Al:=d, B=CH
Joint system
AB = A® B = Cl4l ¢ Bl = ¢l4B]
(W) ap € AB is called separable if |V)ap = [¢)a @ [¢)5

otherwise it is called entangled.

Examp|e: |\I/>AB — ‘O>A & ‘O>B separable

1
W) ap = ﬁ (100a®[0)p+1)a®[1)B) entangled

40



Examples

1
) = 5100+ 11)

Entangled state of n qubits

) = E Civig...in [11) [12) - .. |in)
. 2
with ¢;,4,.... € C such that E Civig..i | =1

(Not equal to n Bloch spheres!)

When measuring n qubits one can extract at
most n bits of information, Holevo's theorem
(Holevo's theorem)

41



Mixed-State Entanglement

The density operator pis separable iff it can be
decomposed into product states

PAB = Z pi |i) (Wil 4 @ [W03){i| g

Equivalent: for some probabilities p; and density
matrices o4 and p;

_ 1 1
PAB — szpA & PB Werner, 1989
1

If a state is not separable, we say it is entangled.
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Example: Bell state

The wave function

1
) = NG 00) + |11)

corresponds to the density operator

1
p= 5100 +11) (00 + 11|

1
= 2(/00) {00] + [00) (1] + [11) (00| + [11) {11]
1 0 0 1
o 0 0 o0
10 0 0 O
1 0 0 1

which is entangled.
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Further Examples

Separable states

vl N
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O —HOoOOD O

—nmO O —H|©

~ N
ANjco O O |00

O O —HO

O = O

—l0 O O |
N~ -

Entangled state
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Entanglement Criteria
Excursion to current research



The Peres-Horodecki Criterion

transpose B

PAB = mefax ® plg

— pup =Y _pirs® ()
)

T

(separable) ( positive semidefinite )

Separability

N

PPT (positive partial transpose)

paBA(

O ON O
N O O O

|

o O O
o O O

3003
0000 transpose B
'OAB(OOOO) —>
/\ oo )
s
[ entangled ]

not positive semi-
definite
entangled

N




The Peres-Horodecki Criterion

good in small dimensions, not
tight for large systems

quantum states

PPT states

separable states o AHE i) ()

x 1 AB|
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A Hierarchy of Criteria

PAB = szpA R pls i PAB has symmetric extension to
arbitrarily many Bobs

(separabe ! T g,
\Alice /

PAB Boy-By = 3 PiPa ® plg, ® plg, ® -+ @ ply,
')

de Finetti (1937); Diaconis & Freedman; Stermer, Hudson & Moody; Raggio & Werner; Caves, Fuchs &
Schack; Konig & Renner, Christand|, Konig, Mitchison & Renner (2006)
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An active research field!

all quantum states

2-extendible

3-extendible

How close to separable is p 4B if a k-extension is found?
How long does it take to check if a k-extension exists!?

49



Measurements and
Time Evolution



Measurements

P ?
- measurement —> .
of A —  PipP; probli]| = trP;p
P probli N /
A= Z CLiPZ' independent of eigenvalue
i \ projector on to eigenspace

to i‘th eigenvalue

Labelling with eigenvalues often convenient,
but not necessary

projective set of orthogonal projectors that
— . :
measurement sum to identity

{P},Pi=P],P?=P,) P =id

Is this the most general
measurement?
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POVMs

pA — ; prob[i] = trP;(pa ® [0){0]5)
10)(0/ 5 : projective : = tr4Q;pA

measurement
_ Pilpa®[0)(0]n)P, \
Pi = :
prob|i]
Qi = (0| F%|0)B

POVM set of positive-semidefinite
postive operator-values operators that sum to identity

{Qi},Qi>0,> Q;i=id
i A

- N
Qi = > (0|F;0)5
[(chilcb) = (¢]4(0|pP;|9) 4]0) g > 0( Z Z
= <0|B(Z P;)|0) 5

= (Olpidan|0)s = ids_

52




POVMs: Examples

PA . ,
~|  POVM —  prob[i] = traQipa

{Q:}, Qi > O,ZQi —id

Example |: Mixture of two projective measurements
1 1 1 1
QO — §’O><O‘7Q1 — 5‘1><1‘7Q3 — 5’_><_‘7Q4 — 5‘_><_’

[ with 50% probability measure in z-direction T

with 50% probability meaure in x-direction

Example 2: Tetrahedron

1 11
Qi = 5!047:><04z'| = §§(id+@; - 0)

_ \ﬁ(il 0, =), a5 = 1/ 2(0, 1, =)
ap/1 = 3 ) \/§ y2/3 = g\ 7\/5




Time Evolution

—1Ht
—> _ —
evolution
with time-independent Harr.ﬂltonian withouF loss .Of generality
for a fixed amount of time (discretisation)
l
P UipU,
—> U —>

Example: Qubit rotation
L 1 1
U, = e U, pU/ = - (id + Uy (7 U = - (id + (Ri7) - )

\unit vector \
Wunderformel

rotations in the Bloch sphere f R( _’, t)

54
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Rotations in the Bloch sphere

g
2

L 1 1
U, = e't® U,pU] = - (id + Uy (7 U = S (id + (Rir) - 5)

Example: magnetic field in x-direction, qubit in z-direction

1\
05/ /
/
v

Example: Hadamard transform

o 1 (1 1 ) Op +0, .
= — = —F—F = 1€
v\l -1 V2
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Time Evolution

T )

without loss of generality
(discretisation)

i Is this the most general evolutionﬂ
A
/\

\

UpUT

[No: partial trace & measurement

PA

/)

. €
> tlmg >
evolution
with time-independent Hamiltonian

for a fixed amount of time
P

—> U —>
IOA A/
0)(0 g !
e v [

trpU(pa ®(0)(0|5)U"
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Physical Operations as
CPTP Maps



CPTP maps

IOA AI pA/
—> /
0)(0l, B N
~__ trp/U(pa ©10)(0])U
completely positive trace-preserving map
PA PA trA(pa) = trpa
—_— —

A(pa) > 0,for all pg >0

A® ldC IOAC’)>O for all pac > 0
forall C

étinespring: Every CPTP map is of this form!
implies: every state evolution is unitary j

58



Operator-Sum Representation

PA

pA A/
—_—
10){0lz, U B

tr

A(pa) = trp:U(pa @ [0)(0]5)UT = > (ilpU|0)ppa(0|sU"|i) 5

o
ZZE@OAEJ

Kraus operators:
matrices, mapping A into A’

59



PA PA

— A —

Depolarising channel ;

1 1
Ap)= (A =plp+pz1= 1~ 2p)p+ p(XpX +YpY + ZpZ)

2 4

Kraus operator )

! T

Bit flip channel
Alp) = (1 —p)p+pXpX

Phase flip channel

Alp) = (1 —p)p+pZpZ ‘ :
( Kraus operator )\\

Amplitude damping channel
A(p) = EopE{ + E1pE]

EO = ( —— ) E]_ — ( ) < Ty LT
b 0 0 Nielsen-Chuang, CUP 2001
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Measurements as CPTP maps

for simplicity for projective ones only

—>| measurement P,pP; prob|i] = trP;p

Example: z-axis

A(p) = (tr]0)(01p)[0) (0] + (tr[1)(1]p)|1) (1] = ( po O )

61



Entangled with Environment

0
| measurement > A(p) = p1]0)(0] + p1|1)(1]
0
e
o0l v e
1 : 1
5 (100) + |11)) 5(!0><0! + [1)(1])
V N\
U = [00)(00| + [11)(10] + |01)(01| + |10)(11| e.iiiﬁii?iewiih
environment
1
p=1HH 1+ = —=(0) + 1) . -

2



Distinguishing
Quantum States



Distances

overlap or fidelity for pure states  |(¢|¢)]

overlap or fidelity for mixed states F(p,o) = tr\/\/Ep\/E

symmetric!
1 1
p or o ? prob[guess Correctly] = — + —H,O — UH1
—| measurement —> 2 4
o]y = trvVaal

trace distance for mixed states %Hp — o1
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Application of nonorthogonal states:
The first idea for a quantum technology

Wiesner | 970‘sj

This paper treats a class of codes made possible by
restrictions on measurement related to the uncertainty

principal. Two concrete examples and some general

results are given.

%
Conjugate Coding
Stephen Wiesner

Columbia University, New York, N.Y.

Department of Physics
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Wiesner Conjugate Coding

Example One: A means for transmitting

two messages elther but not both of

which may bhe received.

POLARIZATION OF ith BURST

ith DIGIT OF
FIRST SEQUENCE
o | VERTICAL
it" RANDOM BIT - /
) — HORIZONTAL

ith DIGIT OF

SECOND SEQUENCE
¥ (}RIGH‘T

(" half of the bits )

are received of
one message, but
nothing of the

. other y
receiving first

message=
measuring vertical/
horizontal

receiving second
message=
measuring right/left

66



. Quantum Computation



Computer Science: Computability

. can move to
What is a computer? . right or left
read/write-head
Concept:
Universal Turing machine
& 010

~
|10
internal states )

\/
©  lololtTo o
Question:

Are all functions computable by the universal Turing machine!?

Answer: No!
Example: the function that asks whether the

Turing machine halts for algorithm X on input O

68



( input length

f:{0,1}" — {0,1}

Boolean function

L1 —/

Lo —

LTn —

(input bits )

function
output

Circuit model

Build-up for gates

Gate

NOT

AND

OR

NAND

Truth table
x
0 1
0/0 0
ZCl/\ZEQ 1o 1
0 1
0/0 1
TV To i I
0 1
0/0 1
T1 D T2 111 0
0 1
00 0
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Classical universal set of gates

A set of gates is universal if for all n and for any Boolean

function
f:10,1}" —{0,1}

can be implemented by a circuit using only gates from the set
and ancillas (additional wires with input bit 0).

Theorem: {NAND, FANOUT} form a universal set.

NAND — 21 A a2 x FANOUT

However...

* exp(n) gates are needed to compute an arbitrary function.
* The NAND gate is irreversible.
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Computational Complexity

Given a function of input size n,
how long does it take to compute it?

Equivalent formulations

How many steps does the Turing machine have to do!?
How many gates are needed?

71



Examples of functions

Addition

L1L2...Tp

+ Y1Yy2 - .- Yn
— ZOR1IRD -+« Rm,

Multiplying and factoring

Z1R2 e Zp = X1X2 ... T X Y1Y2 ...Ynp

72



Examples of complexity

J a claimed
solution
Hgates Hgates -
Problem 5 e 4
to solve | to verify
\ ™\
addition i
given two numbers, what is their sum? O(n) O(”) these are
upper bounds
muliplicatior 2 [
given two numbers, what is their product? O(n ) O(n ) Eest I’<nown
1 algorithms)
factoring exp(O(n?
O(n?) |\ J
given a number, what are its factors!? x poly(logn)))
3-SAT
given an expression
(Zy VaaVas)A(xa VI3V ay) A... exp(O(n)) poly(n)
is there an assignment of variables that
makes it true?
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Complexity Classes
of Decision Problems

P: functions solved with poly(n) circuits
NP: functions verified with poly(n) circuits

EXP: functions solved with exp(n) circuits

P is strictly smaller than EXP:

# boolean functions with input size n: 22"
(2 possible outputs for each of the 2" input strings)

# boolean functions implementable with circuit size poly(n):

exp(poly(n))
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Complexity classes
of Decision Problems

random functions

NP

3SAT is NP-Complete: if .
3SAT is in P then P=NP Factoring
(it is the ,,most difficult*

problem in NP)

75



Reversible Computation

r1 —
AND +—— =1 A22 jrreversible Bennett: ,,Everything can be
To — computed reversibly.“
1 — . — I
RN reversible
AND
Ly —— —— T1 N\ X2

Quantum computation

1 — — X1
replace f by
T - ] U (@) (@)
potentially more possibilities
S U - / than in classical computation
Tp—1 —- LTn—1
Tn —— — f(z)
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Single-qubit quantum gates

Pauli gates

Elementary rotations around x, y and z axes
(generated by the Pauli matrices)

D (o)
0)

) — Rz(0) ——
D ()

) )
) 2 0)
) o)
) £ 1)
) i)
) X il0)

COS(g)|O> — isin(g)|1)
— sin(g)|0> + cos(g)|1>

77



Single-qubit quantum gates

Phase gate
= A
7 /8 gate
l(l)i g e?J/O4>|1> I'= ((1) exp(?ﬂ/él))

0) ) 111
P — ) "= 2<1 —1)
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Controlled quantum gates

Controlled operation

!
— U —
Controlled NOT Gate
1 1)
X l |z1 D x9)

>

Example: Controlled Phase Gate

Controlled
Tq Phase (_1)x1 |3§'2>

o O O -

oSO O

SO O =

S O = O

o O = O

o O = O

_— o O O

O = O O
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Universal quantum gates

A set of quantum gates is universal if any quantum operation
acting on n qubits can be implemented by a circuit using only
those gates and ancillas (additional qubits in state |0) ), for all n.

Theorem: CNOT and universal single qubit gates form a
universal set (proof in exercise series 5).

‘_

Ry,

Ry,

N
H—

Remark:This set is not finite (we need rotations for all angles).
However, it is possible to make a finite gate set approximately universal.
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Quantum complexity classes

BQP is the class of functions [ : {0,1}" — {0,1}
that can be computed with poly(n) quantum gates with

Prob[success] > 2

Theorem:

: . : 1 2
If an algorithm obtains the correct result with probability >

we only need to repeat it O(log(1/¢)) times
to succeed with probability 1 — ¢.

(proof uses majority vote and law of large numbers)
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Quantum complexity classes

random functions

EXP

Factoring

BQP
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