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Exercise 10.1 Upper bound on von Neumann entropy

In this exercise you are going to use a long, sophisticated proof to show a very intuitive and otherwise easy
to prove statement. You may ask: why?, and I may tell you: for the beauty/elegance/creativity/heck of it.
The statement is the following: the entropy of a state of a system A with dimension |A| is always less or equal
to log |A|. The intuition for this is simple: a mixed state of the form ρ =

∑
k pk|k〉〈k| may be seen as “pure

state |k〉〈k| was prepared with probability pk”; entropy measures the uncertainty we have about what state
was prepared; the worst case scenario happens when you have the fully mixed state, which corresponds to
a uniform probability distribution of the possible pure states; the entropy of the fully mixed state is log |A|.
Now to our proof.
This proof is diveded in three parts. First you show that the entropy of the fully mixed state is what
we want, H(A) 1

|A|
= log |A|. This should be direct. Then you prove that this state may be written as

1

|A| = ρ̄ =
∫
UρU †dU , for any state ρ and where the integral is taken over all the unitaries U that can be

applied on system A and dU is the Haar measure. I will give you a hand here. Finally you prove that
H(A)ρ ≤ H(A)ρ̄.
Proving the second part is interesting. Here is a not-direct-at-all methotd, where you have to show that:

1. The fully mixed state is invariant under a change of basis, i.e. V 1

|A|V
† = 1

|A| for any unitary V .

2. The same is not true for any other state.

3. ρ̄ =
∫
UρU †dU is invariant under a change of basis. To prove that use the property of the Haar measure

d(UV ) = d(V U) = dU .

To prove that H(A)ρ ≤ H(A)ρ̄ you are going to use the concavity result from the previous exercise, namely

ρ =
0∑
k

pkσ
k ⇒ H(A)ρ ≥

N∑
k

pkH(A)σk , {pk}k probability distribution.

Show that if that is true then in the limit n→∞, pk → 0 you can have

ρ =

∫
σdσ ⇒ H(A)ρ ≥

∫
H(A)σ dσ, dσ any “good” measure,

and replace
∫
σdσ by

∫
Uρ′U †dU .

By now you should have something like

H(A) 1

|A|
≥

∫
H(A)UρU† dU,

and getting what we want should be direct (look up the handy properties of the entropy if you are stuck).
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