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Exercise 10.1 Upper bound on von Neumann entropy

In this exercise you are going to use a long, sophisticated proof to show a very intuitive and otherwise easy
to prove statement. You may ask: why?, and I may tell you: for the beauty/elegance/creativity /heck of it.
The statement is the following: the entropy of a state of a system A with dimension |A| is always less or equal
to log |A|. The intuition for this is simple: a mixed state of the form p = >, pi|k)(k| may be seen as “pure
state |k) (k| was prepared with probability py”; entropy measures the uncertainty we have about what state
was prepared; the worst case scenario happens when you have the fully mixed state, which corresponds to
a uniform probability distribution of the possible pure states; the entropy of the fully mixed state is log | A|.
Now to our proof.

This proof is diveded in three parts. First you show that the entropy of the fully mixed state is what

we want, H(A) 3 = log|A|. This should be direct. Then you prove that this state may be written as

ﬁ =p=/ UpUTdU, for any state p and where the integral is taken over all the unitaries U that can be
applied on system A and dU is the Haar measure. I will give you a hand here. Finally you prove that
H(A), < H(A).

Proving the second part is interesting. Here is a not-direct-at-all methotd, where you have to show that:

1. The fully mixed state is invariant under a change of basis, i.e. V‘T]}‘VT = ﬁ for any unitary V.
2. The same is not true for any other state.

3. p= [UpU TdU is invariant under a change of basis. To prove that use the property of the Haar measure
d(UV)=d(VU) =dU.

To prove that H(A), < H(A); you are going to use the concavity result from the previous exercise, namely

0 N
p= Zpkak = H(A), > ZpkH(A)o.k, {pr}, probability distribution.
k k
Show that if that is true then in the limit n — oo, pr — 0 you can have
p= /O’dO‘ = H(A),> /H(A)a do, do any “good” measure,

and replace [ odo by [Up'UTdU.
By now you should have something like

HA) g > [ By U

and getting what we want should be direct (look up the handy properties of the entropy if you are stuck).



