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Exercise 12.1 Entropic Uncertainty Relations

In this exercise, we will derive a particular entropic uncertainty relation that is useful for proving security of quantum key
distribution protocols. To do this we will need a few intermediate steps.

a) Show the following relation for the relative entropy D(ρ||σ) that you encountered in the last exercise sheet:

D(S||T ) ≥ D(S||T̃ ) (1)

for all positive operators S, T and T̃ such that T̃ ≥ T .
We shall denote the Hilbert space on which S, T , and T̃ act as Hµ. Now, introduce an isomorphic Hilbert space
Hν , and consider the space H = Hµ ⊕ Hν . Let {|µj〉} and {|νj〉} be orthonormal bases for the two spaces Hµ and

Hν . Now introduce the TPCPM acting on operators on H, F : S → F1SF
†
1 + F2SF

†
2 , with F1 =

∑
j |µj〉〈µj | and

F2 =
∑
j |µj〉〈νj |. Define W := T̃ − T . Then

D(S||T ) = D(S ⊕ 0||T ⊕W ) (2)

≥ D(F(S ⊕ 0)||F(T ⊕W )) (3)

= D(S ⊕ 0||(T +W )⊕ 0) (4)

= D(S||T̃ ) (5)

b) Show that if c is a positive constant, then D(S||cT ) = D(S||T ) + log 1/c, if TrS = 1.
This is straightforward:

D(S||cT ) = Tr(S(logS − log(cT ))) (6)

= Tr(S(logS − log c− log T )) (7)

= D(S||T ) + log(1/c)Tr(S) (8)

= D(S||T ) + log 1/c (9)

c) Prove the following entropic uncertainty relation for a tripartite pure state ρABC :

H(X|B) +H(Z|C) ≥ log
1

c(X,Z)
, (10)

where X = {|Xj〉〈Xj |} and Z = {|Zk〉〈Zk|} are orthonormal bases corresponding to different measurements on system
A, and c = maxj,k |〈Xj |Zk〉|2 is the maximum overlap between the bases.

Hint: Describe the X measurement on A with the isometry VX =
∑
j |j〉 ⊗ Xj and consider the associated state

ρ̃XABC = VXρABCV
†
X .

For a pure state ρABC the proof goes as follows: First, we describe the X measurement on A with the isometry
VX =

∑
j |j〉 ⊗Xj and the associated state ρ̃XABC = VXρABCV

†
X . Then, for this state

H(X|B) = −H(X|AC) (11)

= D(ρ̃XAC ||1X ⊗ ρ̃AC) (12)

= D(VXρACV
†
X ||VX(

∑
j

XjρACXj)V
†
X) (13)

= D(ρAC ||
∑
j

XjρACXj) (14)

≥ D(ρ̄ZC ||
∑
j,k

|〈Xj |Zk〉|2Zk ⊗ TrA{XjρAC}) (15)

≥ D(ρ̄ZC ||c(X,Z)1⊗ ρC) (16)

= log(1/c(X,Z)) +D(ρ̄ZC ||1⊗ ρC) (17)

= log(1/c(X,Z))−H(Z|C), (18)

where we have used ρ̄ZC :=
∑
k ZkρACZk.
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d) How would you generalize this proof for arbitrary mixed states ρABC?
For arbitrary mixed states, we first need to purify the state in question to ρABCD. Then, we can use the data processing
inequality for the von Neumann entropy H(X|C) ≥ H(X|CD) as the very first step and then proceed as before:

H(X|B) ≥ H(X|BD) (19)

= −H(X|AC) (20)

= .... (21)

e) In which cases is the uncertainty relation satisfied with equality?
First of all, we need pure states ρABC . Then, we are left with the following steps in the proof from part c) that we
need to satisfy with equality:

(a) D(ρAB ||
∑
j XjρABXj) ≥ D(ρ̄ZB ||

∑
j,k |〈Xj |Zk〉|2Zk ⊗ TrA{XjρAB})

In this step, the inequality arises because we have made use of the data processing inequality This is related
to reversibility of the particular CPTPM used in the proof corresponding to Z-measurement on party A: It is
saturated if and only if there exists a CPTPM Ê that undoes the action of the measurement CPTPM E on S and
T , i.e.

(Ê ◦ E)(S) = S (22)

(Ê ◦ E)(T ) = T (23)

(b) D(ρ̄ZB ||
∑
j,k |〈Xj |Zk〉|2Zk ⊗ TrA{XjρAB}) ≥ D(ρ̄ZB ||c(X,Z)1⊗ ρB)

In this step, we basically replaced each element |〈Xj |Zk〉|2 in the sum by its maximum value c(X,Z), and applied
the property you proved in part a) of this exercise. Hence, in order to satisfy this step with equality, we first
need that each element |〈Xj |Zk〉|2 is actually equal to the maximum, meaning that the overlap between all bases
respectively is the same. This is the property of so-called mutually unbiased bases (MUB). Secondly, we need
equality in the proof of a). This is obtained if the map F that occurs in the proof actually saturates the DPI, and
so we need a reversibility condition as before.

Exercise 12.2 Entropic Uncertainty Relation: Examples

In the following exercise consider two people, Alice and Bob, who share a state ρAB and a third person Charlie has the
purification of this in his system C. Therefore, the pure state ρABC describes the shared state between the three people.

a) First, show that the overlap is c(X,Z) = 1/2 between the X and Z Pauli-operator measurements, described by the bases
{|+〉, |−〉} and {|0〉, |1〉} respectively.

Clearly the overlaps are all the same, and so c(X,Z) = |〈+|0〉|2 = |〈−|0〉|2 = |〈+|1〉|2 = |〈−|1〉|2 = 1/2.

b) If ρAB is a maximally entangled two-qubit state ρAB = |ψ+〉〈ψ+|, where |ψ+〉 = (|00〉+ |11〉)/
√

2, and Alice performs
a X or Z measurement, show that no matter what state Charlie has, he has maximum uncertainty about Alice’s
post-measurement state.

If we consider the uncertainty relation from the previous exercise, we have two relevant versions:

H(X|B) +H(Z|C) ≥ log
1

c(X,Z)

H(Z|B) +H(X|C) ≥ log
1

c(X,Z)
.

First, let’s consider the case where Alice does a Z-basis measurement. Then, either Alice gets 0 or 1 with equal
probability. The post-measurement state is:

1

2
(|00〉AB〈00|+ |11〉AB〈11|)⊗ ρC .

From this state, we have H(Z|B) = H(ZB) − H(B) = 1 − 1 = 0. This means that the second uncertainty relation
above reduces to H(X|C) ≥ 1. Since ρXC is a CQ state, we know that H(X|C) ≤ 1, and so H(X|C) = 1 is maximal.
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When Alice does a X-basis measurement, the post-measurement state is

1

2
(|+ +〉AB〈+ + |+ | − −〉AB〈− − |)⊗ ρC ,

where we use the fact that |ψ+〉 = 1/
√

2(|+ +〉+ | − −〉). Due to symmetry, we have the result of H(Z|C) = 1, which
is maximal.

c) Conceptually, if Alice and Bob do not share a pure state, could Charlie have any information about Alice’s post-
measurement state? What if Alice and Bob have a pure state that is not maximally entangled?

To answer the first question, if Alice and Bob do not share a pure state, then Charlie could have a purification of that
state. As a result, the entropies H(X|B) and H(Z|B) are now less than 1, and so Charlie could have some information
about Alice’s measurement outcomes.

For the second question, you would need a state that would result in H(X|B) = H(Z|B) = 0, which is pure, but that
is not maximally entangled. Since this is not necessarily the case, then Charlie could have some information about
Alice’s post measurement state. A simple counter example to show this is the state |000〉.
You could also consider if there is a state that is pure, not maximally entangled, but has H(X|B) = H(Z|B) = 0, but
it can be shown that no such state exists.

Exercise 12.3 Another uncertainty Relation

a) Show that, for the setting as in Exercise 12.1, H(ZB) = H(ZC). Use the fact that ρABC is pure.
For this, look at the following:

H(ZB) = H(B|Z) +H(Z) and (24)

H(ZC) = H(C|Z) +H(Z) (25)

Now, if we consider a projective measurement in the Z-basis on the pure state ρABC , it is clear that conditioned on
Z = z, the reduced state on BC is also pure. Hence, straightforwardly, H(B|Z) = H(C|Z).

b) Use the results of Exercise 12.1 and part a) of this exercise to show the following uncertainty relation:

H(X|B) +H(Z|B) ≥ 1

c(X,Z)
+H(A|B) (26)

Looking at Exercise 12.1, we see that we would need H(A|B) = H(Z|B) − H(Z|C) in order to prove the above
uncertainty relation. To prove this, rewrite

H(Z|B)−H(Z|C) = H(ZB)−H(B)−H(ZC) +H(C) (27)

= H(ZB)−H(B)−H(ZC) +H(AB) (28)

= H(A|B) +H(ZB)−H(ZC) (29)

= H(A|B) (30)
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