Definitions: von Neumann entropy

In this series we will derive some useful properties of the von Neumann entropy. We will also look at quantum mutual information. Before we start, here are a few definitions.

The von Neumann entropy of a density operator $\rho \in \mathcal{S}(\mathcal{H}_A)$ is defined as

$$H(A)_{\rho} := -\operatorname{Tr}(\rho \log \rho) = -\sum_{i} \lambda_{i} \log \lambda_{i}, \qquad (1)$$

where $\{\lambda_i\}_i$ are the eigenvalues of ρ .

Given a composite system $\mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, we write the entropy of the reduced state of a subsystem, such as $\mathcal{H}_A \otimes \mathcal{H}_B$ as $H(AB)_{\rho}$, where $\rho_{AB} = \text{Tr}_C(\rho_{ABC})$. When the state ρ is obvious from the context we do not write it as the subscript. The *conditional* von Neumann entropy is defined as

$$H(A|B)_{\rho} := H(AB)_{\rho} - H(B)_{\rho}.$$
(2)

In the Alice-and-Bob picture this quantifies the uncertainty that Bob (who holds the *B* part of the quantum state ρ_{AB}) has about Alice's state ρ_A .

The strong sub-additivity property of the von Neumann entropy is very useful. It applies to a tripartite composite system $\mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$,

$$H(A|BC)_{\rho} \le H(A|B)_{\rho}.$$
(3)

Exercise 10.1 Upper bound on von Neumann entropy

Given a state $\rho \in \mathcal{S}(\mathcal{H}_A)$, show that

$$H(A)_{\rho} \le \log |\mathcal{H}_A|. \tag{4}$$

There are several ways to do this. In this exercise, you should do it as follows. Consider the state $\bar{\rho} = \int U\rho U^{\dagger} dU$, where the integral is over all unitaries $U \in \mathcal{U}(\mathcal{H})$ and dU is the Haar measure. Find $\bar{\rho}$ and show (4) using concavity:

$$H(A)_{\rho} \ge \sum_{z} p_{z} H(A|Z=z).$$
(5)

The Haar measure satisfies d(UV) = d(VU) = dU, where $V \in \mathcal{U}(\mathcal{H})$ is a unitary.

Exercise 10.2 Quantum mutual information

One way of quantifying correlations between two systems A and B is through their *mutual information*, defined as

$$I(A:B)_{\rho} := H(A)_{\rho} + H(B)_{\rho} - H(AB)_{\rho}$$
(6)

$$=H(A)_{\rho}-H(A|B)_{\rho}.$$
(7)

We can also define a conditional version of the mutual information between A and B as

$$I(A:B|C)_{\rho} := H(A|C)_{\rho} + H(B|C)_{\rho} - H(AB|C)_{\rho}$$
(8)

$$=H(A|C)_{\rho}-H(A|BC)_{\rho}.$$
(9)

a) Consider two qubits A and B in joint state ρ_{AB} .

- 1. Prove that the mutual information of the Bell state $|\Psi^+\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ is maximal. This is why we say Bell states are maximally entangled.
- 2. Show that $I(A:B) \leq 1$ for classically correlated states, $\rho_{AB} = p|0\rangle\langle 0|_A \otimes \sigma_B^0 + (1-p)|1\rangle\langle 1|_A \otimes \sigma_B^1$ (where $0 \leq p \leq 1$).

b) Consider the so-called *cat state* of four qubits, $A \otimes B \otimes C \otimes D$, that is defined as

$$\left| \underbrace{\Im} \right\rangle = \frac{1}{\sqrt{2}} \left(|0000\rangle + |1111\rangle \right). \tag{10}$$

Show that the mutual information between A and B changes with the knowledge of the remaining qubits,

- 1. I(A:B) = 1.
- 2. I(A:B|C) = 0.
- 3. I(A:B|CD) = 1.

How do you interpret these results for the mutual information of the cat state?

Exercise 10.3 Information measures bonanza

Take a system A in state ρ . Non-conditional quantum min- and max-entropies are given by

$$H_{\min}(A)_{\rho} = -\log \max_{\lambda \in \mathrm{EV}(\rho)} \lambda, \qquad H_{\max}(A)_{\rho} = \log \mathrm{rank}(\rho).$$

For instance, if ρ_A has eigenvalues EV $(\rho_A) = \{0.6, 0.2, 0.2, 0\}$, we have $H_{\min}(A)_{\rho} = -\log 0.6$ and $H_{\max}(A)_{\rho} = \log 3$.

- a) Show that if $\text{EV}(\rho) \prec \text{EV}(\tau)$, then the entropy of ρ is larger than or equal to the entropy of τ , for the von Neumann, min- and max-entropies.
- b) Show that if the bipartite state $|\psi\rangle_{AB}$ can be transformed into $|\phi\rangle$ via LOCC (without catalysts), then $I(A:B)_{\psi} \ge I(A:B)_{\phi}$.