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Exercise 8.1 Representations of CPTP maps

Normally, operators that map from the Hilbert space HA to HB are represented as matrices, such as C =
∑
ij cij |i〉B〈j|A.

We can instead represent them as vectors:

|C〉〉 =
∑
ij

cij |i〉B |j〉A. (1)

We use this notation to denote that the operator C is represented as a vector (and therefore we use a ket), but we use
the double right angle bracket to remember that this is an operator and not a state in a Hilbert space. Formally, if
C ∈ Hom(HA,HB) then |C〉〉 ∈ Hom(C,HA ⊗HB).

a) Show that Y ⊗ X|Z〉〉 = |XZY T 〉〉, where X ∈ Hom(HA,HB), Y ∈ Hom(HC ,HD) and Z ∈ Hom(HC ,HA). Note
that the transpose on Y is defined in the basis chosen to represent the operators in Eq. 1.

b) Show that TrA(|X〉〉〈〈Y |) = XY ∗, where X,Y ∈ Hom(HA,HB).

c) We can use the properties (a) and (b) to now derive the Choi-Jamio lkowski representation for CPTP maps. Re-
member that the operator-sum representation of a map E ∈ Hom(End(HA),End(HB)) can be written as:

E(ρA) =
∑
k

EkρAE
∗
k ,

where
∑
k E
∗
kEk = 1. Use (a) and (b) to show that there exists a Choi-Jamio lkowski (CJ) matrix TA′B ∈ End(HA′B)

such that
E(ρA) = TrA(TAB(ρTA ⊗ 1B)),

where A′ is a copy of A, so TAB :=
∑
i,j |i〉A〈i|A′TA′B |j〉A′〈j|A, and {|i〉}i, {|j〉}j are orthonormal bases for both A

and A′.

d) Show that TA′B from (c) can also be written as

TA′B = (1A′ ⊗ E)(|ψ+〉A′A〈ψ+|),

where |ψ+〉A′A = 1/
√
d
∑d
i=1 |i〉A′ |i〉A = |1〉〉A′A.

e) What are the CP and TP conditions on TA′B in the CJ picture?

f) There is another representation called the Normal representation which is defined via the following isomorphism:

N : Hom(End(HA),End(HB)) 7→ Hom(Hom(C,HAA′),Hom(C,HBB′)),

where A′ is a copy of A and B′ is a copy of B. Show that for any CPTPM E there exists an operator NAA′→BB′

such that
N |ρA〉〉 = |E(ρA)〉〉 ∀ρA ∈ S=(HA),

where A′ is a copy of A and B′ is a copy of B.

g) What is the TP condition on N?

Exercise 8.2 Measurements as unitary evolutions

Consider a measurement on a system HA, whose output is in HB that is described by the observable M =
∑
x∈X xPx,

where {Px}x are projectors. If we consider the output of this measurement on a larger space, by adding an auxiliary
system R, we can represent this measurement as an isometry, U , acting on A and having an output on HB⊗HR, followed
by a partial trace over R. By adding an ancilla to the input system, Q, the measurement can also be described by a
unitary U that takes system AQ to BR, and then we get the same output as the measurement described by M by taking
a partial trace over R.
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a) Show that the measurement described by the observable M can be written as unitary followed by a partial trace
over R. This task can be broken down into the following steps:

i) What is the Kraus operator representation of the CPTPM E that describes the measurement operator M?

ii) What is the Choi-Jamio lkowski (CJ) state if we write the projectors as Px =
∑
k∈Sx

|k〉〈k|, where Sx is the
set of indices k that we sum over for each x and {|k〉}k is an orthonormal basis?

iii) Find a purification of the CJ state. Label the purifying system as system R.

iv) Apply the inverse of the CJ isomorphism to the purified state in (iii), and show that it is of the form UρAU
∗,

where U is an isometry. The inverse CJ isomorphism is the map that takes a state ρA′BR as input, and
outputs a map F defined as

F(ρA) = |HA|TrA′

∑
i,j

|i〉A′〈j|AρA|i〉A〈j|A′

⊗ 1BR · ρA′BR

 ,

where {|i〉}i is an orthonormal basis for A and A′ (similarly for {|j〉}j), and ρA′BR is the CJ state purified
on the system R. Note that

∑
i,j |i〉A′〈j|AρA|i〉A〈j|A′ is just the transpose and a relabeling of A to A′.

v) Show that TrR(F(ρA)) has the same output as the measurement description in (i).

vi) Finally, represent the measurement as a unitary, U , acting on the input system AQ followed by a partial
trace over R.

b) Give two explicit expressions (in different representations: i.e. Kraus operator, CJ, or Normal) for the two maps E
defined by the following qubit POVMs:

1. M1 = {|0〉〈0|, |1〉〈1|}.
2. M2 = {p|0〉〈0|, p|1〉〈1|, (1− p)12}. What is the physical interpretation of this POVM?

Exercise 8.3 Unambiguous state discrimination

Suppose you are given one of two states, ρ and σ, with equal probability, and want to distinguish them with a single
measurement. We have seen that, unless the states are orthogonal (δ(ρ, σ) = 1), it is impossible to always distinguish
them with certainty. We also saw that if you wanted to maximize the probability of guessing correctly, the best strategy
was to measure the state in the eigenbasis of ρ− σ: you would be right with probability PrX = 1

2 (1 + δ(ρ, σ)).

Now suppose you have a different goal: you will only make a guess when you are certain of which state you have, so as to
never make a mistake. Formally, you will perform a measurement described by a POVM {Mρ,Mσ,M?}, such that: (1) if
you obtain an outcome corresponding to Mρ or Mσ, you know for sure that you have ρ or σ, respectively, and (2) if your
outcome corresponds to M? you do not know with certainty which state you have, and you will not risk guessing.

a) We will consider only pure states ρ = |ψ〉〈ψ|, σ = |φ〉〈φ|. We want to have zero probability of guessing “ψ” when
the state measured was φ (and vice-versa) . What does this tell us about the form of Mψ, Mφ and M? ?

b) Maximize the probability of making a correct guess, i.e., to minimize the probability of obtaining M?. Remember
that you can expand one of the states in terms of the other and a vector orthogonal to it, for instance

|ψ〉 = a|φ〉+ b|φ⊥〉, |ψ⊥〉 = −b|φ〉+ a|φ⊥〉, a = 〈ψ|φ〉, |a|2 + |b|2 = 1.

c) What happens if ψ and φ are given with probability q and 1− q?
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