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Exercise 6.1 Data hiding

Suppose you have two agents, Alice and Bond, at your service. You want them to deliver a secret (classical) message
to your ally Charlie. You will give Alice and Bond two different states (i.e. an encryption of your message), so that
they cannot extract the secret message unless they are physically together. Specifically, data hiding is what you want:
states that are easily distinguishable by doing a certain class of operations, such as a global measurement on Alice and
Bond’s systems together, but they are nearly indistinguishable under a different, restricted class of operations, such as
local operations and classical communication (LOCC). Formally, we say that a family of states

{
ρi
}
i

is ε-secure under a
set of operations E if

δ(E(ρi), E(ρj)) < ε, ∀i, j, ∀E ∈ E.

In this exercise we will consider a data hiding scheme which is secure under LOCC and so the original message can only
be recovered if global measurements on the joint system are allowed. Consider a 2d-qubit Hilbert space, HA ⊗HB , and
the computational basis of both spaces. Consider the projectors onto the symmetric and antisymmetric subspaces of
HA ⊗HB ,

ΠS =
1

2

∑
i<j

(
|i〉A|j〉B + |j〉A|i〉B

)(
〈i|A〈j|B + 〈j|A〈i|B

)
+
∑
i

|i〉A|i〉B〈i|A〈i|B ,

ΠA =
1

2

∑
i<j

(
|i〉A|j〉B − |j〉A|i〉B

)(
〈i|A〈j|B − 〈j|A〈i|B

)
.

You will encode only one bit of information, b, giving Alice and Bond each their d−qubit part of ρbAB , with

ρb=0 =
2

d(d+ 1)
ΠS , ρb=1 =

2

d(d− 1)
ΠA.

a) Show that ρb=0 and ρb=1 are valid density operators and explain how you would proceed to recover b if you had
access to Alice and Bond’s systems (together).

b) Consider the flip operator in basis {|i〉A|j〉B}ij ,

F = ΠS −ΠA =
∑
i,j

|i〉A|j〉B〈j|A〈i|B .

Show that, for all operators MA ∈ End(HA), NB ∈ End(HB), Tr[F (MA ⊗NB)] = Tr(MANB). In particular, for all
pure states |x〉A, |y〉B , Tr[F |xy〉〈xy|] = |〈x|y〉|2.

c) Suppose that Alice and Bond perform local projective measurements in arbitrary bases, {|x〉A} and {|y〉B} respec-
tively. We denote the joint probability distribution of the outcomes PXY when they measure state ρb=0 and QXY

when they measure ρb=1. We want them to be unable to distinguish the two distributions, so we want to show that
δ(PXY , QXY ) is small. Remember that

PXY (x, y) = Tr(|xy〉〈xy|ρb=0), QXY (x, y) = Tr(|xy〉〈xy|ρb=1).

Use the results from b) to show that δ(PXY , QXY ) ≤ 2
d+1 .

Hint: Start from the trace distance as δ(PXY , QXY ) =
∑

x,y∈S PXY (x, y)−QXY (x, y), with
S = {(x, y) : PXY (x, y) > QXY (x, y)}.

Exercise 6.2 Classical channels as trace-preserving completely positive maps.

You can represent classical channels as trace-preserving completely positive maps (CPTPMs).

a) Take the binary symmetric channel p,

1



1 - p

1 - p

p
p

X Y

.

Recall that we can represent the probability distributions on both ends of the channel as quantum states in a
given basis: for instance, if PX(0) = q, PX(1) = 1 − q, we may express this as the 1-qubit mixed state ρX =
q |0〉〈0|+ (1− q) |1〉〈1|.
What is the quantum state ρY that represents the final probability distribution PY in the computational basis?

b) We can represent the channel as a map

Ep : S(HX) 7→ S(HY )

ρX → ρY .

An operator-sum representation (also called the Kraus-operator representation) of a CPTP map E : S(HX)→ S(HY )
is a decomposition {Ek}k of operators Ek ∈ Hom(HX ,HY ),

∑
k EkEk

† = 1, such that

E(ρX) =
∑
k

EkρXEk
†.

Find an operator-sum representation of Ep.

Hint: Think of each operator Ek = Exy as the representation of the branch that maps input x to output y.

c) Now we have a representation of the classical channel in terms of the evolution of a quantum state. What happens
if the initial state ρX is not diagonal in the computational basis?

d) Consider an arbitrary classical channel p from an n-bit space X to an m-bit space Y , defined by the conditional
probabilities

{
PY |X=x(y)

}
xy

.

Express p as a map Ep : S(HX)→ S(HY ) in the operator-sum representation.

Exercise 6.3 CPTPMs as channels

In this exercise we will go the other way around: we are given a CPTPM and will find a way of expressing it as a channel,
and compute its capacity.
Consider two single-qubit Hilbert spaces HA and HB and a CPTPM

Ep : S(HX) 7→ S(HY ) (D)

ρ→ p
1

2
+ (1− p)ρ.

a) Find an operator-sum representation for Ep.

Hint: Remember that ρ ∈ S(HA) can be written in the Bloch sphere representation:

ρ =
1

2
(1 + ~r · ~σ), ~r ∈ R3, |~r| ≤ 1, ~r · ~σ = rxσx + ryσy + rzσz, (1)

where σx, σy and σz are Pauli matrices. It may be useful to show that

1 =
1

2
(ρ+ σxρσx + σyρσy + σzρσz).

b) What happens to the Bloch radius ~r of the initial state when we apply Ep? How can this be interpreted?

c) Now we will see what happens when we use this quantum channel to send classical information. We start with
an arbitrary input probability distribution PX(0) = q, PX(1) = 1 − q. We encode this distribution in a state
ρX = q |0〉〈0|+ (1− q)|1〉〈1|. Now we send ρX over the quantum channel, i.e., we let it evolve under Ep. Finally, we
measure the output state, ρY = Ep(ρX) in the computational basis.

Compute the conditional probabilities
{
PY |X=x(y)

}
xy

.

d) Maximise the mutual information over q to find the classical channel capacity of the depolarizing channel (D).

e) What happens to the channel capacity if we measure the final state in a different basis?
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