Exercise 5.1 Purification

A decomposition of a state $\rho_A \in \mathcal{S}(\mathcal{H}_A)$ is a (non-unique) convex combination of pure states $\rho_A^x = |a_x\rangle\langle a_x|$ such that $\rho_A = \sum_x \lambda_x \rho_A^x$.

- a) Show that $|\Psi\rangle = \sum_x \sqrt{\lambda_x} |a_x\rangle_A \otimes |b_x\rangle_B$ is a purification of ρ_A for any orthonormal basis $\{|b_x\rangle_B\}_x$ of \mathcal{H}_{B} .
- b) Show that any two purifications are related by a *local* isometry on the purifying system.
- c) Mixed states can be decomposed in many different ways, i.e. with respect to many different bases. We will show that, from a purification of a mixed state ρ_A , we can generate any decomposition $\{\rho_A^x\}_x$ such that $\rho_A = \sum_x \lambda_x \rho_A^x$ by performing measurements on the purifying system. This is sometimes called *steering*.

For ρ_A as defined above, and any purification $|\Phi\rangle$ of ρ_A on $\mathcal{H}_A \otimes \mathcal{H}_B$, find a measurement on \mathcal{H}_B , described by operators $\{M_B^x\}_x$, such that

$$\lambda_x = \operatorname{Tr}\left[|\Phi\rangle\langle\Phi|(\mathbb{1}_A \otimes M_B^x)\right] \quad \text{and} \quad \rho_A^x = \frac{\operatorname{Tr}_B\left[|\Phi\rangle\langle\Phi|(\mathbb{1}_A \otimes M_B^x)\right]}{\lambda_x}.$$
(1)

In this picture λ_x is the probability of measuring x and ρ_A^x is the state after the measurement.

Decomposition example. To see what we mean by the different compositions, look at the following example for the fully mixed state. It can be written as

$$\begin{split} \frac{\mathbb{1}_2}{2} &= \frac{|0\rangle\langle 0| + |1\rangle\langle 1|}{2}, \quad \text{or} \\ &= \frac{|+\rangle\langle +| + |-\rangle\langle -|}{2}, \quad \text{or (more interestingly)} \\ &= \sum_{i=1}^4 \frac{1}{4} |\theta_i, \phi_i\rangle\langle \theta_i, \phi_i|, \end{split}$$

where $\{|\theta_i, \phi_i\rangle\}$ are the pure states:

$$(\theta_1,\phi_1) = (\psi,\frac{\pi}{4}), \quad (\theta_2,\phi_2) = (\pi-\psi,-\frac{\pi}{4}), \quad (\theta_3,\phi_3) = (\pi-\psi,\frac{3\pi}{4}), \quad (\theta_4,\phi_4) = (\psi,-\frac{3\pi}{4}),$$

with $\psi := \arccos(\frac{1}{\sqrt{3}})$. Note that as these states are pure, they lie on the surface of the sphere, and therefore can be parametrized by just two parameters $(\theta, \phi) \in [0, \pi] \times [0, 2\pi)$. You can also see that the vectors sit on the vertices of a regular tetrahedron.

Exercise 5.2 Distinguishing two quantum states

Suppose you know the density operators of two quantum states $\rho, \sigma \in \mathcal{H}_A$. Then you are given one of the states at random—it may either be ρ , with probability p, or σ , with probability 1 - p. The challenge is to perform a single measurement on your state and then guess which state that is.

- a) What is your best strategy? In which basis do you think you should perform the measurement? Can you express that measurement using a projector P?
- b) What is the probability of guessing correctly, $\Pr^p_{\checkmark}(\rho, \sigma)$? Compare that with the case where the states are evenly distributed, $\Pr^{0.5}_{\checkmark}(\rho, \sigma) = \frac{1}{2}[1 + \delta(\rho, \sigma)]$, where $\delta(\rho, \sigma)$ is the trace distance between the two quantum states.

Exercise 5.3 Distance bounds

Maximally entangled states $|\Psi\rangle$ between two systems A and A' are used for many quantum tasks (for instance teleportation, which we will introduce later in the lecture). Unfortunately, sometimes we cannot be 100% sure we can create exactly $|\Psi\rangle$. Suppose, however, that we do know how to create a state in $A \otimes B$ such that B has almost no information about A: $\rho_{AB} \approx \mathbb{1}_A/|A| \otimes \rho_B$. As we shall see, this can help us find an (approximately) maximally entangled state between A and A'.

a) Given a trace-preserving quantum operation \mathcal{E} and two states ρ and σ , show that

$$\delta\left(\mathcal{E}(\sigma),\mathcal{E}(\rho)\right) \leq \delta(\sigma,\rho)$$

How would you interpret this statement?

b) Show that any purification of the state $\rho_{AB} = \frac{\mathbb{1}_A}{|\mathcal{H}_A|} \otimes \rho_B$ has the form

$$|\psi\rangle_{AA'BB'} = |\Psi\rangle_{AA'} \otimes |\psi\rangle_{BB'},$$

where $|\Psi\rangle_{AA'} = |\mathcal{H}_A|^{-\frac{1}{2}} \sum_i |i\rangle_A |i\rangle_{A'}$ is a maximally entangled state, and $|\psi\rangle_{BB'}$ is a purification of ρ_B .

- c) Show that $1 F(\rho, \sigma) \le \delta(\rho, \sigma) \le \sqrt{1 F(\rho, \sigma)^2}$.
- d) Consider a state σ_{AB} that is ε -distant from ρ_{AB} according to the trace distance, i.e.

$$\delta\left(\sigma_{AB}, \frac{\mathbb{1}_A}{|\mathcal{H}_A|} \otimes \rho_B\right) \leq \varepsilon.$$

Find an upper bound for

$$\delta\left(\tau_{AA'}, |\Psi\rangle_{AA'} \langle \Psi|_{AA'}\right)$$

where $|\phi\rangle_{AA'BB'}$ is a purification of σ_{AB} and $\tau_{AA'} = \text{Tr}_{BB'}(|\phi\rangle_{AA'BB'}\langle\phi|_{AA'BB'})$.