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1. Volume of higher-dimensional spheres
The integrands of D-dimensional loop integrals often are spherically symmetric functions
F(Z) = F(|Z|) (or they can be brought into this form, see Problem[2). The angular part of

the integral in spherical coordinates yields the volume of the (D — 1)-dimensional sphere
SDfl
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In particular, in view of the dimensional regularisation scheme, where D is assumed to be
a real number, we need a suitable formula for the volume as an analytic function of D.
Use the well-known result -
| dress(-a?) = v=. &)
to show that the volume of the (D — 1)-sphere is
27TD/2
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(3)

2. Feynman and Schwinger parameters

a) To evaluate loop diagrams one combines propagators with the use of Feynman pa-
rameters. The basic version is
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but it can be generalised to n propagators elevated to some arbitrary power
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Prove ((B]) recursively.

b) Another useful parametrisation is the Schwinger parametrisation:
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Prove ([6).

3. Electron self energy structure

In QED, the electron two-point function F(p,q) = —i(2m)*6*(p + q) M (p) receives contri-
butions from self energy diagrams.

a) Draw the Feynman diagrams corresponding to the one- and two-loop contributions.
Which of these diagrams are one-particle irreducible?

b) For the one-loop case, write down the expression for M (p) using the massive QED
Feynman rules in momentum space and argue why the integral is divergent.

c¢) Explain why one can make the ansatz
M =p-~vMy+mMs, (7)

where My g are scalar functions. Write down integral expressions for them.



