Quantum Field Theory I
 Problem Set 7
 ETH Zurich, HS12
 G. Abelof, J. Cancino, F. Dulat, B. Mistlberger, Prof. N. Beisert

1. Polarisation vectors of a massless vector field

Each Fourier mode in the plane wave expansion of a massless vector field has the form

$$
\begin{equation*}
A_{\mu}^{(\lambda)}(\vec{p} ; x)=N(\vec{p}) \epsilon_{\mu}^{(\lambda)}(\vec{p}) e^{i p \cdot x} \tag{1}
\end{equation*}
$$

Without any loss of generality the polarisation vectors $\epsilon_{\mu}^{(\lambda)}(\vec{p})$ can be chosen to form a four-dimensional orthonormal system satisfying

$$
\begin{equation*}
\epsilon_{\mu}^{(\lambda)}(\vec{p}) \epsilon^{(\kappa) \mu}(\vec{p})=\eta^{\lambda \kappa} . \tag{2}
\end{equation*}
$$

a) Show that the following choice satisfies (2)

$$
\begin{align*}
\epsilon_{\mu}^{(0)}(\vec{p}) & =n_{\mu}, \tag{3}\\
\epsilon_{\mu}^{(1)}(\vec{p}) & =\left(0, \vec{\epsilon}^{(1)}(\vec{p})\right), \tag{4}\\
\epsilon_{\mu}^{(2)}(\vec{p}) & =\left(0, \vec{\epsilon}^{(2)}(\vec{p})\right), \tag{5}\\
\epsilon_{\mu}^{(3)}(\vec{p}) & =\left(p_{\mu}+n_{\mu}(p \cdot n)\right) /|p \cdot n|, \tag{6}
\end{align*}
$$

where $n_{\mu}=(1,0)$ and $\vec{p} \cdot \vec{\epsilon}^{(k)}(\vec{p})=0$ as well as $\vec{\epsilon}^{(k)}(\vec{p}) \cdot \vec{\epsilon}^{(l)}(\vec{p})=\delta^{k l}$.
b) Use the polarisation vectors to verify the completeness relation

$$
\begin{equation*}
\sum_{\lambda=0}^{3} \eta_{\lambda \lambda} \epsilon_{\mu}^{(\lambda)}(\vec{p}) \epsilon_{\nu}^{(\lambda)}(\vec{p})=\eta_{\mu \nu} \tag{7}
\end{equation*}
$$

c) Show for the physical modes of the photon that

$$
\begin{equation*}
\sum_{\lambda=1}^{2} \epsilon_{\mu}^{(\lambda)}(\vec{p}) \epsilon_{\nu}^{(\lambda)}(\vec{p})=\eta_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{(p \cdot n)^{2}}-\frac{p_{\mu} n_{\nu}+p_{\nu} n_{\mu}}{p \cdot n} \tag{8}
\end{equation*}
$$

2. Spinor helicity framework

The spinor helicity framework is a method to conveniently work with massless particles and their helicity modes.
Write a momentum 4 -vector p_{μ} as a 2×2 matrix P

$$
\begin{equation*}
P=\sigma^{\mu} p_{\mu} . \tag{9}
\end{equation*}
$$

a) Show that the inverse transformation is given by $p_{\mu}=-\frac{1}{2} \operatorname{tr}\left(\bar{\sigma}_{\mu} P\right)$.
b) Show that $\operatorname{det} P=-p^{2}$.
c) Explain why the momentum P of a massless particle can be expressed as a product of a (bosonic) 2 -spinor λ and its hermitian conjugate λ^{\dagger}

$$
\begin{equation*}
P=\lambda \lambda^{\dagger} \tag{10}
\end{equation*}
$$

Is λ uniquely determined through p ? What can you say about the energy p_{0} ?
d) Show that the Lorentz-invariant integral over the light cone can be expressed as a plain integral over all λ 's

$$
\begin{equation*}
\int \frac{d p_{1} d p_{2} d p_{3}}{(2 \pi)^{3} 2 e(\vec{p})} f(\vec{p})=\int \frac{d \lambda_{1} d \lambda_{1}^{*} d \lambda_{2} d \lambda_{2}^{*}}{4(2 \pi)^{4}} f\left(\vec{p}\left(\lambda, \lambda^{\dagger}\right)\right) . \tag{11}
\end{equation*}
$$

Hint: As a fourth variable for the integral on the l.h.s. you may use the undetermined complex phase $\varphi=-\frac{i}{2} \log \left(\lambda_{1} / \lambda_{1}^{*}\right)$ of λ_{1} integrated over $0 \leq \varphi<2 \pi$.
Given some non-trivial 2-spinor μ (not proportional to λ), two polarisation vectors with helicity $h= \pm 1$ can be constructed as

$$
\begin{equation*}
\epsilon_{\mu}^{(+)}(\vec{p})=\frac{\mu^{\dagger} \bar{\sigma}_{\mu} \lambda}{\mu^{\dagger} \sigma^{2} \lambda^{*}}, \quad \epsilon_{\mu}^{(-)}(\vec{p})=\frac{\lambda^{\dagger} \bar{\sigma}_{\mu} \mu}{\lambda^{\top} \sigma^{2} \mu} \tag{12}
\end{equation*}
$$

e) Show that $p \cdot \varepsilon^{(\pm)}(\vec{p})=0$.
f) Show that a change in μ acts as a gauge transformation on the polarisation vectors, i.e. $\delta \varepsilon_{\mu}^{(\pm)} \sim p_{\mu}$. Hint: Parametrise $\delta \mu$ as a linear combination of μ and λ.

3. The photon propagator with a gauge fixing term

Consider the Lagrangian for a free massless vector field modified by a gauge fixing term

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} \xi\left(\partial_{\lambda} A^{\lambda}\right)^{2} . \tag{13}
\end{equation*}
$$

a) Show that the Lagrangian is equivalent to the following one up to a total derivative

$$
\begin{equation*}
\mathcal{L}^{\prime}=-\frac{1}{2} \partial_{\mu} A_{\nu} \partial^{\mu} A^{\nu}-\frac{1}{2}(\xi-1)\left(\partial_{\lambda} A^{\lambda}\right)^{2} . \tag{14}
\end{equation*}
$$

b) Show that the equal-time commutation relations are (you may use \mathcal{L} or \mathcal{L}^{\prime})

$$
\begin{align*}
& {\left[A^{\mu}(t, \vec{x}), A^{\nu}(t, \vec{y})\right]=0} \tag{15}\\
& {\left[A^{\mu}(t, \vec{x}), \dot{A}^{\nu}(t, \vec{y})\right]=i\left(\eta^{\mu \nu}+\frac{\xi-1}{\xi} \delta_{0}^{\mu} \delta_{0}^{\nu}\right) \delta^{3}(\vec{x}-\vec{y}),} \tag{16}\\
& {\left[\dot{A}^{\mu}(t, \vec{x}), \dot{A}^{\nu}(t, \vec{y})\right]=-i \frac{\xi-1}{\xi}\left(\delta_{0}^{\mu} \delta^{\nu k}+\delta_{0}^{\nu} \delta^{\mu k}\right) \partial_{k} \delta^{3}(\vec{x}-\vec{y}) .} \tag{17}
\end{align*}
$$

c) Show that the propagator is given by

$$
\begin{equation*}
G^{\mu \nu}(x)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{1}{p^{2}}\left(\eta^{\mu \nu}+\frac{\xi-1}{\xi} \frac{p^{\mu} p^{\nu}}{p^{2}}\right) . \tag{18}
\end{equation*}
$$

