Quantum Field Theory I

1. Properties of γ-matrices

The γ-matrices satisfy a Clifford algebra \downarrow

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 \eta^{\mu \nu} \mathbf{1} \tag{1}
\end{equation*}
$$

a) Show the following contraction identities using (1):

1. $\gamma^{\mu} \gamma_{\mu}=-4 \cdot 1$.
2. $\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=2 \gamma^{\nu}$.
3. $\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu}=4 \eta^{\nu \rho}$.
4. $\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{\mu}=2 \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu}$.
b) Show the following trace properties using (11):
5. $\operatorname{tr} \gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}}=0$ if n is odd.
6. $\operatorname{tr} \gamma^{\mu} \gamma^{\nu}=-4 \eta^{\mu \nu}$.
7. $\operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}=4\left(\eta^{\mu \nu} \eta^{\rho \sigma}-\eta^{\mu \rho} \eta^{\nu \sigma}+\eta^{\mu \sigma} \eta^{\nu \rho}\right)$.

2. Dirac and Weyl representations of the γ-matrices

Using the Pauli matrices together with the identity,

$$
\sigma^{0} \equiv\left(\begin{array}{ll}
1 & 0 \tag{2}\\
0 & 1
\end{array}\right), \quad \sigma^{1} \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2} \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

we can realize the Dirac representation of the γ-matrices,

$$
\begin{equation*}
\gamma_{\mathrm{D}}^{0} \equiv \sigma^{0} \otimes \sigma^{3}, \quad \gamma_{\mathrm{D}}^{j} \equiv \sigma^{j} \otimes i \sigma^{2} \quad(j=1,2,3) \tag{3}
\end{equation*}
$$

where

$$
A \otimes B \equiv\left(\begin{array}{ll}
b_{11} A & b_{12} A \tag{4}\\
b_{21} A & b_{22} A
\end{array}\right)
$$

Denoting the Pauli matrices collectively by σ^{μ} and defining $\left(\bar{\sigma}^{0}, \bar{\sigma}^{i}\right)=\left(\sigma^{0},-\sigma^{i}\right)$. we can then define the γ-matrices in the Weyl representation:

$$
\gamma_{\mathrm{W}}^{\mu} \equiv\left(\begin{array}{cc}
0 & \sigma^{\mu} \tag{5}\\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

Show that both representations satisfy the Clifford algebra (1). Can you show their equivalence, i.e. $\gamma_{\mathrm{W}}^{\mu}=T \gamma_{\mathrm{D}}^{\mu} T^{-1}$ for some matrix T ?

[^0]
3. Spinors, spin sums and completeness relations

In this exercise we will use the Weyl representation (5) defined in the previous exercise.
a) Show that $(p \cdot \sigma)(p \cdot \bar{\sigma})=-p^{2}$.
b) Prove that the below 4 -spinor $u_{s}(\vec{p})$ solves Dirac's equation $\left(p_{\mu} \gamma^{\mu}-m \mathbf{1}\right) u_{s}(\vec{p})=0$

$$
\begin{equation*}
u_{s}(\vec{p})=\binom{\sqrt{p \cdot \sigma} \xi_{s}}{\sqrt{p \cdot \bar{\sigma}} \xi_{s}} \tag{6}
\end{equation*}
$$

where $\xi_{ \pm}$form a basis of 2-spinors.
c) Suppose, the 2 -spinors ξ_{+}and ξ_{-}are orthonormal. What does it imply for $\xi_{s}^{\dagger} \xi_{s}$ and

$$
\begin{equation*}
\sum_{s \in\{+,-\}} \xi_{s} \xi_{s}^{\dagger} ? \tag{7}
\end{equation*}
$$

d) Show that $\bar{u}_{s}(\vec{p}) u_{s}(\vec{p})=2 m$ for $s \in\{+,-\}$.
e) Show the completeness relation:

$$
\begin{equation*}
\sum_{s \in\{+,-\}} u_{s}(\vec{p}) \bar{u}_{s}(\vec{p})=p_{\mu} \gamma^{\mu}+m \mathbf{1} \tag{8}
\end{equation*}
$$

4. Gordon identity

Prove the Gordon identity,

$$
\begin{equation*}
\bar{u}_{t}(\vec{q}) \gamma^{\mu} u_{s}(\vec{p})=\frac{1}{2 m} \bar{u}_{t}(\vec{q})\left[-(q+p)^{\mu}-\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right](q-p)_{\nu}\right] u_{s}(\vec{p}) . \tag{9}
\end{equation*}
$$

Hint: You can do this using just (1).

[^0]: ${ }^{1}$ The minus sign is due to our choice of metric $\eta^{\mu \nu}=\operatorname{diag}(-1,+1,+1,+1)$! Alternatively, we might use a plus sign (as in the opposite signature) and instead multiply all γ-matrices by a factor of i.

