Quantum Field Theory I

1. The Feynman propagator for a real scalar field

Consider a real scalar field $\phi(x)$.
a) Use the Fourier expansion of $\phi(x)$ to show that

$$
\begin{equation*}
\Delta_{+}(x) \equiv\langle 0| \phi(x) \phi(y)|0\rangle=\int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 e(\vec{p})} \exp (-i e(\vec{p}) t-i \vec{p} \cdot \vec{x}) \tag{1}
\end{equation*}
$$

with $e(\vec{p})=\sqrt{\vec{p}^{2}+m^{2}}$.
b) Use Cauchy's residue theorem to show that $\Delta_{+}(x)$ can be also written as

$$
\begin{equation*}
\Delta_{+}(x)=i \int_{C_{+}} \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot x}}{p^{2}+m^{2}} \tag{2}
\end{equation*}
$$

where the integration over the contour C_{+}, which is given in the left figure below, corresponds to the (complex) variable p_{0}.
The Feynman propagator for the real scalar field is defined as

$$
\begin{equation*}
G_{\mathrm{F}}(x-y)=i \theta\left(x^{0}-y^{0}\right) \Delta_{+}(x-y)+i \theta\left(y^{0}-x^{0}\right) \Delta_{+}(y-x) . \tag{3}
\end{equation*}
$$

c) Show that it satisfies the defining relation for a propagator

$$
\begin{equation*}
\left(-\partial^{2}+m^{2}\right) G_{\mathrm{F}}(x)=\delta^{d+1}(x) \tag{4}
\end{equation*}
$$

d) Show that

$$
\begin{equation*}
G_{\mathrm{F}}(x)=\int_{C_{\mathrm{F}}} \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot x}}{p^{2}+m^{2}}, \tag{5}
\end{equation*}
$$

with the contour C_{F} given in the right figure below.
e) Show that the integral in eq.(5) is equivalent to an integral over the real axis

$$
\begin{equation*}
G_{\mathrm{F}}(x)=\int_{\mathbb{R}} \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot x}}{p^{2}+m^{2}-i \varepsilon} \tag{6}
\end{equation*}
$$

2. Conservation of charge with complex scalar fields

Consider a free complex scalar field described by

$$
\begin{equation*}
\mathcal{L}=-\left(\partial_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{*} \phi \tag{7}
\end{equation*}
$$

a) Show that the transformation

$$
\begin{equation*}
\phi(x) \longrightarrow \phi^{\prime}(x)=e^{i \alpha} \phi(x) \tag{8}
\end{equation*}
$$

leaves the Lagrangian density invariant.
b) Find the conserved current associated with this symmetry.

If we now consider two complex scalar fields, the Lagrangian density is given by

$$
\begin{equation*}
\mathcal{L}=-\left(\partial_{\mu} \phi_{a}^{*}\right)\left(\partial^{\mu} \phi^{a}\right)-m \phi_{a}^{*} \phi^{a} \quad a=1,2 . \tag{9}
\end{equation*}
$$

c) Show that

$$
\begin{equation*}
\phi^{a}(x) \longrightarrow \phi^{\prime a}(x)=M^{a}{ }_{b} \phi^{b}(x) \tag{10}
\end{equation*}
$$

with $M \in U(2)=\left\{A \in \mathbb{C}^{2 \times 2}: A^{-1}=A^{\dagger}=\left(A^{*}\right)^{\mathrm{T}}\right\}$ is a symmetry transformation.
d) Show that now there are four conserved charges, one given by the generalisation of part b), and the other three given by

$$
\begin{equation*}
Q_{i}=\frac{i}{2} \int d^{3} \vec{x}\left(\phi_{a}^{*}\left(\sigma^{i}\right)^{a}{ }_{b} \pi^{* b}-\pi_{a}\left(\sigma^{i}\right)^{a}{ }_{b} \phi^{b}\right), \tag{11}
\end{equation*}
$$

where σ^{i} are the Pauli matrices.

3. Symmetry of the stress-energy tensor

Consider a relativistic scalar field theory specified by some Lagrangian $\mathcal{L}(\phi, \partial \phi)$.
a) Compute the variation of $\mathcal{L}(\phi(x), \partial \phi(x))$ under infinitesimal Lorentz transformations (note: $\omega^{\mu \nu}=-\omega^{\nu \mu}$)

$$
\begin{equation*}
x^{\mu} \longrightarrow x^{\mu}-\omega^{\mu}{ }_{\nu} x^{\nu} . \tag{12}
\end{equation*}
$$

b) Assuming that $\mathcal{L}(x)$ transforms as a scalar field, i.e. just like $\phi(x)$, derive another expression for its variation under Lorentz transformations.
c) Compare the two expressions to show that the two indices of the stress-energy tensor are symmetric

$$
\begin{equation*}
T^{\mu \nu}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \phi\right)} \partial^{\nu} \phi-\eta^{\mu \nu} \mathcal{L}=T^{\nu \mu} \tag{13}
\end{equation*}
$$

