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10 Scattering Matrix

When we computed some simple scattering processes we did not really know what
we were doing. At leading order this did not matter, but at higher orders
complications arise. Let us therefore discuss the asymptotic particle states and
their scattering matrix in more detail.

10.1 Asymptotic States

First we need to understand asymptotic particle states in the interacting theory

|p1, p2, . . .〉. (10.1)

In particular, we need to understand how to include them in calculations by
expressing them in terms of the interacting field φ(x).

Asymptotic particles behave like free particles at least in the absence of other
nearby asymptotic particles. For free fields we have seen how to encode the
particle modes into two-point correlators, commutators and propagators. Let us
therefore investigate these characteristic functions in the interacting model.

Two-Point Correlator. Consider first the correlator of two interacting fields

∆+(x− y) := 〈0|φ(x)φ(y)|0〉. (10.2)

Due to Poincaré symmetry, it must take the form

∆+(x) =

∫
d4p

(2π)4
e−ip·x θ(p0)ρ(−p2). (10.3)

The factor θ(p0) ensures that all excitations of the ground state |0〉 have positive
energy. The function ρ(s) parametrises our ignorance. We do not want tachyonic
excitations, hence the function should be supported on positive values of s = m2.
We now insert a delta function to express the correlator in terms of the free
two-point correlator ∆+(s;x, y) with mass

√
s (Källén, Lehmann)

∆+(x) =

∫ ∞
0

ds

2π
ρ(s)

∫
d4p

(2π)4
e−ip·x θ(p0)2πδ(p

2 + s)

=

∫ ∞
0

ds

2π
ρ(s)∆+(s;x). (10.4)

This identifies ρ(s) as the spectral function for the field φ(x): It tells us by what
amount particle modes of mass

√
s will be excited by the field φ(x).1

1The spectral function describes the spectrum of quantum states only to some extent. However,
not all states may be excited by the action of a single φ(x). In particular, in a model with several
fields, each field can excite only a subset of particles or states (e.g. the appropriate charges have
to match).
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Spectral Function. For a free field of mass m0 we clearly have

ρ0(s) = 2πδ(s−m2
0). (10.5)

For weakly interacting fields, we should obtain a similar expression. In typical
situations we expect the spectral function to have the following shape

(10.6)

The sharp isolated peak represents a single particle excitation with mass m. Now
the field φ(x) may also excite multi-particle modes (with the same quantum
numbers). Multi-particle modes in the free theory would have energy e ≥ 2m. In
the spectral function they form a continuum since the momenta of the individual
particles can sum up to arbitrary energies in the frame at rest. In the presence of
interactions, bound states may form whose rest energies are somewhat below
e = 2m. Whenever these bound states are stable they will also be represented by
sharp peaks.

We observe that our spectral function has at least two mass gaps: One separates
the vacuum from the lowest excitation; the other separates this latter from bound
states and the multi-particle continuum. The isolated modes are called asymptotic
particles. This is the type of particle which we would like to collide. The
assumption of a mass gap is crucial in this definition.

For weak interactions, we expect that the free particle mode approximates the
asymptotic particle well.2 The interactions may shift the mass m0 → m slightly;
they may also change the strength with which this mode is excited by the field
φ(x). Therefore the weakly interacting spectral function takes the form

ρ(s) = 2πZδ(s−m2) + bound states + continuum. (10.7)

The factor Z is called field strength or wave function renormalisation.

Asymptotic Particles. Based on the above discussion we can expand the field
φ(x) as

φ(x) =
√
Zφas(x)︸ ︷︷ ︸
a†+a

+ bound states + continuum︸ ︷︷ ︸
(a†)n+an

+ operators︸ ︷︷ ︸
(a†)man

. (10.8)

2For reasonably strong interactions, bound states may approach the single particle states and
even acquire lower energies. This case shows that the notion of fundamental particles is not
evident in general QFT, but it belongs to weakly interacting models. In fact, some models may
have alternative formulations where the fundamental degrees of freedom are some bound states of
the original formulation.
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Here φas(x) is a canonically normalised free field of mass m expressed by means of
creation and annihilation operators a†, a

φas(x) =

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xa(~p) + eip·xa†(~p)

)
. (10.9)

The other terms in the field φ(x) are multiple creation and/or annihilation
operators.

Single particle asymptotic states are created simply by a†(~p) from the vacuum.
The Hamiltonian Has for the free asymptotic field reads

Has =

∫
d3~p

(2π)3 2e(~p)
e(~p)a†(~p)a(~p). (10.10)

The characteristic property of Has is that it reproduces exactly the time evolution
of the vacuum and single-particle states

Has|0〉 = 0 = H|0〉, Hasa
†(~p)|0〉 = e(~p)a†(~p)|0〉 = Ha†(~p)|0〉. (10.11)

We shall use the free creation and annihilation operators as some convenient basis
to expand our interacting fields. The omitted terms in the field φ(x) are some
higher-order polynomials in the operators a†, a which create and annihilate bound
state particles and states from the multi-particle continuum.

Commutator and Normalisation. The other characteristic functions now
follow from our expression for the correlator. As before these can be expressed as
convolutions of the same spectral function ρ(s) with their free counterparts.

The expectation value of the unequal time commutator

∆(x− y) := 〈0|[φ(~x), φ(~y)]|0〉 (10.12)

therefore reads

∆(x) =

∫ ∞
0

ds

2π
ρ(s)∆(s;x). (10.13)

We know that for a normalised free field the equal time commutation relations
imply −∆̇(s; 0, ~x) = iδ3(~x). Hence

〈0|[φ(~x), φ̇(~y)]|0〉 = −∆̇(0, ~x− ~y) = iδ3(~x)

∫ ∞
0

ds

2π
ρ(s). (10.14)

Assuming that the field φ(x) is canonically normalised,3 we have the constraint∫ ∞
0

ds

2π
ρ(s) = 1. (10.15)

When using the above expansion of the real field φ(x) in terms of creation and
annihilation operators, it also follows that the function ρ(s) must be positive.
Hence the coefficient Z for the asymptotic modes should be between 0 and 1.

3This is evident at least if the interaction terms do not contain derivatives.
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10.2 S-Matrix

For the scattering setup we define two asymptotic regions of spacetime, one in the
distance past tin → −∞ and one in the distant future tout → +∞.

Asymptotic Regions. On the initial time slice we create wave packets which
are well separated in position space and narrowly peaked in momentum space. We
let these quantum mechanical wave packets evolve in time. At some instance the
wave packets collide. Then the state is evolved further until all outgoing wave
packets are sufficiently well separated

|f〉 = exp
(
−iH(tout − tin)

)
|i〉. (10.16)

Now the initial and final states are in the Schrödinger picture and they evolve even
at asymptotic times. It is hard to compare them to see what the effect of
scattering is.4

(10.17)

At asymptotic times the wave packets are assumed to be sufficiently well separated
such that they effectively do not interact. Therefore we can use the asymptotic
Hamiltonian of the asymptotic field φas

5

Has =

∫
d3~p

(2π)3 2e(~p)
e(~p)a†(~p)a(~p). (10.18)

to shift the two time slices onto a common one conventionally positioned at t = 0

|out〉 = exp
(
iHastout

)
|f〉, |i〉 = exp

(
−iHastin

)
|in〉. (10.19)

The relationship between the in and out states is the following

|out〉 = exp
(
iHastout

)
exp
(
−iH(tout − tin)

)
exp
(
−iHastin

)
|in〉

=: Uas(tout, tin)|in〉. (10.20)

The in and out states |in〉 and |out〉 are both defined at time t = 0. Consequently,
they are elements of the same Hilbert space and can be compared directly. The

4The latter figure is somewhat misleading in a quantum mechanical setting. It shows only one
out of many potential final states.

5This asymptotic Hamiltonian is a specialisation of the free Hamiltonian H0 used previously in
the interaction picture. The free Hamiltonian was merely required to agree with the full Hamil-
tonian at leading order. The asymptotic Hamiltonian furthermore has to agree with the full
Hamiltonian exactly when action on the vacuum or one-particle states.
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operator Uas is the time evolution operator for the interaction picture based on the
asymptotic Hamiltonian Has and the reference time slice at t = 0.

(10.21)

S-Matrix Definition. As interactions have become negligible at asymptotic
times, the in and out states are almost independent of tin and tout. It therefore
makes sense to take the limit tin,out → ∓∞. The limit of the time evolution
operator for infinite times is called the S-matrix

S = lim
tin,out→∓∞

exp
(
iHastout

)
exp
(
iH(tin − tout)

)
exp
(
−iHastin

)
.

= lim
tin,out→∓∞

U(tout, tin) = U(+∞,−∞). (10.22)

It transforms in states to out states

|out〉 = S|in〉. (10.23)

Note that the in and out Hilbert spaces are isomorphic.6 This allows us to compare
states between the two. To compute matrix elements of the S-matrix, prepare
definite in and out states7 using the creation and annihilation operators a†, a

|in〉 = |p1, . . . , pm〉 := a†(~p1) . . . a
†(~pm)|0〉,

〈out| = 〈q1, . . . , qn| := 〈0|a(~q1) . . . a(~qn). (10.24)

Conventionally, scattering amplitudes M are defined as the matrix elements of
S − 1 with the overall momentum-conserving delta function stripped off

〈out|(S − 1)|in〉 = (2π)4δ4(Pin − Pout)iM(p1, . . . pm; q1, . . . , qn). (10.25)

The combination S − 1 is particularly useful for 2→ n scattering processes: It
removes all direct connections between the in and out states as well as all other
disconnected contributions.8

Properties of the S-Matrix. The S-matrix has a number of useful properties,
let us list a few relevant ones.

First of all, the S-matrix is trivial for the ground state and for single-particle states

S|0〉 = |0〉, S|~p〉 = |~p〉. (10.26)

6It is natural to assume that outgoing particles of some scattering process can be used as ingoing
particles of another scattering process. Therefore the in and out spaces must be isomorphic.

7These in and out states are not to be related by |out〉 = S|in〉.
8When one of the ingoing particles does not participate in the scattering, the S-matrix must

act trivially on the other. For general m→ n scattering, the matrix elements indeed contain direct
connections and disconnected contributions.
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This follows from the definition of the asymptotic Hamiltonian to strictly emulate
the action of the interacting Hamiltonian on these states.

The S-matrix is a unitary operator

S† = S−1. (10.27)

This property follows from the definition. It reflects the fact that probabilities are
conserved across scattering processes.

The S-matrix is also Poincaré invariant

U(ω, a)SU(ω, a)−1 = S. (10.28)

10.3 Time-Ordered Correlators

When we expressed the time-evolution operator in the interaction picture, we
realised that time-ordered correlation functions 〈φ(x1) . . . φ(xn)〉 are very natural
objects. The S-matrix is defined as the time evolution operator for the interaction
picture in terms of asymptotic states. Lehmann, Symanzik and Zimmermann
derived a relationship between the S-matrix elements and time-ordered expectation
values.

Asymptotic States. First we need to understand how to represent particle
creation and annihilation operators a†, a in terms of the field φ(x). Above we have
expanded the field φ(x) as

φ(x) =
√
Z

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xa(~p) + eip·xa†(~p)

)
+ . . . . (10.29)

The omitted terms represent the contributions from multi-particle states and
operators which annihilate the vacuum.

Previously we were able to isolate a†(~p) from a time slice of the free field φ0(x) as

a†(~p) =

∫
d3~x e−ip·x

(
e(~p)φ0(x)− iφ̇0(x)

)
. (10.30)

This was easy because there are only two modes with e = ±e(~p) in the free field
φ0. The linear combination of φ and φ̇ selects the correct one.

The interacting field, however, in general carries many other modes whose precise
nature we do not understand a priori. To select the modes corresponding to a† and
a we need to drive the field φ(x) for a sufficiently long time with a frequency that
is in resonance with the relevant modes. Let us sketch the construction for a single
oscillator f(t) = ceiωt with resonance frequency ω

F (e) =

∫ t2

t1

dt e−ietf(t) =
ic

e− ω
(
e−i(e−ω)t2 − e−i(e−ω)t1

)
(10.31)
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The longer the time, the stronger will be the amplitude at e = ω. At infinite time
the function F (e) develops a pole at e, so we set t1 = −∞

F (e) =

∫ t2

−∞
dt e−ietf(t) =

ice−i(e−ω)t2

e− ω
=

ic

e− ω
+ finite. (10.32)

Here we have discarded the term that keeps oscillating at asymptotic times.9 What
remains is an isolated pole at e = ω whose residue is proportional to the amplitude
c. The residue is in fact independent of the time t2 where the driving stops.

Applied to the field φ(x) we find∫ t2

−∞
dt

∫
d3~x e−ip·xφ(x) (10.33)

=
i
√
Z

p2 +m2

(
θ(−e)ain(−~p)− θ(e)a†in(~p)

)
+ . . . . (10.34)

What remains are isolated poles at e = ±e(~p) whose residues are creation and
annihilation operators for ingoing asymptotic particles. The remaining terms are
either finite or irrelevant when creating well-separated wave packets. We decided
to shift the ingoing Fock space back to the time t = 0 using the free asymptotic
Hamiltonian. Therefore we conjugate the creation and annihilation operators by
the appropriate time evolution operator

ain(~p) = U(0,−∞)a(~p)U(−∞, 0). (10.35)

We note:

• The residues of the pole 1/(p2 +m2) isolate the creation and annihilation
operators.10

• The residues at positive and negative energies correspond to creation and
annihilation operators, respectively.
• The residues do not depend on the final time t2.
• Bound state particles correspond to similar poles at different energies.

A similar expression with opposite sign is obtained for driving the field into the
distant future ∫ ∞

t1

dt

∫
d3~x e−ip·xφ(x) (10.36)

= − i
√
Z

p2 +m2

(
θ(−e)aout(−~p)− θ(e)a†out(~p)

)
+ . . . . (10.37)

Here we identify
aout(~p) = U(0,+∞)a(~p)U(+∞, 0). (10.38)

9As usual, one could formally dampen this term by introducing some small imaginary part.
This may be an approximation, but even in practice, one can never isolate a resonance perfectly.

10The can be further operators consisting of several creation and annihilation operators.
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LSZ Reduction. We want to express the elements of the S-matrix in terms of
time-ordered correlation functions in momentum space. Let us start with the
time-ordered expectation value

Fm,n(p, q) =

∫ m∏
k=1

(
d4xk e

−ipk·xk
) n∏
k=1

(
d4yk e

iqk·yk
)

〈0|T
(
φ(x1) . . . φ(xn)φ(y1) . . . φ(ym)

)
|0〉. (10.39)

Consider just the integral of the quantum operator over one of the xk

X =

∫
d4x e−ip·xT

(
φ(x)Y

)
. (10.40)

Now split up the time integral into three regions at the times tmin and tmax

representing the minimal and maximal times within the operator Y

X =

∫ tmin

−∞
dt

∫
d3~x e−ip·xT(Y )φ(x)

+

∫ tmax

tmin

dt

∫
d3~x e−ip·xT

(
φ(x)Y

)
+

∫ +∞

tmax

dt

∫
d3~x e−ip·xφ(x)T(Y ). (10.41)

According to the results of the above consideration of resonances, the two integrals
extending to t = ±∞ produce a pole when the momentum is on shell, p2 = −m2.
Conversely, the middle integral is finite and therefore does not produce a pole. We
can express the residue of the pole using creation operators of in and out particles

X ' −i
√
Z

p2 +m2

(
T(Y )a†in(~p)− a†out(~p)T(Y )

)
, (10.42)

where we discard finite contributions at p2 = −m2. Performing this step for all
ingoing particles yields

Fm,n '
m∏
k=1

(
−i
√
Z

p2k +m2

)∫ n∏
k=1

(
d4yk e

iqk·yk
)

〈0|T
(
φ(y1) . . . φ(ym)

)
a†in(~p1) . . . a

†
in(~pm)|0〉

=
m∏
k=1

(
−i
√
Z

p2k +m2

)∫ n∏
k=1

(
d4yk e

iqk·yk
)

〈0|T
(
φ(y1) . . . φ(ym)

)
U(0,−∞)a†(~p1) . . . a

†(~pm)|0〉. (10.43)

Note that all outgoing creation operators a†out directly annihilate the vacuum 〈0|.
Now we perform equivalent steps for the outgoing particles. We use a similar
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relation as above dressed by factors of U(+∞, 0) and U(0,−∞)

X =

∫
d4y eiq·yU(+∞, 0)T

(
φ(y)Y

)
U(0,−∞). (10.44)

' −i
√
Z

q2 +m2

(
U(+∞, 0)T(Y )ain(~q)U(0,−∞) (10.45)

− U(+∞, 0)aout(~q)T(Y )U(0,−∞)
)
, (10.46)

' −i
√
Z

q2 +m2
[U(+∞, 0)T(Y )U(0,−∞), a(~q)]. (10.47)

For each particle this yields one commutator of the remaining fields
U(+∞, 0)T(Y )U(0,−∞) with an annihilation operator. After performing this step
for all the outgoing particles, we are left with the S-matrix

U(+∞, 0)T(1)U(0,−∞) = S. (10.48)

Altogether we find that the residue of Fm,n is given by an element of the S-matrix

Fm,n '
m∏
k=1

(
−i
√
Z

p2k +m2

)
n∏
k=1

(
−i
√
Z

q2k +m2

)
〈0|[a(~q1), . . . [a(~qn), S] . . .]a†(~p1) . . . a

†(~pm)|0〉. (10.49)

Here, the commutators make all the a(~qk) connect only to the S-matrix. Now there
is nothing else left, and therefore also all a†(~pk) must connect to S.

10.4 S-Matrix Reconstruction

We have seen that time-ordered correlation functions have poles when the external
fields are on the mass shell of asymptotic particles. The residue of these poles is
given by the corresponding element of the scattering matrix.

We can therefore fully reconstruct the S-matrix from time-ordered correlation
functions.

Two-Point Correlator. In the construction of the S-matrix, the two-point
correlation function takes a special role. First, consider the above residue formula
for two legs

F1,1 '
−i
√
Z

p2 +m2

−i
√
Z

q2 +m2
〈0|a(~q)(S − 1)a†(~p)|0〉. (10.50)

Momentum conservation implies p = q, hence the residue of a double pole at
p2 = −m2 is given by 〈0|a(~q)(S − 1)a†(~p)|0〉. However, the S-matrix should act as
the identity on single-particle states. We conclude that there is no double pole in
F1,1 at p2 = −m2. There is no reason to expect a double pole in the first place,
therefore the above residue statement is empty for m = n = 1.
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There is nevertheless a single pole at p2 = −m2 as can be shown using the spectral
representation of the time-ordered two-point function

F2(x− y) = 〈φ(x)φ(y)〉 := 〈0|T
(
φ(x)φ(y)

)
|0〉. (10.51)

Using the spectral function ρ(s) of the interacting field φ(x), it can be written in
terms of the free Feynman propagator of mass

√
s

F2(x− y) = −i
∫ ∞
0

ds

2π
ρ(s)GF(s;x− y). (10.52)

Most importantly, its momentum space representation

F2(p) = −i
∫ ∞
0

ds

2π

ρ(s)

p2 + s− iε
=

−iZ
p2 +m2 − iε

+ . . . (10.53)

contains the parameters of the asymptotic particle: The function F2(p) has an
isolated pole at the physical mass m, and its residue is the wave function
renormalisation factor Z.

Now we can nicely expand F2 in terms of Feynman diagrams with two external
legs and thus determine m and Z.

Amputation. The residue formula for the time-ordered correlation functions can
be inverted to a complete expression for the S-matrix

S = 1 +
∞∑

m,n=2

∫ n∏
k=1

d3~qk a
†(~qk)

(2π)3 2e(~q)

m∏
k=1

d3~pk a(~pk)

(2π)3 2e(~p)

·

(
Fm,n(p, q)

m!n!

m∏
k=1

p2k +m2

−i
√
Z

n∏
k=1

q2k +m2

−i
√
Z

)
.

Importantly, the poles and zeros of the latter term must be combined before the
momenta are set on shell p2k = q2k = −m2. The construction of this expression
ensures that

• the vacuum does not scatter, S|0〉 = |0〉,
• single-particle states do not scatter, S|p〉 = |p〉,
• for more two or more particles, the residue of Fm,n is reproduced according to

the above formula.

It is now convenient to replace each factor (p2k +m2) by the inverse of the
corresponding two-point function in the construction of the S-matrix

S = 1 +
∞∑

m,n=2

∫ n∏
k=1

d3~qk a
†(~qk)

(2π)3 2e(~q)

m∏
k=1

d3~pk a(~pk)

(2π)3 2e(~p)

·

(
Fm,n(p, q)

m!n!

m∏
k=1

√
Z

F2(pk)

n∏
k=1

√
Z

F2(qk)

)
.

10.10



This formula has a useful interpretation in terms of Feynman graphs for Fm,n.

= (10.54)

In the second representation we have cut the graph into a smaller (m+ n)-function
and m+ n 2-point functions according to the rules:

• Each 2-point function connects an external leg to the (m+ n)-function at the
core.
• Each 2-point function is maximal.
• The Feynman propagator that connects the 2-point function to the core is

attributed to the 2-point function.

Essentially one chops each leg of the graph as much as possible. Such a graph is
called amputated.

Now it is clear that each 2-point fragment of the graph is a Feynman graph for the
two-point function F2. Moreover all these graphs have natural relative weights.
The sum of all Feynman graphs contributing to Fm,n therefore contains the sum of
all graphs contributing to F2 separately for each leg

= = (10.55)

What remains is a sum over all amputated Feynman graphs at the core. This
expression separates cleanly into factors because all the weights are naturally
defined

Fm,n(p, q) = F̃m,n(p, q)
m∏
k=1

F2(pk)
n∏
k=1

F2(qk). (10.56)

The function F̃m,n therefore is precisely what is needed for reconstruction of the
S-matrix

S = 1 +
∞∑

m,n=2

∫ n∏
k=1

d3~qk a
†(~qk)

(2π)3 2e(~q)

m∏
k=1

d3~pk a(~pk)

(2π)3 2e(~p)

√
Z
m+n

m!n!
F̃m,n.

In other words, the elements of the S-matrix are determined precisely by the sum
of amputated Feynman graphs multiplied by

√
Z for each external leg.
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In General. The general picture is as follows: Poles in the time-ordered
two-point function F2(p) indicate stable asymptotic particle states.11 12

• These may be deformations of the poles in the free theory.
• They may as well be poles corresponding to bound states.
• Also poles for correlators of composite fields are permissible.

The location p2 = −m2 of the pole defines the mass m of the particle.
Time-ordered multi-point correlation functions have poles at these locations. Their
overall residue yields the corresponding element of the S-matrix. Some comments:

• It is clear that all the external legs of the S-matrix must be exactly on shell.
• Note that in this picture of the S-matrix, crossing symmetry follows from

crossing symmetry of time-ordered correlators.
• The S-matrix is completely determined in terms of time-ordered correlation

functions. No reference is made to the original formulation of the QFT, e.g. the
Lagrangian. This fact will be crucial when we go to higher perturbative orders
where Feynman diagrams have internal loops.

Feynman Rules. Let us summarise the Feynman rules for elements of the
S-matrix in φ4 theory

〈q1, . . . , qn|S|p1, . . . , pm〉. (10.57)

The matrix element is given by the sum of all graphs with certain properties. The
properties are similar to the properties of Feynman graphs for correlation functions
in momentum space, but mainly the external legs are handled differently. Let us
state the modified and additional rules:

• The graph has m ingoing and n outgoing external lines labelled by momenta pk
and qk, respectively.

(10.58)

• The external momenta must be on the mass shell, p2k = q2k = −m2, and must
have positive energy.
• Cutting the graph at any internal line must not split off a graph with two

11When a field has several components, the notion of pole is more subtle in the sense that the
residue of a pole is typically a matrix of non-maximal rank, e.g. p·γ +m for spinor fields. In this
case only the vectors which are not projected out correspond to asymptotic particles.

12In practice one may not be able to distinguish an exact pole from a very narrow resonance.
One might consider such resonances at the same level as stable external particles and allow them
as legs of the S-matrix. Such an S-matrix would not rest on rigorous assumptions and therefore not
all theorems apply in a strict sense. In this regard, one should remember that in quantum physics
one has to make some separation of scales into the microscopic quantum regime and the regime
of macroscopic classical objects. Alternatively, resonances can be viewed as asymptotic particles
with a complex mass parameter.
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external lines (amputated graph).

(10.59)

The Feynman rules for evaluating a graph are the same as for correlation functions
in momentum space except:

• For each external line write a factor of
√
Z instead of a Feynman propagator

−i/(p2j +m2 − iε).

, →
√
Z. (10.60)

• Any external line which directly connects an ingoing to an outgoing particle
contributes a factor of 〈qk|pl〉 = 2e(~pl)(2π)3δ3(~pl − ~qk). This line simply bypasses
the S-matrix.13

→ 2e(~pj) (2π)3δ3(~pj − ~qk). (10.61)

For Quantum Electrodynamics the Feynman rules for scattering matrix elements
also has to be adjusted w.r.t. the Feynman rules in momentum space, namely:

• For each external spinor line, write a factor of
√
Zψ along with uα(~q), ūα(~p),

vα(~p) or v̄α(~q) depending on whether the particle is in- or outgoing and whether
it is an electron or a positron.

→
√
Zψ vαj

(~pj), →
√
Zψ ūαj

(~pj),

→
√
Zψ v̄αj

(~qj), →
√
Zψ uαj

(~qj) (10.62)

• For external photon lines, write a factor of
√
ZA along with a normalised

transverse polarisation vector eµ(~p).

→
√
ZA εαj

(~pj), →
√
ZA ε

∗
αj

(~qj) (10.63)

13Such contributions do not directly correspond to the identity within S, i.e. they are present in
S − 1, but only for at least 3 ingoing particles.
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10.5 Unitarity

The S-matrix is a unitary operator

S† = S−1. (10.64)

This is an essential feature of any physical QFT. However, when deriving the
S-matrix from time-ordered correlators by means of the LSZ reduction, unitarity is
not evident at all. Therefore we can use the property to derive some non-trivial
relations between elements of the S-matrix.

Optical Theorem. Commonly, an identity operator is removed from the
S-matrix as

S = 1 + iT. (10.65)

This split is useful because for small coupling T is small. Moreover, the identity in
S is never seen in LSZ reduction.

Unitarity SS† = 1 for the operator T is then written as the optical theorem

2 ImT = −iT + iT † = TT † = T †T. (10.66)

It relates the imaginary part of T to its absolute square. The latter is a quantity
we have already encountered: In the form of matrix elements it appears in the
scattering cross section. It allows to determine the total cross section of some
process in terms of the imaginary part of a matrix element.14 Alternatively, the
imaginary part of T can be obtained as a total cross section,15 The remaining real
part of T can be reconstructed from arguments of complex analyticity.

A graphical representation of the optical theorem is as follows

2 Im =
∞∑
l=2

l∏
j=1

∫
d3~kj

(2π)3 2e(~kj)

∑
pol

. (10.67)

The optical theorem implies that one has to integrate and sum over all allowed
degrees of freedom for these lines which connect T to T †. This is similar as for
internal lines within T and T † with one important distinction: The cut lines
originate from contracting two operators a and a† inside T and T †, respectively,

[a(~p), a†(~q)] = 2e(~p) (2π)3δ3(~p− ~q). (10.68)

14In this matrix element one would choose the ingoing and outgoing momenta to be the same.
Evidently, this requires to split off the momentum-conserving delta function first.

15In fact one needs a generalisation of the total cross section where the ingoing particles of T
are chosen independently of the outgoing particles of T †.
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Therefore the momenta associated to these lines must be on shell, p2 = −m2, with
directed flow of energy p0 from T towards T †. Conversely, the internal lines are
integrated over all off-shell momenta.

Tree Level. It is instructive to discuss the optical theorem at tree level. At first
sight one might think that tree-level contributions to T are manifestly real because
they are rational functions of the momenta and masses with real coefficients.16

Although the iε prescription for Feynman propagators appears negligible, it does
have a considerable impact on the imaginary part

1

p2 +m2 − iε
=

1

p2 +m2
+ iπδ(p2 +m2). (10.69)

Now in the conjugate S-matrix T † all Feynman propagators are conjugated

G∗F(p) =
1

p2 +m2 + iε
6= GF(p). (10.70)

When computing the imaginary part of T one therefore frequently encounters the
difference

1

p2 +m2 − iε
− 1

p2 +m2 + iε
= 2πiδ(p2 +m2). (10.71)

This identity replaces the Feynman propagator for an internal line by an on-shell
correlator for a cut line connecting T and T †. The restriction to positive energies
on the cut is a more subtle issue. It is resolved by the fact that in the sum over all
possible cuts each line appears twice, once for every direction of energy flow.

With these remarks one can show that the optical theorem holds at tree level.17

Here we showed that at tree level T is has an imaginary part concentrated at
isolated momentum configurations. However, the optical theorem is most
frequently applied at loop level where T is generically complex.

16The various prefactors of i for propagators and interaction vertices conspire to cancel out.
17Here it is crucial to also take the disconnected contributions to T into account.
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