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1 Classical and Quantum Mechanics

To familiarise ourselves with the basics, let us review some elements of classical
and quantum mechanics. Then we shall discuss some problems of combining
quantum mechanics with special relativity.

1.1 Classical Mechanics

Consider a classical non-relativistic particle in a potential. Described by position
variables qi(t) and action functional S[q] 1 2

S[q] =

∫ t2

t1

dt L(qi(t), q̇i(t), t) (1.1)

A typical Lagrangian function is

L(~q, ~̇q) = 1
2
m~̇q 2 − V (~q). (1.2)

with mass m and V (q) external potential.

A classical path extremises (minimises) the action S. Determine saddle-point
δS = 0 by variation of the action3

δS =

∫ t2

t1

dt

(
δqi(t)

∂L

∂qi
+ δq̇i(t)

∂L

∂q̇i

)
=

∫ t2

t1

dt δqi(t)

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
+

∫ t=t2

t=t1

d

(
δqi(t)

∂L

∂q̇i

)
!

= 0 (1.3)

First term is equation of motion (Euler–Lagrange)

δS

δqi(t)
=
∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (1.4)

Second term due to partial integration is boundary e.o.m., usually ignore.4

Example. Harmonic oscillator (free particle for ω = 0)

L(~q, ~̇q) = 1
2
m~̇q 2 − 1

2
mω2~q 2, −m(~̈q + ω2~q) = 0. (1.5)

1L is often time-independent: L(qi, q̇i, t) = L(qi, q̇i).
2A single time derivative q̇i usually suffices.
3Einstein summation convention: there is an implicit sum over all values for pairs of equal

upper/lower indices.
4Usually fix position qi(tk) = const. (Dirichlet) or momentum ∂L/∂q̇i(tk) = 0 (Neumann) at

boundary.
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1.2 Hamiltonian Formulation

The Hamiltonian framework is the next step towards canonical quantum
mechanics.

Define conjugate momentum pi as5

pi =
∂L

∂q̇i
(1.6)

and solve for q̇i = q̇i(q, p, t).6 Define phase space as (qi, pi).

Lagrangian function L(q, q̇, t) replaced by Hamiltonian function H(q, p, t) on phase
space. Define H(qi, pi, t) as Legendre transformation of L

H(q, p, t) = piq̇
i(q, p, t)− L(q, q̇(q, p, t), t). (1.7)

Let us express e.o.m. through H. General variation reads

δH = δpiq̇
i − δqi ∂L

∂qi
(1.8)

where we substituted definition of momenta pi twice. Use Euler–Lagrange
equation and momenta to simplify further

δH = δpiq̇
i − δqiṗi. (1.9)

Now, Hamiltonian e.o.m. q̇i = ∂H/∂pi and ṗi = −∂H/∂qi.
Introduce Poisson brackets for functions f, g on phase space

{f, g} :=
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (1.10)

Express time evolution for phase space functions f(p, q, t) 7

df

dt
=
∂f

∂t
− {H, f}. (1.11)

Works well for f = qi and f = pi.

Example. Harmonic oscillator

~p = m~̇q, H = ~p·~̇q − m

2
~̇q 2 +

mω2

2
~q 2 =

1

2m
~p 2 +

m

2
ω2~q 2. (1.12)

Hamiltonian equations of motion

~̇q = −{H, ~q} =
∂H

∂~p
=

1

m
~p, ~̇p = −{H, ~p} = −∂H

∂~q
= −mω2~q. (1.13)

5This is a choice, could also use different factors or notations.
6Suppose the equation can be solved for q̇.
7The Hamiltonian H is a phase space function.
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Convenient change of variables

~a =
1√

2mω
(mω~q + i~p) , ~a∗ =

1√
2mω

(mω~q − i~p) , (1.14)

with new Poisson brackets

{f, g} = −i ∂f
∂ai

∂g

∂a∗i
+ i

∂f

∂a∗i

∂g

∂ai
. (1.15)

Separated first-order time evolution for ~a,~a†

H = ω~a†~a, ~̇a = −iω~a, ~̇a† = +iω~a†. (1.16)

1.3 Quantum Mechanics

In canonical quantisation classical objects are replaced by elements of linear
algebra:

• The state (qi, pi) becomes a vector |ψ〉 in a Hilbert space V .
• A phase space function f becomes a linear operator F on V .
• Poisson brackets {f, g} become commutators −i~−1[F,G].8

State equation of motion (Schrödinger), wave equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (1.17)

Probabilistic role of wave function: |〈φ|ψ〉|2 is probability. Requires:

• 〈ψ|ψ〉 is positive.
• 〈ψ|ψ〉 can be normalised to 1 by scaling |ψ〉.
• 〈ψ|ψ〉 is conserved

d

dt
〈ψ|ψ〉 = (i~)−1〈ψ|(H −H†)|ψ〉 = 0. (1.18)

Hamiltonian is hermitian (self-adjoint). Unitary time evolution:
|ψ(t2)〉 = U(t2, t1)|ψ(t1)〉.
• 〈ψ|F |ψ〉 is expectation value of operator F . Obeys classical time evolution.

Example. Harmonic oscillator, free particle.

Momentum operator and Hamiltonian9

~p = −i~ ∂
∂~q

, [qi, pj] = i~δij, H = − ~2

2m

(
∂

∂~q

)2

+
mω2

2
~q 2. (1.19)

8Cannot always be translated literally, but up to simpler terms.
9Note: ~p = −i~~∂~q vs. E = +i~∂t. On wave function |ψ〉 =

∫
dd~q ψ(~q, t)|~q〉, however: ~p|ψ〉 =

+i~
∫
dd~q ~∂ψ(~q, t)|~q〉 and E|ψ〉 = +i~

∫
dd~q ∂tψ(~q, t)|~q〉
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Free particle: momentum eigenstate (Fourier transforms)

|~p〉 =

∫
dd~q e−i~

−1~p·~q|~q〉, |~q〉 =

∫
dd~p

(2π~)d
ei~

−1~p·~q|~p〉. (1.20)

|~p〉 is energy eigenstate with E = ~p 2/2m.

Harmonic oscillator: use operators ai and a†i

~a =
1√

2mω

(
mω~q + ~

∂

∂~q

)
, ~a† =

1√
2mω

(
mω~q − ~

∂

∂~q

)
, (1.21)

with commutators
[ai, a†j] = ~δij. (1.22)

Quantum Hamiltonian has extra vacuum energy E0 = 1
2
d~ω

H = 1
2
ωaia†i + 1

2
ωa†ia

i = ω~a†~a+ 1
2
d~ω = ω~a†~a+ E0. (1.23)

• Can add any E0 to Hamiltonian. No effect. E0 is irrelevant. Unless: E couples
to something else (e.g. gravity).
• Same effect as adding iα(~q·~p− ~p·~q) to H.10 Classically invisible. Quantum

energy shift ∆E0 = −dα~. Quantum ordering ambiguity. Harmless, affects
trivial E0.
• Quantum theory does as it pleases, e.g. introduce/shift E0. Best to consider all

allowable terms in the first place.

Construct spectrum: Start from vacuum state |0〉 to be annihilated by ~a (has
energy E = E0, but irrelevant)

ai|0〉 = 0. (1.24)

Add excitations ni ≥ 0 and normalise state 〈~n|~n〉 = 1

|~n〉 =

(
d∏
i=1

(a†i )
ni

√
ni

)
|0〉. (1.25)

Energy eigenstate with E = ~ωN + E0 where N =
∑d

i=1 ni is total excitation
number. Crucial property

[H,~a†] = ω~a†. (1.26)

1.4 Quantum Mechanics and Relativity

Let us set ~ = 1, c = 1 for convenience.11

Attempts to set up a relativistic version of quantum mechanics have failed. Let us
see why.

10No ambiguity for ~p 2 and ~q 2, but useful to consider all second degree polynomials in ~p and ~q.
11Can be recovered from considerations of physical units.
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Non-relativistic and relativistic energy relation

e =
~p 2

2m
, vs. e2 = ~p 2 +m2 or e =

√
~p 2 +m2. (1.27)

Natural guess for relativistic wave equation (Klein–Gordon)(
−
(
∂

∂t

)2

+

(
∂

∂~q

)2

−m2

)
|ψ〉 = 0. (1.28)

Has several conceptual problems:

Probabilistic Properties. The norm 〈ψ|ψ〉 of non-relativistic QM is conserved
only for first-order wave equation.

There is a real conserved quantity

Q =
i

2m

(
〈ψ| ∂

∂t
|ψ〉 − ∂

∂t
〈ψ|ψ〉

)
, (1.29)

Problem:

• Q is not positive definite.
• Not suitable for probabilistic interpretation!12

One can define a positive definite measure, but it is not local.

Why consider probabilities in a time slice in the first place?

Causality. Consider the overlap

〈~q2|U(t2, t1)|~q1〉 (1.30)

for a pair of spacetime points (t1, q1) and (t2, q2). Probability amplitude for
particle moving from 1 to 2.

Problem:

• Overlap non-zero if points are space-like separated.
• forbidden region: violation of causality?
• at least: exponential suppression (tunnelling).

Negative-Energy Solutions. Second-order wave equation. For every
positive-energy solution

|~p,+, t〉 =

∫
dd~q e−i~p·~q−ie(~p)t|~q〉 (1.31)

there is a negative-energy solution

|~p,−, t〉 =

∫
dd~q e−i~p·~q+ie(~p)t|~q〉. (1.32)

Problems:
12As we shall see, Q is rather similar to an electric charge.
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• Negative-energy particles not observed.13

• Positive-energy particle could fall to negative-energy state. A lot of energy
released to produce other particles.

Could insist on positive energies by wave equation

i
∂

∂t
|ψ〉 =

√
−
(
∂

∂~q

)2

+m2 |ψ〉. (1.33)

Problems:

• Square root of operator hard to define.
• Certainly non-local wave-equation.

Particle Creation. Special relativity allows energy to be converted to rest mass
of particles.

• Relativistic quantum mechanics should allow such processes.
• Quantum mechanics usually assumes a fixed particle number.

Dirac Equation. The Dirac equation was an attempt to overcome some
problems

∂

∂t
|ψ〉 = αk

∂

∂qk
|ψ〉+ βm|ψ〉. (1.34)

Relativistic wave equation; implies Klein–Gordon equation.

Probabilistic interpretation:

• First-order wave equation.
• 〈ψ|ψ〉 is conserved and positive definite.
• Positivity requires Bose statistics.

Spin:

• Operators αk imply spin-1/2 particles.
• No spin-0 particles reproducible.
• Half-integer spin requires Fermi statistics.

Negative-energy solutions:

• Exist (with different spin d.o.f.).
• Separation from positive energies is non-local.

Dirac equation has the same problems as Klein–Gordon.

Conclusion. Klein–Gordon and Dirac equations:

• Perfectly acceptable relativistic wave equations.
• No probabilistic interpretation.
• Model without particle production.

13Extract energy from making particle faster!
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1.5 Conventions

Units. We shall work with natural units ~ = c = 1.

• c = 299 792 458 m s−1 therefore s := 299 792 458 m.
• ~ = 1.055 . . .× 10−34 kg m2 s−1 therefore kg := 2.843 . . .× 1042 m−1.
• can always reinstall appropriate units by inserting 1 = c = ~.
• particle physics unit electron Volt (eV): m = 5.068× 106 eV−1,

s = 1.519× 1015 eV−1, kg = 5.610× 1035 eV.
• convert back to SI units:

eV = 5.068× 106 m−1 = 1.519× 1015 s−1 = 1.783× 10−36 kg.

Euclidean space. Write a three-vector x as

• xj with Latin indices k, l, · · · = 1, 2, 3.
• ~x = (x1, x2, x3) = (x, y, z).

Scalar product between two vectors

~a·~b :=
3∑

k=1

akbk = a1b1 + a2b2 + a3b3. (1.35)

Vector square
~a 2 := ~a·~a = a21 + a22 + a23. (1.36)

Totally anti-symmetric epsilon-tensor εijk with normalisation

ε123 = +1. (1.37)

Use to define cross product
(a× b)k = εijkaibj. (1.38)

Minkowski Space. Four vectors, Greek indices µ, ν, . . . = 0, 1, 2, 3:

• position vector xµ := (x0, x1, x2, x3) = (t, ~x).
• momentum covector pµ := (p0, p1, p2, p3) = (e, ~p).

Summation convention: repeated index µ means implicit sum over µ = 0, 1, 2, 3

xµpµ :=
3∑

µ=0

xµpµ = et+ ~x·~p. (1.39)

Minkowski metric: signature (−+++)

ηµν = ηµν = diag(−1,+1,+1,+1). (1.40)

Raise and lower indices (wherever needed):

xµ := ηµνx
µ = (−t, ~x), pµ := ηµνpµ = (−e, ~p). (1.41)
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Scalar products of two vectors or two covectors, e.g.

p·p := −e2 + ~p 2. (1.42)

Our conventions:

• Mass shell p2 = −m2: p2 < 0 massive, p2 = 0 massless, p2 > 0 tachyonic.
• Light cone: (x− y)2 < 0 time-like, (x− y)2 = 0 light-like, (x− y)2 > 0 space-like.

(1.43)

Why?

• notation follows space (not time). xµ = (t, ~x) p
µ

= (t, ~x)

• xi = xi but x0 = −x0 = t.
• pi = pi but p0 = −p0 = e.
• Wick rotations natural: just rotate time t→ it and obtain Euclidean metric.

How to convert?

• flip sign of every ηµν and ηµν .
• find out which (co)vectors match: xµ and pµ agree literally, xµ and pµ flip the

sign.
• flip sign for every scalar product of vectors of same type: e.g.
p2 +m2 ↔ −p2 +m2.
• preserve scalar product between different vectors: xµpµ.14

• note: ~p opposite sign compared to Peskin & Schroeder; mild problem: sign of ~p
and e is merely convention.

Name Spaces. We have only 26 Latin letters at our disposal and some are more
attractive than others. Have to recycle:

• e may be 2.71 . . ., but also energy,
• π may be 3.14 . . ., but also momentum conjugate to field φ,
• i may be

√
−1, but also useful for counting.

• κ may look like k or K on the blackboard.

14Therefore also x·p unchanged (two signs cancel).
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• H may be Hamilton function or operator.
• . . .

Will typically not say explicitly which letter means what:

• May even use same letter for different meanings in one formula.
• Can guess meaning from the context, e.g. i in exp(πi . . .) vs.

∑n
i=1.

• Indices typically do not mix with other symbols.
• Could try to avoid, but may also clutter notation.
• It’s a fact of life (and the literature).
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